Astrofísica de altas energías 1. Partículas y procesos de altas energías

Alberto Carramiñana INAOE

Tonantzintla, 25 de enero de 2024

Astrofísica de altas energías - astrofísica multi-mensajero

◆□ → ◆□ → ◆三 → ◆三 → ○ ● ●

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の 0 0

1. Partículas y procesos de altas energías

1.1. Partículas e interacciones

- §1. Modelo estándar; §2. Partículas de interés astrofísico; §3. Interacciones;
- §4. Producción de rayos gamma.
- 1.2. Procesos electrodinámicos
 - §1. Interacciones electrón fotón; §2. Diagramas de Feynman; §3. Aniquilación;
 - §4. Producción de pares; §5. Compton; §6. Procesos de un vértice.

1.3. Interacciones nucleares

 $\S1.$ Decaimiento radiactivo; $\S2.$ Partículas $\S3.$ Colisiones; $\S4.$ Producción y decaimiento de piones.

1.4. Neutrinos y decaimiento beta

 $\S1.$ Neutrinos; $\S2.$ Decaimiento beta.

<u>1.1. Partículas astrofísicas</u> - modelo estándar

Algunas partículas no elementales de interés para este curso,

$$p = uud, \quad n = udd,$$

 $\pi^+ = ud, \quad \pi^0 = d\bar{d} + u\bar{u}.$

<u>1.1. Partículas astrofísicas</u> - partículas comunes

Partícula	Тіро	Masa	Decaimiento	au
Electrón (e^{\pm})	Leptón	0.511 MeV	No	∞
Muón (μ^{\pm})	Leptón	105.6 MeV	$\mu^+ ightarrow e^+ + u_e + ar u_\mu$	$2.2\times10^{-6}\mathrm{s}$
Protón (p^{\pm})	Hadrón - barión	938.272 MeV	No	∞
Neutrón (n)	Hadrón - barión	939.565 MeV	$n ightarrow p^+ + e^- + ar{ u}_e$	$881.5\pm1.5\mathrm{s}$
Pión (π^{\pm})	Hadrón - mesón	139.6 MeV	$\pi^+ o \mu^+ + \nu_\mu$	$2.6\times 10^{-8} {\rm s}$
Pión (π^0)	Hadrón - mesón	135 MeV	$\pi^{0} \to \gamma + \gamma$	$8.4 imes10^{-17} m s$

Tabla 1: Algunas de las partículas más comunes.

<u>1.1. Partículas astrofísicas</u> - interacciones

Interacción	Partícula	Ejemplo	Mediador
Nuclear fuerte	Entre hadrones	$p + N \rightarrow p + N + \pi$	Gluón
	(quarks)	$p + \gamma \rightarrow p + \gamma + \pi$	
Nuclear débil	Leptones	$n ightarrow p^+ + e^- + ar{ u}_e$	Bosones
	(neutrinos)	$\mu^+ ightarrow e^+ + u_e + ar u_\mu$	W^{\pm} , Z^0
		$\pi^+ o \mu^+ + \nu_\mu$	
Electromagnética	Leptones,	$e + \gamma ightarrow e + \gamma$	Fotón
	hadrones (quarks)	$\pi^{0} \to \gamma + \gamma$	
		$e^- + e^+ ightarrow p^- + p^+$	

Tabla 2: Interacciones entre partículas.

1.1. Partículas y procesos - producción de rayos gamma

Proceso	Interacción	Involucra	Rango
Aniquilación	EM	$ee ightarrow \gamma\gamma$	$\leq 0.511{\rm MeV}$
Bremsstrahlung	EM	Eficiente con electrones	MeV, GeV
Sincrotrón	EM	Secundario en altas energías	keV, MeV
Compton	EM	Muy eficiente con electrones	hasta 10s TeV
Decaimiento radioactivo	Fuerte	Radiación $lpha,eta,\gamma$	keV, MeV
Colisiones nucleares	Fuerte	Vía decaimiento de π^0	Hasta PeV

1.2. Procesos electromagnéticos - interacción electrón-fotón

- La interacción electrón y fotón juega un papel fundamental en astrofísica no sólo a altas energías.
- Interacciones directas:
- aniquilación: $ee \rightarrow \gamma \gamma$,
- producción de pares: $\gamma\gamma \rightarrow \textit{ee},$
- dispersión Compton: $\gamma e \rightarrow \gamma e$.
- ► Se describen cinemáticamente bajo la conservación de energía-momento.
- \blacktriangleright Se representan mediante diagramas de interacción \rightarrow diagramas de Feymann.
- Los diagramas de Feymann son una guía para los cálculos de secciones eficaces.
- Se construyen combinando el diagrama de interacción fundamental.

