# Procesos radiativos Capítulo 4: Teoría clásica de procesos radiativos

Alberto Carramiñana INAOE

Tonantzintla, 14 de noviembre de 2024

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の 0 0

## Teoría clásica de procesos radiativos

- 4.1. Elementos de relatividad especial
- 4.2. Campos de una carga en movimiento
- 4.3. Sistemas de cargas
- 4.4. Bremsstrahlung
- 4.5. Radiación sincrotrón
- 4.6. El efecto Compton
- 4.7. Procesos fotón electrón a altas energías

# 4.1. Elementos de relatividad especial

- 4.1.1. Sistemas inerciales de referencia.
- 4.1.2. Postulados.
- 4.1.3. Transformaciones de Lorentz.
- 4.1.4. Consecuencias.
- 4.1.5. Cuadrivectores.
- 4.1.6. Fotones y luz.
- 4.1.7. Campos electromagnéticos.

4.6. Compton

# 4.1.1. Sistemas inerciales de referencia

- En un sistema de referencia inercial es válida la ley de la inercia (1<sup>a</sup> ley de Newton): En ausencia de fuerzas externas un objeto mantiene un estado de movimiento rectilíneo uniforme.
- Sea O un observador en un sistema de referencia inercial describiendo el movimiento de una partícula con coordenadas,  $\vec{r}(t) = x(t)\hat{x} + y(t)\hat{y} + z(t)\hat{z}$ .
- Sea O' un observador que se mueve con velocidad  $\vec{v}$  relativa a O y que mide  $\vec{r'}(t) = x'(t) \hat{x} + y'(t) \hat{y} + z'(t) \hat{z}$ , con la misma orientación de los ejes.
- La transformación entre sistemas de coordenadas en mecánica clásica es la de Galileo,

$$\vec{r}(t) = \vec{r'}(t) + \vec{v}t. \tag{1}$$

que relaciona ambos sistemas cumpliendo con el principio de inercia.

- La transformación inversa tiene misma forma. Se obtiene de despejar (2), o al invertir el signo de la velocidad,

$$\vec{r'}(t) = \vec{r}(t) - \vec{v}t, \qquad (2)$$

#### 4.1.1. Sistemas inerciales de referencia - transformaciones de Galileo

En mecánica Newtoniana las velocidades son aditivas: si r
(t) describe el movimiento de una partícula vista por O, la relación entre la velocidad de la partícula medida por ambos observadores, u
y u
', es,

$$\vec{u} = \frac{d\vec{r}}{dt} = \frac{d(\vec{r'} + \vec{v}t')}{dt} = \frac{d\vec{r'}}{dt} + \vec{v} \frac{dt'}{dt}.$$
(3)

 Al suponer la invariancia del tiempo, implícita en las transformaciones de Galileo (2), se obtiene la invariancia espacial,

$$dt' = dt \quad \Rightarrow \quad dr' = dr \,, \tag{4}$$

y la adición de velocidades,

$$\vec{u} = \vec{u'} + \vec{v} \,. \tag{5}$$

 Las transformaciones entre sistemas de coordenadas son: desplazamiento del origen de coordenadas, rotaciones de los ejes de coordenadas y movimientos a velocidad constante.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● ④ ● ●

# 4.1.2. Postulados de la relatividad

La teoría especial de la relatividad se fundamenta en dos postulados:

- 1. Las leyes de la física tienen la misma forma en todo marco de referencia inercial.
- 2. La velocidad de la luz es constante y su valor es independiente del marco de referencia elegido.
- ► El postulado 1 indica que *las leyes de la física* mantienen una misma forma en todo marco de referencia inercial.
- Alrededor de 1900 se pensaba que las ecuaciones de Maxwell, que predicen la propagación de la luz con velocidad *c*, eran válidas sólo en reposo con respecto al *éter*, el cual definía un marco de referencia privilegiado.
- El postulado 2 establece la velocidad de la luz como una cantidad invariante, en conflicto con invariancias separadas de tiempo y distancia.
- Ha sido comprobado experimentalmente, de forma que el valor de la velocidad de la luz se define de forma *exacta*,

$$c \equiv 299\,792\,458\,\mathrm{m/s}$$
, (6)

y el metro se define a partir del segundo.

