High Redshift Galaxy Clusters Prospects for SASIR

S.A. Stanford UC-Davis & LLNL 14 August 2008

Outline of Talk

Motivation
Future Science
Summarize with "Answers"

Motivation: Galaxy Evolution

How old are galaxies?

- Stellar population age vs galaxy age
- Where did they form?
 - role of environment
- How, when, and where did the galaxy types arise?
 - spirals and ellipticals

 Basic, difficult problems which are likely to be relevant when SASIR begins operation

Galaxy Evolution and Clusters

- Efficient way to sample universe at known z
- Wide range of galaxy density enables study of the effects of environment on galaxy evolution (e.g. *T*-Σ relation; Butcher-Oemler Effect)

Abell 1689 (ACS; Benitez et al.)

Clusters and Massive Galaxies

- Clusters are dominated by massive galaxies, which are also clustered in the field
- Evidence for early formation of massive galaxies, beyond z~1, at least of their stellar populations
- Formation timescale of massive galaxies in the field still much debated

Rettura et al. (2008)

Why 1 < z < 2?

- SFR peaks at 1<z<2
- Most of the stellar mass is created in this redshift regime

Need unbiased census of massive galaxies at 1 < z < 2

Dickinson et al. (2003)

Why 1 < z < 2?

- SFR peaks at 1<z<2
- Most of the stellar mass is created in this redshift regime

Need unbiased census of massive galaxies at 1 < z < 2

Dickinson et al. (2003)

Infrared Advantage

- Bruzual & Charlot model
 - 0.1 Gyr Burst, z_f = 3, 5
 - $H_0=70$; $\Omega_M = 0.3$; $\Omega_\Lambda = 0.7$
- Red galaxies quickly fade with redshift in optical due to strong k-correction
- Near-IR better but hard to go deep over large areas

Optical Alone

Stanford et al. 2005 (ApJ, 634, 129L)

Optical + IR

Cluster Search Methods

Method	Z<1	Z>1
X-ray	Efficient	Poor (sensitivity); Biased (shocks, concentration)
Optical (e.g. Red- Sequence)	Efficient	Poor (4000Å break leaves optical window); Biased (against clusters with star formation)
Multi-λ Photo-z	Efficient	Efficient; Unbiased
Future		
Sunyaev- Zeldovich	Great Potential; Will S <i>till</i> Require Multi-λ follow-up to calibrate	Great Potential; Will S <i>till</i> Require Multi-λ follow-up to calibrate

Preliminary Answers

- What are the main science results? and where would we excel relative to other surveys?
 - Probe galaxy evolution in full range of environment using samples of ~10,000 clusters at 1 < z < 2 and ~500 at 2 < z < 3 with M > 10¹⁴ M(sun). VIKING +KIDS will be limited to z < 1.5.
 - Unbiased census of stellar mass at 1 < z < 2 down to 4-5 magnitudes below L*, in the field as well. VIKING +KIDS will be limited to ~1 mag below L* at z~1.5.
 - Statistical methods necessary to exploit the full value of the large survey area/volume, e.g. use the halo occupation distribution methodology

Preliminary Answers

- What are the requirements on the design and operation of SASIR?
 - Bands: all four YJHK; K important to fill the gap between the NIR and MIR
 - Depth more important than area, so more new science likely to result from medium and deep modes
 - Calibration very important to be able to determine accurate phot-z in combination with optical surveys
 - Collaboration with optical surveys is CRUCIAL

Preliminary Answers

- What are the synergies with other large projects?
 - Collaboration with optical surveys is CRUCIAL
 - Large optical surveys (e.g. PanStarrs) are limited in their reach at 1 < z < 3 but provide the necessary optical photometry for determining photometric redshifts which are most important for any galaxy evolution science
 - Cross comparison of clusters selected by SASIR with those selected by eRosita will improve our understanding of cluster formation
 - WISE will provide an all-sky mid-IR complement for studies at z < 1