1.2. Procesos electromagnéticos - diagrama fundamental

- La interacción fundamental no conserva energía y momento simultáneamente.
- Combinaciones del diagrama fundamental, que puede unirse rotado o invertido, sí cumplen leyes de conservación.
- El número de vértices del diagrama compuesto escala la sección eficaz proporcionalmente a α, la constante de estructura fina.
- Una flecha en dirección invertida representa una antipartícula.

Interacción electromagnética fundamental.

1.2. Procesos electromagnéticos - diagramas

Figura 1: Izquierda: aniquilación $ee \rightarrow \gamma$; derecha: producción de pares: $\gamma\gamma \rightarrow ee$. Ambas interacciones involucran un electrón virtual.

1.2. Procesos electromagnéticos - diagramas

Figura 2: Se emplean dos diagramas para representar la dispersión Compton.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

1.2. Procesos electromagnéticos - aniquilación, $e^+e^-
ightarrow \gamma\gamma$

- La conservación de energía - momento ($\hbar=mc=1$; escala $\lambda_c=\hbar/mc$),

$$\begin{pmatrix} \gamma_1 + \gamma_2\\ \gamma_1 \vec{\beta_1} + \gamma_2 \vec{\beta_2} \end{pmatrix} = \begin{pmatrix} \omega_1 + \omega_2\\ \omega_1 \hat{k}_1 + \omega_2 \hat{k}_2 \end{pmatrix}, \tag{1}$$

tiene invariante

$$s = 2 + 2\gamma_1\gamma_2\left(1 - \vec{\beta}_1 \cdot \vec{\beta}_2
ight) = 2\omega_1\omega_2\left(1 - \hat{k}_1 \cdot \hat{k}_2
ight) \rightarrow s = 4\gamma^2 = 4\omega^2,$$

con $(E, \vec{p}) = (2\gamma, 0) = (2\omega, 0)$, en el centro de momento.

- ▶ En el CM se producen dos fotones con misma energía, $\omega = \gamma \ge 1$. Para $\beta \to 1$ los fotones tienden a adquirir la orientación original de los electrones.
- > La sección eficaz decrece con la velocidad relativa de las partículas en el CM,

$$\sigma = \pi r_e^2 \left(\frac{1-\beta^2}{4\beta}\right) \left\{\frac{3-\beta^4}{\beta} \ln\left(\frac{1+\beta}{1-\beta}\right) - 2(2-\beta^2)\right\},$$
(2)

con $r_e = e^2/mc^2 = \alpha \lambda_c$, radio clásico del electrón.

1.2. Procesos electromagnéticos - aniquilación, $e^+e^- \rightarrow \gamma\gamma$

Figura 3: Izquierda: cinemética del proceso de aniquilación en el centro de momento. Derecha: sección eficaz en términos de la velocidad del par en dicho marco de referencia.

1.2. Procesos electromagnéticos - aniquilación vía positronio

- El par e⁻e⁺ puede formar transitoriamente un sistema ligado hidrogenoide denominado positronio.
- El estado base tiene dos configuraciones: para (espín s = 0); orto (espín s = 1).
- El parapositronio decae en dos fotones de 0.511 MeV cada uno (en el CM),

$$\mathrm{e^-e^+} \rightarrow ~2\gamma \quad \Rightarrow \quad \tau = 2\alpha^{-5}\,\hbar/\mathit{mc}^2 = 1.23\times10^{-10}\,\mathrm{s}\,,$$

con $\alpha = e^2/\hbar c \simeq 1/137$ la constante de estructura fina.

- El momento angular de dos fotones es \neq 1, por lo que el ortopositronio no decae en dos fotones. El decaimiento es en tres fotones que suman 1.022 MeV (CM),

$$\mathrm{e^-e^+} \rightarrow ~3\gamma \quad \Rightarrow \quad \tau \sim \alpha^{-6} \, \hbar/mc^2 = 1.4 \times 10^{-7} \, \mathrm{s} \, .$$

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → のへで

1.2. Procesos electromagnéticos - aniquilación en el plano Galáctico

Kinzer et al. (2001)

FIG. 2.—Composite spectra from the VP 5 and VP 16 Galactic center pointings at $(l = 0^\circ, b = 0^\circ)$ and $(l = 0^\circ, b = \pm 1^\circ)$. Solid line is the best-fit composite model; dashed line shows the positron annihilation continuum model; dot-dashed line is the low-energy continuum component (power law times exponential); triple-dot-dashed line is the high-energy (cosmic-ray-induced) continuum component ($\sim E^{-1.65}$).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ < つ < ○

