SASIR: Static Science Case

Jason Xavier Prochaska UCO/LICK OBSERVATORY UC SANTA CRUZ

SASIR and Static Science

- SASIR

- Deep yJHK imaging
- Full northern sky
- 0.6 " image quality
- Science areas
- Low mass stars
- Low z galaxies
- High z galaxies
- High z quasars
- Bottom line

- Hard to imagine a science area not addressed by SASIR
- Strategy: Focus on the unique science enabled to 'sell' the project
- Dedicated IR survey
- UKIRT 4 m IR optimized
- yJHK with a 0.2 sq deg field
- Surveys
- LSA
- 4000 square degrees
- $\mathrm{JHK}=20.9,20.2,20.2$ (AB)
- Galactic Plane (I8oo sq. deg)
- Variable stars
- DXS (Deep extragalactic)
- 35 sq. deg
- $\mathrm{JK}=23.4,22.85$ (AB)
- Status
- Mature project
- Data Release 3 in December 2007
- >20 papers published
- Nearing completion
- Dedicated IR survey
- New, 4 m IR optimized
- yJHK with a 0.6 sq deg field
- Surveys
- VIKING
- 1500 square degrees
- $2 \mathrm{yHHK}=23.1,22.3,22.1,21.5,21.2$ (AB)
- BAO, high z quasars
- VHS
- Full sky (20,000 sq. deg)
- $\mathrm{JK}=21.2,20.0$ (AB)
- High z quasars?

- No synoptic survey planned
- Status
- Key projects announced
- Operations by end of 2008

Space IR Missions

- Pending
- Herschel
- JWST
+ Single pointings
- WISE
- All sky, but shallow
- Proposed
- None at 'MIDEX' level
- SMEX
+ PI: H. Ford
- Failed
- JDEM?
- No synoptic survey planned

SASIR: Static Sky

- Strategic Advantages
- Wider (5x) than UKIDSS
- Deeper (2 mag?) than VISTA
- Northern sky
- No K band in space
- Synoptic
- Science advantages

Exciting Logo Goes Here

- Synoptic
- Wider+deeper
- Very rare, very faint, very red objects
- Northern sky
- Synergy with PANSTARS
- Keck, GTC, Subaru, etc.

SASIR: Static Sky

RED

FAINT

RARE

SASIR: Static Sky

RED

FAINT

RARE

e.g. High Redshift Quasars

z-3 Quasar

- No Gunn-Peterson effect
- If baryons were evenly distributed and neutral, the Lya opacity would be HUGE
- Observations
\uparrow Quasars at z<6 do not show a Gunn-Peterson 'trough'
- GRB sightlines agree
- Conclusion(s)
- Baryons are in a diffuse and ionized medium
\uparrow IGM observations dictate this
- Reionization
- Or (unlikely) baryons are in
 compact objects

z-3 Quasar

- No Gunn-Peterson effect

- If baryons were evenly distributed and neutral, the Lya opacity would be HUGE
- Observations
\uparrow Quasars at z<6 do not show a Gunn-Peterson 'trough'
- GRB sightlines agree
- Conclusion(s)
- Baryons are in a diffuse and ionized medium
\uparrow IGM observations dictate this
- Reionization
- Or (unlikely) baryons are in
 compact objects

z-6 Quasars

- Discovery
- SDSS optical imaging
- Including z-band
- APO follow-up IR imaging
- Keck follow-up spectroscopy
- SDSS team
- Science
- Reionzation
- Number density constrains number of ionizing photons available
- Lya forest becomes optically thick at $z-6$
- IGM physics
- Growth of black holes

- Higherz
- Need IR imaging
- Need deeper imaging

Quasar Luminosity Function

- QSO surveys
- SDSS + 2DF
- Optical imaing + spectroscopic follow-up
- $\sim \mathbf{I O}, 000$ quasars at $\mathbf{z > 2}$
- Luminosity function
- Extremely rare objects
$\uparrow \Phi\left(\mathrm{M}^{*}\right) \sim 10^{-7} \mathrm{Mpc}^{-1} \mathrm{mag}^{-1}$
- Double power law
- Shallow faint-end
- Steep bright end: $\Phi(\mathrm{L}) \sim \mathrm{L}^{-3.2}$
- Poorly constrained at $\mathrm{z}>4$
- Extrapolate
- Assume the shape holds constant ${ }^{10^{-8}}$

- Assume M * continues to decrease exponentially

Richards et al. (2005)

- 中* $^{*}=\exp [-0.43 \mathrm{z}]$

Quasar Luminosity Function

- QSO surveys
- SDSS + 2DF
- Optical imaing + spectroscopic follow-up
- \sim IO,000 quasars at $z>2$
- Luminosity function
- Extremely rare objects
$+\Phi\left(\mathrm{M}^{*}\right) \sim 10^{-7} \mathrm{Mpc}^{-1} \mathrm{mag}^{-1}$
- Double power law
- Shallow faint-end
- Steep bright end: $\Phi(\mathrm{L}) \sim \mathrm{L}^{-3.2}$
- Poorly constrained at $\mathrm{z}>4$
- Extrapolate
- Assume the shape holds constant
- Assume M^{*} continues to decrease exponentially
ث $\boldsymbol{\Phi}^{*}=\exp [-0.43 \mathrm{z}]$

z-6 Quasars

z-8 Quasars

z-Io Quasars

Stellar Contamination?

