Synoptic All-Sky Infrared (SASIR) Survey

◆ Overview ◆

Josh Bloom (UC Berkeley)
http://sasir.org

Outline

- Overview of the Survey & the Science
- Series of Questions & Goals for this Workshop
- Timeline for Action & Decisions

SASIR vision: In a Nutshell

6.5 meter telescope (Magellan-inspired)

- site: San Pedro Mártir
- ~0.8° diameter field of view
- Filters: YJHK (3 dichroics)
- cover entire sky in ~3 months; 4 year survey
- "shallow" ($\sim 2.5 \pi$; 12 visits per filter), "medium" (0.5π ; 200 visits) & "deep" ($\sim 1000 \text{ sq deg}$; $10^3 + \text{ visits}$) surveys

New Phase Space:
Aperture + wavelength +
Field of View + Time

Backdrop: Modern OIR Large-Area Surveys

2MASS [1997 - 2000]

 4π , simultaneous JHKs on 1.3m telescopes, 2500+ papers

Sloan Digital Sky Survey (SDSS I & II) [2000 - 2008]

~1.5 π (North), ugriz on 2.5m, 250 sq. synoptic

Pan-STARRS [2008 - 2011]

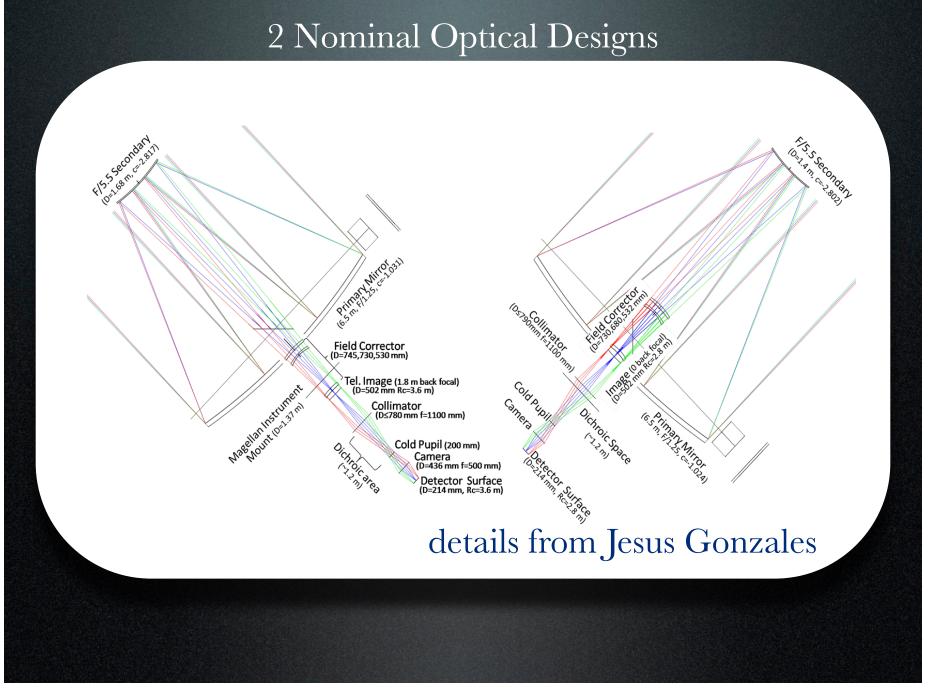
 $\sim 2.5 \pi$ (North), ugrizy on 1.8m, 20000 sq. synoptic