1.2. Procesos electromagnéticos - producción de pares $\gamma\gamma
ightarrow ee$

► La producción de pares por dos fotones, $\gamma\gamma \rightarrow e^+e^-$, sigue la misma relación de conservación de energía y momento que el proceso de aniquilación,

$$\begin{pmatrix} \omega_1 + \omega_2 \\ \omega_1 \hat{k}_1 + \omega_2 \hat{k}_2 \end{pmatrix} = \begin{pmatrix} \gamma_1 + \gamma_2 \\ \gamma_1 \vec{\beta}_1 + \gamma_2 \vec{\beta}_2 \end{pmatrix}.$$
 (3)

con invariante

$$s = -p_{\alpha}p^{\alpha} = 2\omega_1\omega_2\left(1 - \hat{k}_1 \cdot \hat{k}_2\right) = 2 + 2\gamma_1\gamma_2\left(1 - \vec{\beta}_1 \cdot \vec{\beta}_2\right) = 4\gamma^2.$$
(4)

- La interacción tiene umbral: $s \ge 4$.
- La sección eficaz se expresa como,

$$\sigma = \frac{\pi}{2} r_e^2 \left(1 - \beta^2 \right) \left\{ \left(3 - \beta^4 \right) \ln \left(\frac{1 + \beta}{1 - \beta} \right) - 2\beta \left(2 - \beta^2 \right) \right\},\tag{5}$$

con β la velocidad del par en el CM. Se tiene la relación,

$$\sigma_{\gamma\gamma} = 2\beta^2 \sigma_{ee}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

1.2. Procesos electromagnéticos - producción de pares $\gamma\gamma ightarrow ee$

Figura 4: Sección eficaz del proceso $\gamma\gamma \rightarrow ee$, en función de β , la velocidad del par creado en el centro de momento.

1.2. Procesos electromagnéticos - producción de pares $\gamma\gamma \rightarrow ee$

- La producción de pares con fondos de radiación (CMB, EBL) es un proceso que limita el acceso a fuentes extragalácticas de rayos γ más allá del rango de TeV.
- ▶ El máximo en la sección eficaz $\sigma_{\gamma\gamma}$ se da relativamente cerca del umbral de la interacción, en $\beta \simeq 0.7 \Rightarrow \gamma \simeq 1.4$, es decir

$$s=2\omega_1\omega_2(1-\hat{k}_1\cdot\hat{k}_2)=4\gamma^2\simeq 8,$$

que se traduce en,

$$E_{\gamma}h\nu(1-\cos\theta)\simeq 4\left(mc^{2}\right)^{2}\simeq 1\,\mathrm{eV}\,\mathrm{TeV}\,.$$
 (6)

 Conociendo el campo de radiación, n_ν, se calcula la opacidad sobre la línea de visión,

$$\tau(E_{\gamma},z) = \int_0^z \int_0^\infty \int_{\mu_{min}}^2 \sigma(\omega) n_{\nu}(z') \frac{\mu}{2} d\mu \, d\nu \left(\frac{d\ell}{dz'}\right) \, dz',$$

con $\omega = \sqrt{Eh\nu(1+z')\mu/2}$, $\mu = 1 - \cos\theta \ge \mu_{min} = m^2 c^4 / E_{\gamma} h\nu (1+z')^2$. Se incluye también un modelo cosmológico, $d\ell/dz = c/H(z)(1+z)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

1.2. Procesos electromagnéticos - producción de pares - CMB

Figura 5: Absorción de rayos gamma por interacción $\gamma\gamma \rightarrow ee$ con el fondo cósmico de microondas (CMB). El proceso de atenuación es importante a partir de $E_{\gamma} \gtrsim 100 \,\mathrm{TeV}$.

▲□▶ ▲□▶ ★ □▶ ★ □▶ ▲□ ● ● ● ●

1.2. Procesos electromagnéticos - producción de pares - EBL

Figura 6: Atenuación de fotones por interacción $\gamma\gamma \rightarrow ee$ con el fondo de luz extragaláctica (EBL). El proceso es relevante para $z \leq 1.0$ a partir de $E_{\gamma} \gtrsim 0.1 \text{ TeV}$. Los coeficientes de atenuación requieren el modelado del EBL, el cual tiene incertidumbres. Figuras del modelo de EBL de Gilmore et al. (2012).

1.2. Procesos electromagnéticos - Compton scattering

 La dispersión de Compton consiste en el intercambio de energía y momento entre electrones y fotones,

$$\gamma e
ightarrow \gamma e$$
.