Static Science: Red Galaxies and Reddened QSOs

- Science

- Stellar mass buildup
- Growth of black holes
- Observational challenge
- Rare, Red, Faint
- Galaxies
$+\mathrm{K}>19, \mathrm{~J}-\mathrm{K}>2, \mathrm{n}_{\mathrm{DRG}}=10^{-4} \mathrm{Mpc}^{-3}$
- Quasars
+ $\mathrm{K}>19, \mathrm{R}-\mathrm{K}>4, \mathrm{~J}-\mathrm{K}>\mathrm{I} .7$
- Requirements
- Modest area (iooo sq. deg.)
- Modest depth
- DRG science will be paved by UKIDSS and VISTA
\uparrow Reddened AGN too?

Fig. 1.- Comparison between the photometric properties of the GNIRS sample at $2<z_{\text {phot }}<3$ and a mass-limited sample ($M>$ $\left.10^{11} M_{\odot}\right)$ at $2<z_{\text {phot }}<3$. The probabilities (P) that the GNIRS sample and the full mass-selected sample have similar distributions, as derived using a Mann-Whitney (MW) and a Kolmorov-Smirnov (KS) test, are given in the panels. Additionally, we divide the massselected sample into its K-bright $(K<19.7)$ and K-faint $(K>$ 19.7) members. The GNIRS sample may be less representative for a K-bright sample, as the redshift distribution is different.

Static Science: Red Galaxies and Reddened QSOs

- Science
- Stellar mass buildup
- Growth of black holes
- Observational challenge
- Rare, Red, Faint
- Galaxies
$\uparrow \mathrm{K}>19, \mathrm{~J}-\mathrm{K}>2, \mathrm{n}_{\mathrm{DRG}}=10^{-4} \mathrm{Mpc}^{-3}$
- Quasars - K > 19, $\mathrm{R}-\mathrm{K}>4, \mathrm{~J}-\mathrm{K}>\mathrm{I} .7$
- Requirements
- Modest area (iooo sq. deg.)
- Modest depth
- DRG science will be paved by UKIDSS and VISTA
\uparrow Reddened AGN too?

Static Science: Red Galaxies and Reddened QSOs

- Science

- Stellar mass buildup
- Growth of black holes
- Observational challenge
- Rare, Red, Faint
- Galaxies
$\uparrow \mathrm{K}>19, \mathrm{~J}-\mathrm{K}>2, \mathrm{n}_{\mathrm{DRG}}=10^{-4} \mathrm{Mpc}^{-3}$
- Quasars
- $\mathrm{K}>19, \mathrm{R}-\mathrm{K}>4, \mathrm{~J}-\mathrm{K}>1.7$
- Requirements
- Modest area (rooo sq. deg.)
- Modest depth
- DRG science will be paved by UKIDSS and VISTA
\uparrow Reddened AGN too?

Fig. 19.- Spatial density of quasars on the sky of F2M red quasars corrected for K-band absorption and compared with FBQS II and III (assuming no absorption for those quasars).

Static Science: High z Clusters

Catchy Adam Stanford image goes here

Static Science: SDSS synergy

- Science
- Large-scale structure
- Stellar mass of modern galaxies
- Correlations with CMB, SZ
- Observational challenge
- Large area
+ Northern sky
- Faint (K > 2I)
- Other projects
- UKIDSS/LSA
+ Will have modest success
- VISTA/VHS

- Less overlap with SDSS, but 2dF
- Additionally
- Connect to PANSTARS + push to higher z

Static Science: SDSS synergy

- Science

- Large-scale structure
- Stellar mass of modern galaxies
- Correlations with CMB, SZ
- Observational challenge
- Large area
+ Northern sky
- Faint (K > 2I)
- Other projects
- UKIDSS/LSA
+ Will have modest success
- VISTA/VHS
- Less overlap with SDSS, but 2dF
- Additionally
- Connect to PANSTARS + push to higher z

Title Query Results
7/31/089:29 AM

SAO/NASA Astrophysics Data System (ADS)
Query Results from the ADS Database
Go to bottom of page
Retrieved 200 abstracts, starting with number 1. Total number selected: 979.
Sort options

$3 \square$ 2008ChJAA...8..119W
Wang, Dan; Zhang, Yan-
Xia; Liu, Chao;
Zhao, Yong-Heng
$4 \square$ 2007AJ....134.2398C
Covey, K. R.; Ivezić, Ž.;
Schlegel, D.;
Finkbeiner, D.
Padmanabhan, N.;
Lupton, R. H.;
Agüeros, M. A.;
Bochanski, J. J.;
Hawley, S. L.; West, A. A.;
and 8 coauthors

Static Science: SDSS synergy

- Science
- Large-scale structure
- Stellar mass of modern galaxies
- Correlations with CMB, SZ
- Observational challenge
- Large area
+ Northern sky
- Faint (K > 2I)
- Other projects
- UKIDSS/LSA
+ Will have modest success
- VISTA/VHS

FIG. 1: The overdensity maps of various tracer samples in Galactic coordinates. The scale runs from $g=-1$ (black, no galaxies) to $g=-0.25$ (blue), $g=0$ (green), $g=+0.25$ (red), and $g=+1$ (white, $\geq 2 \times$ mean density).

- Less overlap with SDSS, but 2dF
- Additionally
- Connect to PANSTARS + push to higher z

Static Science: Galactic

- Science possibilities
- Star forming regions
- Low mass stars
\uparrow Faint + cold
- NEOs?
\& Is there an angle for the IR?
- What is the 'killer app' here?
- Very faint, very rare objects, very red objects

SASIR Static Science

Area	Faint?	Red?	Rare?	Vary?	Impact	Status	Team
High z QSOs	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	L	Reionization, black holes, IGM	1st draft	JXP
Reddened QSOs	$\sqrt{ }$	$\sqrt{ }$	$?$	$?$			
z> Galaxy Clusters	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	No			
DRGs	$\sqrt{ }$	$\sqrt{ }$	\bigotimes	No			
Nearby low- mass stars	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$	Proper motion			
Your science goes here							