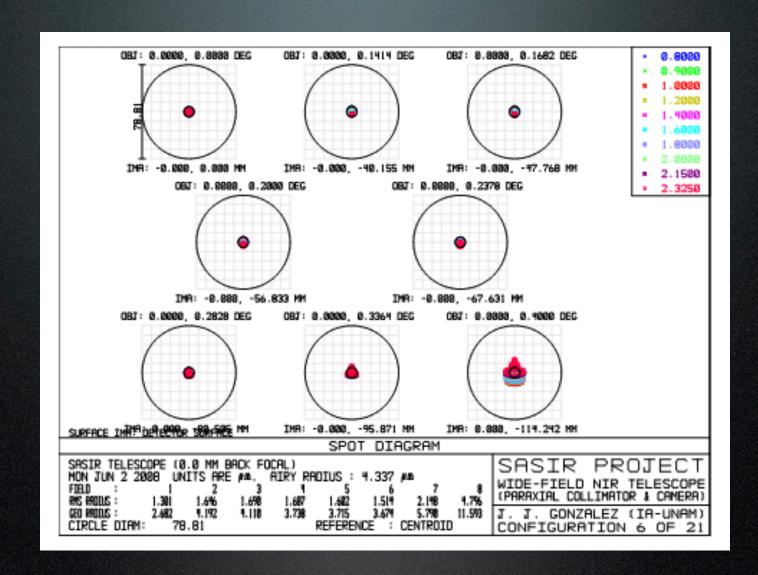
LSST [2013 - 2020?]

 $\sim 2.5 \pi$ (South), ugrizy on 8.5m, 30000 sq. synoptic

JDEM/SNAP [2013 - 2018?]

 $\sim 4 \pi$ (space), ugrizyJH on 2m?, 5000 sq. synoptic


Multi-threaded Science Goals

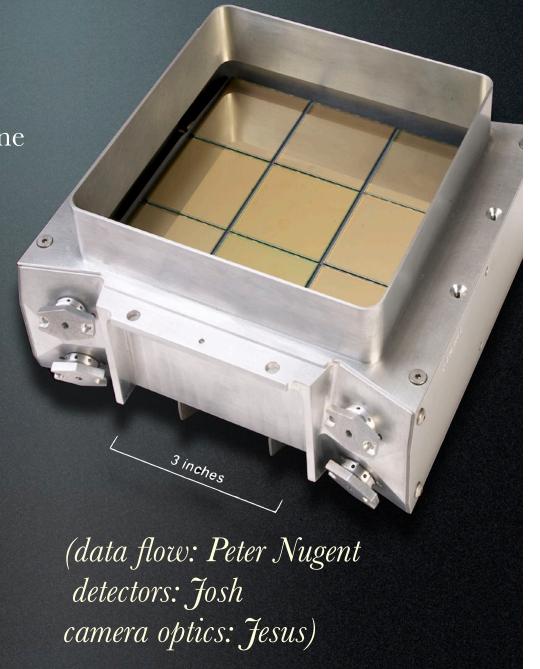

Transients (overview: Enrico)

- ▶ moving objects (esp. low-mass local-neighborhood stars)
- ▶ fast transients (orphan GRB afterglows?)
- exoplanet transit survey
- cosmology/distance ladder: supernovae, RR Lyrae, etc.
- ▶E&M connection to GWs (advanced LIGO) & cosmic particles
- high redshift transients (e.g. GRBs)

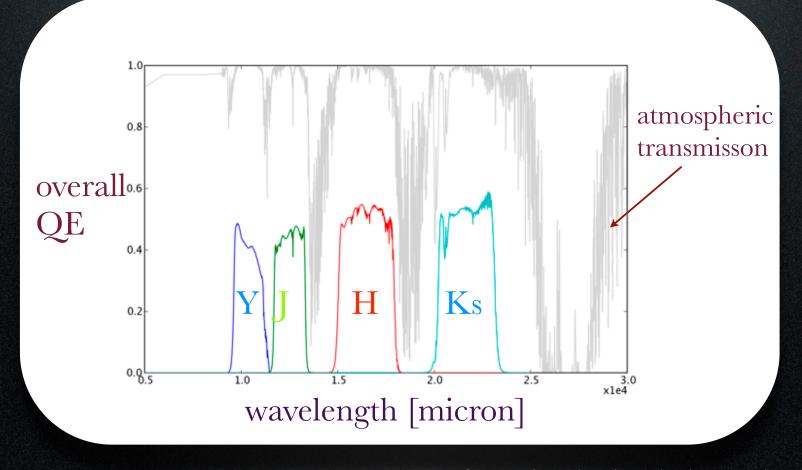
Static Sky (overview: Xavier)

- uncover the entire brown dwarf & Y dwarf population with 25 pc
- great photo-z improvement over LSST
- obscured quasars
- \blacktriangleright high-redshift quasars z > 7