## 4.1.3. Transformaciones de Lorentz

La constancia de la velocidad de la luz en todo sistema de referencia inercial.

$$dx^{2} + dy^{2} + dz^{2} - c^{2} dt^{2} = dx'^{2} + dy'^{2} + dz'^{2} - c^{2} dt'^{2} = 0.$$
 (7)

> Para ejes con misma orientación y movimiento relativo sobre  $\hat{x}$ , se propone una transformación lineal.

$$ct' = A ct + B x$$
,  $x' = D ct + E x$ .

- Al combinar con (7) se llega a la expresión básica de la transformación de Lorentz,

$$\begin{cases} ct' = \gamma \ ct - \gamma \beta x = \gamma \left( ct - v x/c \right), \\ x' = -\gamma \beta \ ct + \gamma \ x = \gamma \left( x - v t \right), \end{cases}$$
(8)

con  $v = \beta c$ . El factor de Lorentz gueda definido por la condición,

$$\gamma \equiv \frac{1}{\sqrt{1-\beta^2}} \,. \tag{9}$$

- El factor  $\gamma$  es creciente con  $|\beta|$ :  $\gamma = 1$  para  $\beta = 0$ ;  $\gamma \to \infty$  para  $\beta \to \pm 1$ . 

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

4.6. Compton

# 4.1.3. Transformaciones de Lorentz

- > La relatividad emplea eventos definidos por coordenadas de tiempo y posición.
- ▶ **Principio de invariancia**: las transformaciones de Lorentz preservan la forma del *intervalo* entre eventos,  $ds^2 = -c^2 dt^2 + dx^2 + dy^2 + dz^2$ .
- Las transformaciones de Lorentz forman un grupo que se puede representar con matrices de 4 × 4 que incluye:
- traslaciones fijas = cambio de origen de coordenadas;
- rotaciones del sistema de coordenadas  $\rightarrow dr^2 = dx^2 + dy^2 + dz^2$  invariante;
- translaciones a velocidad constante (boost);
- inversiones espaciales o temporales, sin significado físico.

#### 4.1.3. Transformaciones de Lorentz

> Transformación para un movimiento rectilíneo uniforme sobre los tres ejes  $\hat{x}, \hat{y}, \hat{z}$ ,

$$\begin{pmatrix} ct' \\ x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} \gamma & -\gamma\beta & 0 & 0 \\ -\gamma\beta & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} ct \\ x \\ y \\ z \end{pmatrix}, \quad (10)$$

$$\Lambda(y) = \begin{pmatrix} \gamma & 0 & -\gamma\beta & 0 \\ 0 & 1 & 0 & 0 \\ -\gamma\beta & 0 & \gamma & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad \Lambda(z) = \begin{pmatrix} \gamma & 0 & 0 & -\gamma\beta \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -\gamma\beta & 0 & 0 & \gamma \end{pmatrix}.$$

• La transformación para  $\vec{v} = \vec{\beta}c$  entre dos sistemas con *ejes paralelos*,

$$ct' = \gamma ct - \gamma \vec{\beta} \cdot \vec{r}, \quad \vec{r'} = -\gamma \vec{\beta} ct + \vec{r} + (\gamma - 1) \left( \hat{\beta} \cdot \vec{r} \right) \hat{\beta}.$$
(11)

## 4.1.3. Transformaciones de Lorentz

Inversa: toda transformación tiene una inversa única. Empleando notación matricial y omitiendo (y, z), la transformación inversa de (10) es,

$$\left(\begin{array}{c} ct'\\ x'\end{array}\right) = \left(\begin{array}{c} \gamma & -\gamma\beta\\ -\gamma\beta & \gamma\end{array}\right) \left(\begin{array}{c} ct\\ x\end{array}\right) \iff \left(\begin{array}{c} ct\\ x\end{array}\right) = \left(\begin{array}{c} \gamma & \gamma\beta\\ \gamma\beta & \gamma\end{array}\right) \left(\begin{array}{c} ct'\\ x'\end{array}\right)$$

- La inversa se obtiene reemplazando  $\vec{eta} 
  ightarrow \vec{eta}.$
- ► Suma: Al combinar dos transformaciones paralelas, con  $v_1 = \beta_1 c$ ,  $v_2 = \beta_2 c$ , se obtiene una transformación con

$$\gamma = \gamma_1 \gamma_2 (1 + \beta_1 \beta_2) \quad \Rightarrow \quad \beta = \frac{\beta_1 + \beta_2}{1 + \beta_1 \beta_2},$$

que satisface  $|\beta| < 1$  para  $|\beta_1|$ ,  $|\beta_2| < 1$ .