- ► Es el proceso leptónico más eficiente para producir fotones de energías muy altas.
- La conservación de momento energía ($\hbar = 1, mc^2 = 1$; escala $\lambda_c = \hbar/mc$),

$$\begin{pmatrix} \omega_0 + \gamma_0 \\ \omega_0 \hat{k}_0 + \gamma_0 \vec{\beta}_0 \end{pmatrix} = \begin{pmatrix} \omega_1 + \gamma_1 \\ \omega_1 \hat{k}_1 + \gamma_1 \vec{\beta}_1 \end{pmatrix}.$$
 (7)

Eliminando γ_1 , $\gamma_1 \vec{\beta_1}$, obtenemos la expresión general,

$$\omega_{1} = \frac{\gamma_{0}\omega_{0}\left(1 - \vec{\beta}_{0} \cdot \hat{k}_{0}\right)}{\gamma_{0}\left(1 - \vec{\beta}_{0} \cdot \hat{k}_{1}\right) + \omega_{0}\left(1 - \hat{k}_{0} \cdot \hat{k}_{1}\right)}.$$
(8)

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

1.2. Procesos electromagnéticos - Compton scattering

El invariante del proceso es

$$s = 1 + 2\gamma_0\omega_0\left(1 - \vec{\beta}_0 \cdot \hat{k}_0\right) = (\omega + \gamma)^2, \qquad (9)$$

siendo $\{\omega, \gamma\}$ las energías del fotón y electrón en el CM, donde $\omega^2 = \gamma^2 + 1$. • Usando la variable

$$x = s - 1 = 2\gamma_0\omega_0(1 - \hat{k}_0 \cdot \vec{\beta}_0),$$

se puede expresar la sección eficaz, en cualquier marco de referencia, como

$$\sigma = \frac{2\pi r_e^2}{x} \left\{ \left(1 - \frac{4}{x} - \frac{8}{x^2} \right) \ln \left(1 + x \right) + \frac{1}{2} + \frac{8}{x} - \frac{1}{2(1+x)^2} \right\} .$$
 (10)

Los límites asintóticos son

$$\sigma = \frac{8\pi r_e^2}{3}(1-x), \ x \ll 1; \qquad \sigma = \frac{\pi r_e^2}{x} \left(1+2\ln x\right), \ x \gg 1.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

1.2. Procesos electromagnéticos - inverse Compton scattering

Figura 7: Sección eficaz de Compton en función de x = s - 1, siendo $s = -p_{\alpha}p^{\alpha}$, el invariante del proceso, en escalas lineal y logarítmica.

1.2. Procesos electromagnéticos - inverse Compton scattering

• Si $\gamma_0 \gg \omega_0$ se puede aproximar $\hat{k}_1 o \hat{eta}_0$ en la expresión (8),

$$\omega_1 \simeq \frac{2\gamma_0^2\omega_0\left(1-\beta_0\cos\theta_0\right)}{1+2\gamma_0\omega_0\left(1-\cos\theta_0\right)},\tag{11}$$

 $\cos\cos heta_0 = \hat{eta}_0 \cdot \hat{k}_0, \ \gamma_0 \gg 1.$

La expresión describe tanto la energía en función del ángulo θ, como el espectro de colisiones entre electrones y fotones mono-energéticos. Se distinguen dos casos:

$$(1) \qquad \gamma_0\omega_0\left(1-\cos heta_0
ight)\ll 1 \ \Rightarrow \ \omega_1\simeq 2\gamma_0^2\omega_0\left(1-eta_0\cos heta_0
ight),$$

el fotón adquiere una energía del orden $\gamma^2 \omega_0$, limitada a $4\gamma^2 \omega_0$, produciendo fotones de muy alta energía a partir de campos de radiación comunes.

(2)
$$\gamma_0 \omega_0 \left(1 - \cos \theta_0\right) \gg 1 \Rightarrow \omega_1 \simeq \gamma_0,$$

el fotón adquiere casi toda la energía del electrón. La disminución de la sección eficaz da lugar a la supresión de Klein-Nishina.

(ロ) (国) (E) (E) (E) (O)

1.2. Procesos electromagnéticos - procesos de un vértice

El proceso elemental no puede cumplirse en el vacío,

 Pero sí en presencia de campos electromagnéticos externos, que pueden absorber parte del momento de la interacción.

1.2. Procesos electromagnéticos - procesos de un vértice

1.2. Procesos electromagnéticos - bremsstrahlung relativista

 Deflexión de un electrón por un núcleo de carga Ze, con parámetro de impacto b. Su espectro¹,

$$\frac{d\mathcal{E}}{d\omega}(v,b) = \frac{8}{3\pi} \frac{Z^2 e^6}{m^2 c^3} \frac{\omega^2}{\gamma^2 v^2} \left[\frac{1}{\gamma^2} \kappa_0^2 \left(\frac{\omega b}{\gamma v} \right) + \kappa_1^2 \left(\frac{\omega b}{\gamma v} \right) \right], \quad (12)$$

con K_0, K_1 funciones modificadas de Bessel (orden 0,1). Sus límites asintóticos determinan el comportamiento a frecuencias bajas y altas.