The Camera


• 3 dichroics - size may be one of the most significant constraints (~0.5 m)

cold optics


• 80 - 100 2k x 2k H2RG or VIRGO arrays (15 - 20 micron = 0.2 - 0.3"/pix)

data rates: ~1.5 Gb per double correlated read ~2 Tb/night ~300 Mbps

• \$30 - 40M

Bandpasses (for now)

from simple simulation code

Quick SASIR Simulation

```
self.filt_names = [x.name for x in self.filts]
   self.get_response_curves()
def get_response_curves(self, req_range=(5000.,25000), n=2000, n_surfaces=4):
   self.lams = scipy.arange(req_range[0],req_range[1],(req_range[1] - req_range[0])/float(n))
    ## start at the atmosphere and work your way down
    ## atmospheric transmission
   self.resp = scipy.interp(self.lams,self.site.atm_trans[0],self.site.atm_trans[1])
   self.resp *= scipy.interp(self.lams,self.telescope.primary_reflectance[0],self.telescope.primary_reflectance[1])
   self.resp *= scipy.interp(self.lams,self.telescope.secondary_reflectance[0],self.telescope.secondary_reflectance[1])
    ## camera
   self.resp *= scipy.interp(self.lams,self.dewar_tp[0],self.dewar_tp[1])
   # internal optics coatings
   surf= scipy.interp(self.lams,self.lens_tp[0],self.lens_tp[1])
   for i in range(n_surfaces):
       self.resp *= surf
    ## array
   self.resp *= scipy.interp(self.lams,self.irarray.qe[0],self.irarray.qe[1])
   ## loop through each filter to finish up
   self.filt_response = □
```

Comparison to Other Surveys

Filter	5 sigma limiting mag [AB]	flux density µJy
J	18.13	202
Н	17.63	320
Ks	17.55	346

5 sigma limiting mag [AB]	flux density µJy
22.54	3.5
22.04	5.5
21.95	6.0

5 sigma limiting mag [AB]	flux density µJy
23.89	1.0
23.39	1.6
23.30	1.7

2MASS

SASIR/single epoch

SASIR/shallow

NOTE for a fixed S/N:

Limiting flux ratio $\propto \sqrt{1/t} \times (\text{FWHM}) \times 1/r$ Limiting mag difference = 1.25 log $t + 2.5 \log \text{FWHM} + 2.5 \log r$

Comparison to Other Surveys

Filter	5 sigma limiting mag [AB]	flux density µJy
J	18.13	202
Н	17.63	320
Ks	17.55	346

5 sigma limiting mag [AB]	flux density µJy
22.54	3.5
22.04	5.5
21.95	6.0

5 sigma limiting mag [AB]	flux density µJy
23.89	1.0
23.39	1.6
23.30	1.7

2MASS

SASIR/single epoch


SASIR/shallow

Extended
Source
Sensitivity
("shallow")

Filter	5 sigma limiting mag [AB arcsec ⁻²]	flux density µJy arcsec ⁻²	
Y	23.32	1.7	
J	22.78	2.8	
Н	22.42	3.8	
Ks	22.29	4.4	