 Transformaciones más complejas combinan rotaciones y movimientos rectilíneos, notando con precaución que el grupo de Lorentz no es conmutativo.

# 4.1.4. Consecuencias

#### Simultaneidad:

para O los eventos  $(t_1 = 0, x_1 = 0)$  &  $(t_2 = 0, x_2 = X)$  son simultáneos  $(t_1 = t_2)$ . En O' estos eventos no son simultáneos. El primer evento se transforma de forma trivial en  $(t'_1 = 0, x'_1 = 0)$ , mientras que,

$$\left(\begin{array}{c} ct_2'\\ x_2' \end{array}\right) = \left(\begin{array}{c} \gamma & -\gamma\beta\\ -\gamma\beta & \gamma \end{array}\right) \left(\begin{array}{c} ct_2 = 0\\ x_2 = X \end{array}\right) = \left(\begin{array}{c} -\gamma\beta X\\ \gamma X \end{array}\right)$$

es decir  $t_2' = -\gamma eta X/c 
eq t_1' = 0$ . La simultaneidad depende del observador.

#### Dilatación temporal:

dos eventos distintos en un mismo punto,  $(t_1 = 0, x_1 = 0)$  &  $(t_2 = T, x_2 = 0)$ , para O. En O' los mismos eventos:  $(t'_1 = 0, x'_1 = 0)$  &  $(t'_2 = \gamma T, x'_2 = -\gamma \beta c T)$ . La dilatación temporal radica en  $t'_2 - t'_1 \ge T$ . El lapso de tiempo entre dos eventos es mínimo en el marco de referencia en el cual los eventos suceden en el mismo punto. Se define el *tiempo propio* como aquel transcurrido en el marco de referencia donde la separación entre eventos es puramente temporal.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

# 4.1.4. Consecuencias

#### • Contracción espacial:

La medición de una barra de longitud L que realiza O puede describirse con los eventos ( $t_1 = 0, x_1 = 0$ ), ( $t_2 = 0, x_2 = L$ ).

- O' registra estos eventos en  $(t'_1 = 0, x'_1 = 0)$ ,  $(t'_2 = -\gamma\beta L/c, x'_2 = \gamma L)$ . Si  $L' = x'_2 - x'_1 \ge L$ , parecería una expansión, no una contracción...

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の 0 0

#### 4.1.5. Cuadrivectores - eventos

- La relatividad generaliza la mecánica de Newton introduciendo cuadrivectores, generalización de vectores espaciales que incorporan la componente temporal.
- La invariancia de la velocidad de la luz se introduce en la construcción de los cuadrivectores.
- > El cuadrivector básico ubica un evento en el espacio y tiempo,

$$x^0 = ct$$
,  $x^1 = x$ ,  $x^2 = y$ ,  $x^3 = z$ ,

abreviadas  $x^{\alpha}$ , con  $\alpha = 0$  para la componente temporal,  $\alpha \rightarrow j = \{1, 2, 3\}$  para las componentes espaciales.

> De forma explícita, el cuadrivector de tiempo y posición está dado por,

$$x^{\alpha} = \begin{pmatrix} x^{0} \\ x^{1} \\ x^{2} \\ x^{3} \end{pmatrix} = \begin{pmatrix} ct \\ x \\ y \\ z \end{pmatrix} = \begin{pmatrix} ct \\ \vec{x} \end{pmatrix}.$$
 (12)

#### 4.1.5. Cuadrivectores - intervalos; tensor de Minkowski

Se define el intervalo entre dos eventos,

$$\Delta s^{2} \equiv -(\Delta x^{0})^{2} + (\Delta x^{1})^{2} + (\Delta x^{2})^{2} + (\Delta x^{3})^{2} .$$
 (13)