- bajas frecuencias, $\omega \ll \gamma {\it v}/{\it b}$, el espectro es aproximadamente plano,

$$y \ll 1 \Rightarrow \left\{ egin{array}{c} \mathcal{K}_0 = -\ln(y) \ \mathcal{K}_1 = 1/y \end{array}
ight\} \Rightarrow \ rac{d\mathcal{E}}{d\omega} = rac{8}{3\pi} rac{Z^2 e^6}{m^2 c^3} rac{1}{b^2 v^2} \left[1 + \left(rac{\omega b}{\gamma^2 v}
ight)^2 \ln^2 \left(rac{\omega b}{\gamma v}
ight)
ight],$$

que, despreciando el segundo término, corresponde a un espectro plano. - altas frecuencias, $\omega \gg \gamma v/b$, hay un corte exponencial,

$$y \gg 1 \Rightarrow \mathcal{K}_0 = \mathcal{K}_1 = \left(\frac{\pi}{2y}\right)^{1/2} e^{-y} \Rightarrow \frac{d\mathcal{E}}{d\omega} = \frac{4Z^2 e^6}{3m^2 c^3 \gamma v^3} \left(1 + \frac{1}{\gamma^2}\right) \exp\left(-\frac{2\omega b}{\gamma v}\right).$$

1.2. Procesos electromagnéticos - bremsstrahlung relativista

 El espectro de (bajas frecuencias) de una colisión se integra sobre parámetros de impacto, inicialmente en el marco del electrón, resultando,

$$\frac{d\mathcal{E}'}{d\omega'dt'} = \frac{16Z^2 e^6 \gamma n_i}{3m^2 c^3} \frac{1}{v} \ln\left(\frac{b'_{max}}{b'_{min}}\right)$$

► En el caso de electrones relativistas en un medio los límites *b* son:

- $b_{max} \approx 1.4 a_0 Z^{-1/3}$, con a_0 radio de Bohr, para núcleos apantallados,
- $b_{min}=\hbar/m
 u
 ightarrow\lambda_c$, la longitud de onda de Compton, de donde

$$b_{max}/b_{min} \approx 1.4/lpha Z^{1/3} \approx 192 \, Z^{-1/3}$$

▶ Tras una sutil consideración de marcos de referencia, se obtiene $(n_i \rightarrow n)$,

$$\frac{d\mathcal{E}}{d\omega \, dt} = \frac{16Z^2 e^6}{3m^2 c^4} \, n \, \ln\left(\frac{192}{Z^{1/3}}\right). \tag{17}$$

1.2. Procesos electromagnéticos - bremsstrahlung relativista

Al integrar sobre frecuencias ω = 0 → ε/ħ, se obtiene una pérdida exponencial de energía, expresada normalmente en términos de densidad de columna, dX = ρc dt,

$$\frac{d\mathcal{E}}{dX} = -\frac{\mathcal{E}}{X_0}, \quad X_0 = \frac{716 \,\mathrm{g \, cm^{-2}} \,A}{Z(Z+1.3) \ln \left(207/Z^{1/3}\right)}, \tag{18}$$

con $Z^2 \ln(192/Z^{1/3})$ modificado para incluir efectos cuánticos (Bethe & Heitler).

- ► El proceso es importante en el aire (X₀ = 36.5 g cm⁻²), donde electrones relativistas emiten una parte importante de su energía.
- ► Este proceso es dominante en la atmósfera para energías $\mathcal{E} \gtrsim 80 \, \mathrm{MeV}$, por encima de pérdidas por ionización.
- ► A muy altas energías, $\hbar \omega \gg mc^2$, la probabilidad de emitir un fotón con energía comparable a la del electrón es alta, propiciando un tratamiento cuántico.

1.2. Procesos electromagnéticos - bremsstrahlung $eZ ightarrow e\gamma Z$

- ▶ Bremsstrahlung corresponde al de un proceso de un vértice, $e^- \rightarrow \gamma e^-$, donde el núcleo puede absorber parte del momento, preservando energía.
- Se puede plantear la conservación de energía-momento, en forma análoga a dispersión Compton, con un término de momento q asociado al núcleo (recoil),

$$\begin{pmatrix} \gamma_0 \\ \gamma_0 \vec{\beta}_0 - \vec{q} \end{pmatrix} = \begin{pmatrix} \gamma_1 + \omega \\ \gamma_1 \vec{\beta}_1 + \omega \hat{k} \end{pmatrix} \quad \Rightarrow \quad \omega = \frac{\gamma_0 \vec{\beta}_0 \cdot \vec{q}}{\gamma_0 (1 - \vec{\beta}_0 \cdot \hat{k}) + \vec{q} \cdot \hat{k}},$$

al eliminar γ_1 y suponer q pequeña $(q/2\gamma_0 \ll \hat{q} \cdot \vec{\beta}_0 < 1)$. • El caso óptimo corresponde a $\hat{\beta}_0 \parallel \hat{k}$, donde se obtiene,

$$\omega \simeq rac{\gamma_0eta_0\left(ec{q}\cdot\hat{k}
ight)}{1/2\gamma_0+ec{q}\cdot\hat{k}}\simeq \gamma_0eta_0,$$

la transferencia completa de momento del electrón al fotón.