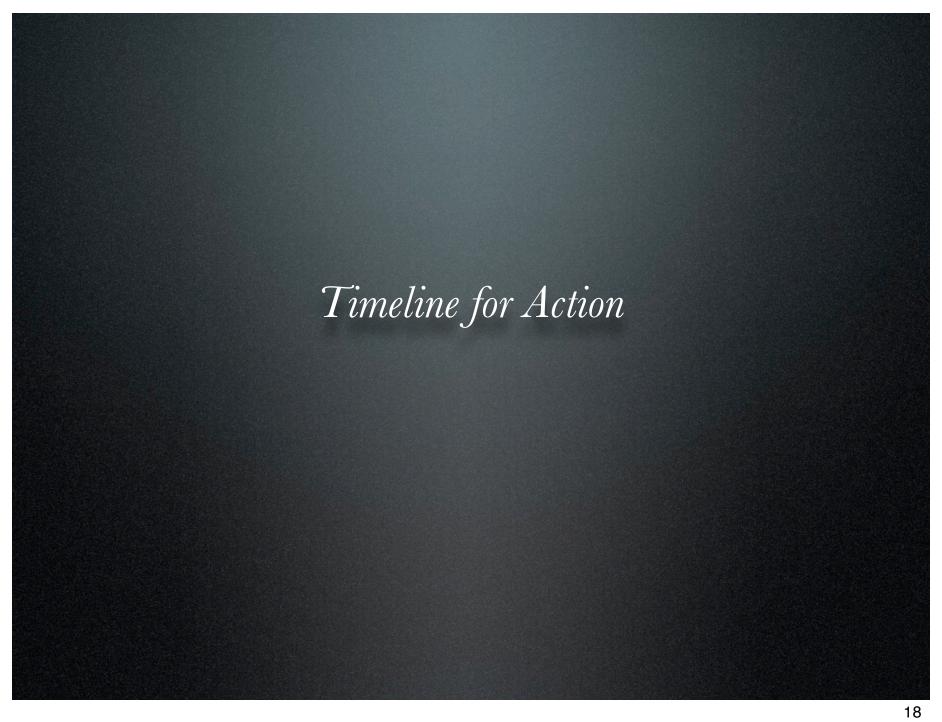
Comparison to Other Surveys K-band Imaging 2MASS SASIR 2MASS [Skrutskie et al. 2006] VLT/ISSAC (GOODS) [Retzlaff et al. 2008]

Comparison to Other Surveys

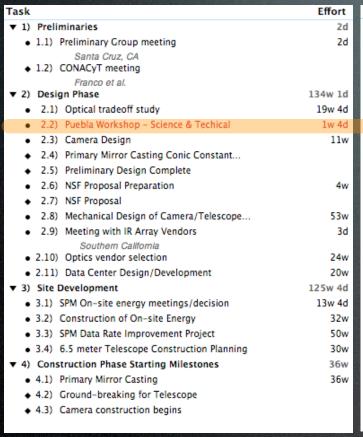
Science

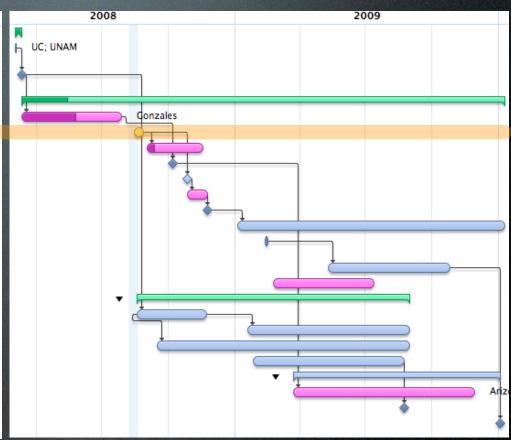
- ▶ What are main science results you want from SASIR? (Where would we excel over existing & planned surveys?)
- What are the specific technical requirements of the survey to achieve this science?

Examples:


- ◆ local cool stars parallax demands at least 3 visits, with 2 visits separated by ~6 months
- → we must have K-band because...
- What are the synergies with planned missions (JDEM, LSST, JWST, etc.)?

Technical


- What are the ranges of reasonable parameters for the mirror, telescope & camera?
- ▶ What are the innovations & long-lead time items we need to worry about now?
- ▶ What are the main "show stoppers" for each subsystem?


Collaboration

- ▶ Continue to build & grow the science & technical partnerships
- Develop a roadmap for engaging our collegues
- ▶ Start discussing details of collaboration agreement
- ▶ Start discussing extensions to partnership (i.e. other institutional partners, facility-leveraging)

Project Timeline

Funding Outlook for Design Phase

(more from Pepe & Mike)

What	Due	For What	Funding Profile
UC-Lab Research Program	4 Aug 08 [pending]	project management, optical designer, LSST-like simulation, collaboration meetings in Mexico	\$1.5M over 3 years (2009-2011)
NSF/Advanced Technologies and Instrumentation	1 Nov 08	TBD	\$<2M over 3 years (2009-2011)
NSF/Major Research Instrumentation Program	21 Dec 08 (LOI) 22 Jan 09	TBD	\$<4M

Also Critical:

SASIR whitepaper for **Decadal Survey** by March 2009