- La propagación de la luz cumple  $\Delta s=$  0, en todo marco de referencia.
- Eventos conectados causalmente cumplen  $\Delta s^2 \leq 0.$
- La relación (13) se puede re-escribir definiendo el tensor de Minkowski, escrito en coordenadas cartesianas como,

$$\eta_{\alpha\beta} \equiv \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \operatorname{diag}(-1, 1, 1, 1) = \eta^{\alpha\beta}.$$
(14)

- En forma diferencial, e introduciendo la convención de sumatorias implícitas,

$$ds^{2} = \sum_{\alpha=0}^{3} \sum_{\beta=0}^{3} \eta_{\alpha\beta} \ dx^{\alpha} dx^{\beta} \quad \Rightarrow \quad ds^{2} = \eta_{\alpha\beta} \ dx^{\alpha} dx^{\beta} . \tag{15}$$

4.1. Relatividad

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

## 4.1.5. Cuadrivectores - sumatorias implícitas

La convención de sumatoria sobre índices repetidos (15), permite convertir cuadrivectores contravariantes en covariantes, empleando el tensor de Minkowski

$$\eta_{\alpha\beta} A^{\alpha} \equiv \eta_{0\beta} A^{0} + \eta_{1\beta} A^{1} + \eta_{2\beta} A^{2} + \eta_{3\beta} A^{3} = A_{\beta} , \qquad (16)$$

es decir

$$egin{aligned} \mathcal{A}_eta &= \eta_{lphaeta} \mathcal{A}^lpha &= \left(-\mathcal{A}^0, \, ec{\mathcal{A}}
ight) \quad \Rightarrow \quad \mathcal{A}_0 = -\mathcal{A}^0, \; \mathcal{A}_\jmath = \mathcal{A}^\jmath \qquad \mathrm{con}\; \jmath = \{1,2,3\}, \end{aligned}$$

- En general:
- Cuadrivectores contravariantes,  $A^{\alpha}$  con super-índice, son aquellos que se transforman siguiendo,

$$A^{\prime\alpha} = \frac{\partial x^{\prime\alpha}}{\partial x^{\beta}} A^{\beta}.$$
 (17)

- Cuadrivectores covariantes,  $A_{\alpha}$  con sub-índice, se transforman siguiendo,

$$A'_{\alpha} = \frac{\partial x^{\alpha}}{\partial x'^{\beta}} A_{\beta}.$$
 (18)

## 4.1.5. Cuadrivectores - espacio, producto escalar, norma

- > Cuadrivectores covariantes y contravariantes forman un espacio dual.
- ► Se generaliza el producto escalar entre cuadrivectores,

$$\mathbf{A} \cdot \mathbf{B} = A_{\alpha} B^{\alpha} = \eta_{\alpha\sigma} A^{\sigma} B^{\alpha} = -A^0 B^0 + \vec{A} \cdot \vec{B} = \mathbf{A}' \cdot \mathbf{B}',$$

con  $\mathbf{A} \cdot \mathbf{B} = \mathbf{A}' \cdot \mathbf{B}'$ , invariante para cuadrivectores, transformados de acuerdo a (17,18), por definición.

► Se tiene definida la "norma" de cada cuadrivector,

$$\mathbf{A}\cdot\mathbf{A}=A_{lpha}A^{lpha}=-(A^0)^2+ec{A}\cdotec{A},$$

invariante ante transformaciones.

La construcción de cuadrivectores representando entidades físicas en relatividad se hace empleado el tiempo propio, definido a partir del intervalo s. 4.1. Relatividad

4.6. Compton

## **4.1.5. Cuadrivectores** - transformación de cuadrivectores

► Las transformaciones de un cuadrivector A<sup>α</sup> (contravariante) entre dos sistemas con ejes paralelos están dadas por

$$\begin{cases} A^{\prime 0} = \gamma A^{0} - \gamma \vec{\beta} \cdot \vec{A} \\ \vec{A^{\prime}} = -\gamma \vec{\beta} A^{0} + \vec{A} + (\gamma - 1) (\hat{\beta} \cdot \vec{A}) \hat{\beta} \end{cases} \Rightarrow \begin{cases} A^{0} = \gamma A^{\prime 0} + \gamma \vec{\beta} \cdot \vec{A^{\prime}}, \\ \vec{A} = \gamma \vec{\beta} A^{\prime 0} + \vec{A^{\prime}} + (\gamma - 1) (\hat{\beta} \cdot \vec{A^{\prime}}) \hat{\beta}. \end{cases}$$