1.2. Procesos electromagnéticos - pares en núcleo: $\gamma Z \rightarrow e^+e^-Z$

- ▶ Proceso recíproco al bremsstrahlung: un fotón puede producir un par, $\gamma \rightarrow e^-e^+$, en la vecindad de un núcleo de carga q = +Ze.
- ► La conservación de energía-momento tiene una forma análoga al bremsstrahlung, con un término de momento debido al núcleo, \vec{q} ,

$$\left(\begin{array}{c} \omega\\ \omega\hat{k}-\vec{q} \end{array}\right) = \left(\begin{array}{c} \gamma_1+\gamma_2\\ \gamma_1\vec{\beta}_1+\gamma_2\vec{\beta}_2 \end{array}\right).$$

- ▶ Se puede mostrar que para $\omega \gg 1$, los ángulos de emisión de los fotones son de orden $\theta \sim 1/\omega$.
- La sección eficaz está dada por,

$$\sigma = \frac{28}{9} \alpha Z^2 r_e^2 \left\{ \log \left(\frac{2\hbar\omega}{mc^2} \right) - \frac{109}{42} \right\}, \quad \hbar\omega \gg mc^2.$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ◆□ ▶

1.2. Procesos electromagnéticos - sincrotrón $eB \rightarrow e\gamma B$

- El proceso sincrotrón describe el comportamiento radiativo de un electrón en un campo magnético.
- ► En el tratamiento clásico, el espectro de un electrón se da en armónicos de la frecuencia de Larmor (o de ciclotrón), $\omega_{\ell} = eB_{\perp}/mc$, hasta alcanzar el valor de la frecuencia crítica,

$$P(\omega) \propto F(\omega/\omega_c), \quad \mathrm{con} \quad \omega_c = \frac{3}{2}\gamma^2 \omega_\ell.$$
 (19)

> En el caso cuántico y QED, el movimiento está cuantizado en niveles de Landau,

$$E(p_z,n) = \left(n+\frac{1}{2}\right)\hbar\omega_\ell + \frac{p_z^2}{2m} \rightarrow E(p_z,j) = \sqrt{m^2c^4 + 2j\,mc^2\hbar\omega_\ell + p_z^2c^2},$$

con j = n + 1/2 + s/2, siendo $n \in \{0, 1, 2, ...\}$, y espín $s = \pm 1/2$.

▶ Al plantear en (19) la condición $\hbar\omega_c \simeq \gamma^2 \hbar\omega_\ell \simeq \gamma mc^2$, se define el campo crítico,

$$B_c = \frac{m^2 c^3}{e\hbar} = 4.4 \times 10^{12} \,\mathrm{Gauss.}$$
 (20)

1.2. Procesos electromagnéticos - producción de pares $\gamma B ightarrow e^+e^-B$

- Canal de un vértice relacionado a la emisión sincrotrón, relevante para campos magnéticos intensos B ~ B_c.
- > Los coeficientes de absorción dependen de

$$x = \left(\frac{\hbar\omega}{mc^2}\right) \left(\frac{B}{B_c}\right),\,$$

$$\begin{aligned} \kappa_{\parallel} &= 0.35 \left(\alpha / \lambda_c \right) \exp \left(-8/3x \right), \quad \kappa_{\perp} &= \kappa_{\parallel} / 2, \quad x \ll 1, \\ \kappa_{\parallel} &= 0.5 \left(\alpha / \lambda_c \right) \sin \theta \, x^{-1/3}, \qquad \kappa_{\perp} &= 2\kappa_{\parallel} / 3, \quad x \gg 1, \end{aligned}$$

$$(21)$$

para polarizaciones relativas a \vec{B} y cos $\theta = \hat{k} \cdot \vec{B}$.

- El proceso $\gamma \rightarrow \gamma \gamma$ (photon splitting) ocurre también en campos magnéticos intensos y no tiene umbral.
 - y no
- Estos procesos son importantes en la vecindad de las estrellas de neutrones.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の 0 0

1.2. Procesos electromagnéticos - radiación Cherenkov

- ► La radiación Cherenkov (Čerenkov) se da cuando una partícula cargada viaja más rápido que la luz en un medio, v > c/n, siendo *n* el índice de refracción.
- ► Al viajar la onda lumínica a menor velocidad que la partícula, la emisión queda restringida a un cono de apertura $\cos \theta = 1/\beta n$ (animación!).
- La emisión por unidad de longitud es,

$$\frac{dE}{d\ell} = \frac{2\pi e^2 \nu}{c^2} \left[1 - \frac{1}{\beta^2 n^2(\nu)} \right].$$
 (22)

► La descripción es análoga a la de una onda de choque.