$$(19)$$

• Separando el vector  $\vec{A}$  en componentes perpendicular y paralela a  $\vec{\beta}$ ,

$$ec{\mathcal{A}}=ec{\mathcal{A}}_{\parallel}+ec{\mathcal{A}}_{\perp}, \quad \mathrm{con} \quad ec{\mathcal{A}}_{\parallel}=(\hat{eta}\cdotec{\mathcal{A}})\hat{eta}, \quad ec{\mathcal{A}}_{\perp}=\hat{eta} imes(ec{\mathcal{A}} imes\hat{eta}),$$

se tiene que la parte espacial de (19) se puede escribir como,

$$\vec{\mathcal{A}'} = -\gamma \vec{\beta} \mathcal{A}^{\mathbf{0}} + \gamma \mathcal{A}_{\parallel} \hat{\beta} + \vec{\mathcal{A}}_{\perp},$$

es decir

$$A^{\prime 0} = \gamma A^0 - \gamma \beta A_{\parallel}, \quad \vec{A}_{\parallel}^{\prime} = -\gamma \vec{\beta} A^0 + \gamma \vec{A}_{\parallel}, \quad \vec{A}^{\prime}{}_{\perp} = \vec{A}_{\perp}.$$
(20)

4.6. Compton

## 4.1.5. Cuadrivectores - tiempo propio, velocidad, aceleración

• Se define el **tiempo propio**,  $\tau$ , a partir del intervalo *s*,

$$d\tau \equiv \frac{1}{c}\sqrt{-ds^2} = \sqrt{dt^2 - \frac{1}{c^2}(dx^2 + dy^2 + dz^2)} = \frac{dt}{\gamma}.$$
 (23)

El tiempo propio es un *escalar* invariante, independiente del marco de referencia.
Se construyen cuadrivectores derivando sobre dτ. Así el cuadrivector de velocidad,

$$u^{\alpha} \equiv \frac{dx^{\alpha}}{d\tau} = \begin{pmatrix} \gamma c \\ \gamma \vec{v} \end{pmatrix}, \qquad (24)$$

de norma  $u_lpha u^lpha = -c^2$ , invariante.

> La derivada del cuadrivector de velocidad es el cuadrivector de aceleración,

$$\mathbf{a}^{\alpha} \equiv \frac{du^{\alpha}}{d\tau} = \begin{pmatrix} \gamma \, c \, d\gamma/dt \\ \gamma \, d(\gamma \vec{v})/dt \end{pmatrix} = \begin{pmatrix} \gamma^4 \, \vec{a} \cdot \vec{v}/c \\ \gamma^2 \, \vec{a} + \gamma^4 \, (\vec{a} \cdot \vec{v}) \, \vec{v}/c^2 \end{pmatrix}.$$
(25)

La norma  $a_{\alpha}a^{\alpha}$ , invariante, es igual al cuadrado de la aceleración en el marco de referencia (instantáneo) de la partícula (acelerada).

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ��

4.6. Compton

## 4.1.5. Cuadrivectores - energía y momento

► El cuadrivector de energía-momento se define para una partícula de masa *m* como,

$$p^{\alpha} \equiv m u^{\alpha} = \begin{pmatrix} \gamma m c \\ \gamma m \vec{v} \end{pmatrix} = \begin{pmatrix} E/c \\ \vec{p} \end{pmatrix}, \qquad (26)$$

generalizando el momento de una partícula  $\vec{p} = \gamma m \vec{v}$ , y su energía.