1.2. Procesos electromagnéticos - radiación Cherenkov

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の 0 0

1.2. Procesos electromagnéticos - radiación Cherenkov

	п	Umbral	θ	dE/dℓ
		(γ)	(0)	(eV/cm)
aire	1.00029	40.8	1.4	0.34
agua	1.335	1.5	41.2	327

- La radiación Cherenkov en el aire permite la técnica Cherenkov atmosférica para la detección de rayos gamma entre 30 GeV y 30 TeV.
- ▶ La radiación Cherenkov en el agua se emplea en detectores de rayos cósmicos, hasta por encima de 10^{20} eV, y rayos gamma, desde $\lesssim 1$ TeV hasta 1 PeV (10^{15}).

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

1.3. Interacciones nucleares - producción de rayos gamma

Proceso	Interacción	Involucra	Rango
Aniquilación	EM	$ee ightarrow \gamma\gamma$	$\leq 0.511{\rm MeV}$
Bremsstrahlung	EM	Eficiente con electrones	MeV, GeV
Sincrotrón	EM	Secundario en altas energías	keV, MeV
Compton	EM	Muy eficiente con electrones	hasta 10s TeV
Decaimiento radioactivo	Fuerte	Radiación $lpha,eta,\gamma$	keV, MeV
Colisiones nucleares	Fuerte	Vía decaimiento de π^0	Hasta PeV

<u>1.3. Interacciones nucleares</u> - transiciones nucleares

- La emisión de radiación por decaimiento radioactivo es el proceso por el cual se identificó la radiación γ (junto con α, β).
- Las transiciones entre niveles nucleares tienen energías del orden de 10's de keV a 10's de MeV.

	Proceso	Vida media	E_{γ} (MeV)	Entorno
²⁶ AI	$^{26}\text{Al} \rightarrow ^{26}\text{Mg} + e^+ + \nu_e + \gamma$	0.7 Myr	1.806	Estrellas masivas
⁴⁴ Ti	$^{44}\mathrm{Ti} ightarrow ^{44}\mathrm{Sc} + \mathrm{e}^+ + \nu_e$	60 yr	1.157	SNR
	$^{44}\mathrm{Sc} \rightarrow ~^{44}\mathrm{Ca} + \mathrm{e}^+ + \nu_e + \gamma$	4 hr		
²² Na	$^{22}Na \rightarrow ^{22}Ne + e^+ + \nu_e + \gamma$	2.6 hr	1.277	Novas
⁶⁰ Fe	$^{60}\mathrm{Fe} \rightarrow ^{60}\mathrm{Co} + \mathrm{e}^- + \nu_e$	2.6 Myr	1.173	ISM, SNR, SNe
	$^{60}Co \rightarrow {}^{60}Ni + e^- + \nu_e + 2\gamma$	5.2 yr	1.332	
⁵⁶ Co	$^{56}\mathrm{Co} \rightarrow ^{56}\mathrm{Fe} + \mathrm{e}^+ + \nu_e + \gamma$	77 d	0.847, 1.238	SNe

Tabla 3: Algunas transiciones nucleares de interés astrofísico.

<u>1.3. Interacciones nucleares</u> - transiciones nucleares

CGRO / COMPTEL 1.8 MeV, 5 Years Observing Time

<u>1.3. Interacciones nucleares</u> - procesos hadrónicos

- Los rayos cósmicos que llegan a la Tierra evidencian la existencia de núcleos atómicos con muy altas energías.
- Las colisiones de hadrones de alta energía con núcleos atómicos en el medio interestelar o en la atmósfera producen piones energéticos,

$$p + N \longrightarrow p + \operatorname{frag}(N) + \pi^{\pm} + \pi^{0}.$$
 (23)

Los piones cargados producen muones, electrones y neutrinos

$$\pi^- \longrightarrow \mu^- + \bar{\nu}_{\mu}, \quad \mu^- \longrightarrow e^- + \bar{\nu}_e + \nu_{\mu}.$$
 (24)

Los piones neutrons producen fotones,

$$\pi^0 \longrightarrow \gamma \gamma.$$
 (25)

 La producción hadrónica de fotones viene acompañada por una producción similar de neutrinos.

<u>1.3. Interacciones nucleares</u> - colisión protón - núcleo

- Las interacciones entre hadrones tienen componentes elásticas e inelásticas:
- La interacción elástica es el intercambio conservativo de energía y momento.
- En el proceso inelástico el núcleo absorbe parte de la energía de la cual se forman nuevas partículas, como piones, $p + N \rightarrow p + N + \pi$.
- \blacktriangleright La conservación de energía-momento en la colisión inelástica de un protón relativista con un núcleo en reposo (c=1),

$$p^{lpha} = \left(egin{array}{c} \gamma m_{m{p}} + m_{m{N}} \ \gamma ec eta m_{m{p}} \end{array}
ight) \quad \Rightarrow \quad p^{lpha}_{cm} = \left(egin{array}{c} \sqrt{s} \ 0 \end{array}
ight),$$

con $s = -p_{lpha}p^{lpha}$ la norma de energía-momento de la colisión.

▶ La colisión de un protón con un núcleo de nitrógeno $(m_N \approx 14m_p)$,

$$s=2\gamma m_p m_N+m_p^2+m_N^2 \
ightarrow \ \sqrt{s}\simeq \sqrt{2\gamma m_p m_N}\simeq 5\,{
m GeV}\,(E/{
m GeV})^{1/2} \ ,$$

alcanzando $\sqrt{s} \simeq 10 \, {\rm TeV}$ para $\gamma m_{p} \simeq 2 \times 10^{16} \, {\rm eV}.$

1.3. Interacciones nucleares - colisión pN, producción de partículas

> Para producir una partícula de masa m_Q se requiere,

 $\sqrt{s} \geq m_p + m_N + m_Q \,,$

por lo que la energía cinética del protón debe ser

$$(\gamma-1)m_{
ho}\geq m_Q\left(1+m_{
ho}/m_N+m_Q/2m_N
ight)\gtrsim m_Q$$
 .

 \blacktriangleright En la colisión de un protón ultrarelativista con un fotón se tiene (usando $\hbar=1$),

$$p^{lpha} = \left(egin{array}{c} \gamma m_{m{p}} + \omega \ \gamma ec{eta} m_{m{p}} + \omega \hat{k} \end{array}
ight) \quad \Rightarrow \quad s = 2 \gamma m_{m{p}} \omega (1 - ec{eta} \cdot \hat{k}) + m_{m{p}}^2 \, .$$

La interacción frontal es óptima:

$$(1 - ec{eta} \cdot \hat{k} = 1 + eta \simeq 2) \quad \longrightarrow \quad s \simeq 4\gamma m_{
ho} \omega + m_{
ho}^2.$$

• El umbral para la producción de un pion ($\sqrt{s} = m_p + m_\pi$) con fotones del CMB ($\omega \simeq 1.2 \times 10^{-3} \, {
m eV}$) es,

$$\gamma m_p \simeq rac{m_\pi}{2\omega} \left(m_p + m_\pi/2
ight) \simeq 5.4 imes 10^{19} \, {
m eV} \, .$$

1.3. Interacciones nucleares - colisión protón - núcleo: sección p-p

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms1472

Figure 3 | The inelastic cross-section versus \sqrt{s} . The ATLAS measurement for $\xi > 5 \times 10^{-6}$ is shown as the red-filled circle and compared with the predictions of Schuler and Sjöstrand and Phojet for the same phase space. Data (filled circles for *pp* data and unfilled circles for *pp* data) from $s = 2(\gamma + 1)m_p^2;$

donde $\sqrt{s} = 5 \,\mathrm{TeV}$ equivale a un protón cósmico de $10^{15}\,\mathrm{eV}$ con un núcleo atmosférico.

$$1 \operatorname{barn} = 10^{-28} \operatorname{m}^2 = 10^{-24} \operatorname{cm}^2.$$

$$\sigma_{\pi p} \approx (2/3) \sigma_{pp}.$$

・ロト・西ト・山田・山田・山下・

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

<u>1.3. Interacciones nucleares</u> - piones neutros

- ► El pion neutro produce dos fotones de energía $m_{\pi}/2 = 67.5 \, {
 m MeV}$, en su marco de referencia.
- Los fotones se propagan en direcciones opuestas, digamos k

 ± 2
 , Para un
 observador tienen por energía,

$$\hbar\omega_{\pm} = \gamma_{\pi} m_{\pi} \left(1 \pm \beta_{\pi} \cos \theta \right) / 2, \tag{26}$$

con $\cos \theta$ aleatoria.

> La distribución de energía de los fotones es plana dentro del intervalo

$$\left[\gamma_{\pi}m_{\pi}\left(1-\beta_{\pi}\right)/2,\gamma_{\pi}m_{\pi}\left(1+\beta_{\pi}\right)/2,\right].$$

► Dada una población de piones en ley de potencias, originada por una ley de potencias de rayos cósmicos, se obtienen fotones distribuidos simétricamente en log(E), con máximo en $m_{\pi}/2$ (the pion bump).

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

<u>1.3. Interacciones nucleares</u> - piones neutros

Figura 8: Ilustración de la formación del pion-bump. A la derecha cálculo de la formación del pion-bump en el medio interestelar (Dermer 1986).

<u>1.4. Interacción débil</u> - el decaimiento β , el neutrino, su detección...

Pronto. . .