- La energía de la partícula,  $E = \gamma mc^2$ , tiene la parte en reposo,  $E_0 = mc^2$ , y la cinética,  $E_c = (\gamma - 1)mc^2$ ,

$$E = E_0 + E_c = mc^2 + \frac{1}{2}mv^2 + \frac{3}{8}\frac{mv^4}{c^2} + \dots$$
 (27)

- La norma del cuadrivector de energía-momento, es

$$p_{\alpha}p^{\alpha} = -E^2/c^2 + p^2 = -m^2c^2 \quad \Rightarrow \quad E = \sqrt{m^2c^4 + p^2c^2}.$$
 (28)

4.1. Relatividad

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

## 4.1.5. Cuadrivectores - potencia y fuerza

La generalización de la mecánica de Newton se hace con cuadrivectores de fuerza que describen interacciones de forma similar a la segunda ley de Newton,

$$\mathcal{F}^{\mu} = m a^{\mu} = \frac{dp^{\mu}}{d\tau} \,. \tag{29}$$

► La aceleración (25) puede separarse en componentes paralela y perpendicular a la velocidad,  $\vec{a} = a_{\parallel}\hat{v} + \vec{a}_{\perp}$ , donde

$$\vec{a} = \vec{a}_{\parallel} + \vec{a}_{\perp} \quad \text{con} \quad \vec{a}_{\parallel} \equiv (\vec{a} \cdot \hat{v}) \hat{v}, \quad \vec{a}_{\perp} \equiv \hat{v} \times (\vec{a} \times \hat{v}).$$
 (30)

para obtener de (29).

$$\frac{dE}{dt} = \gamma^3 m \vec{a} \cdot \vec{v} , \quad \frac{d\vec{p}}{dt} = \gamma^3 m \vec{a}_{\parallel} + \gamma m \vec{a}_{\perp} , \qquad (31)$$

La componente paralela a la velocidad cambia la energía ("hace trabajo"), siendo más difícil acelerar una partícula linealmente que de forma perpendicular.

## 4.1.6. Luz y fotones

- ► La expresión de la derecha en (26) se generaliza a partículas sin masa, como el fotón, donde  $E^2 = p^2 c^2$ .
- > El fotón tiene asociado el cuadrivector de energía-momento,

$$p^{\alpha} = \begin{pmatrix} E/c\\ \vec{p} \end{pmatrix} = \hbar k^{\alpha} = \begin{pmatrix} \hbar \omega/c\\ \hbar \vec{k} \end{pmatrix} = \frac{\hbar \omega}{c} \begin{pmatrix} 1\\ \hat{k} \end{pmatrix}, \qquad (32)$$

con  $\vec{k} = (\omega/c)\hat{k}$  el vector de propagación.

 La norma nula para la propagación de la luz en el vacío equivale a la relación de dispersión,

$$k_{lpha}k^{lpha}=0 \; \Rightarrow \; -\omega^2+k^2c^2=0\,,$$

acorde con masa nula y propagación en intervalos nulos, ds = 0.

・ロト・(四ト・(日下・(日下・(日下)

# 4.1.6. Luz y fotones

Figura 1: Un emisor de luz E se mueve con velocidad  $\vec{v} = \vec{\beta}c$  con respecto al observador O, siendo  $\hat{k}$  el vector de E a O, inverso a la línea de visión.



4.6. Compton

▶ Sea E un emisor de radiación con velocidad  $\vec{v} = \vec{\beta}c$ , emitiendo con una frecuencia  $\omega_e$  en la dirección  $\hat{k}_e$  (fig. 1). La relación entre frecuencias observada y emitida está dada por la transformación inversa a (19),

$$\omega_{o} = \gamma \omega_{e} \left( 1 + \vec{\beta} \cdot \hat{k}_{e} \right) = \frac{\omega_{e}}{\gamma \left( 1 - \vec{\beta} \cdot \hat{k}_{o} \right)}$$
(33)

> La transformación del vector de propagación es la directa,

$$\hat{k}_{e} = \frac{\hat{k}_{o} - \gamma \vec{\beta} + (\gamma - 1) \left( \hat{\beta} \cdot \hat{k}_{o} \right) \hat{\beta}}{\gamma \left( 1 - \vec{\beta} \cdot \hat{k}_{o} \right)} \quad \Rightarrow \quad \hat{\beta} \cdot \hat{k}_{e} = \cos \theta_{e} = \frac{\cos \theta_{o} - \beta}{1 - \beta \cos \theta_{o}} . \tag{34}$$

## 4.1.6. Luz y fotones - efecto Doppler

• fuente alejándose en movimiento radial,  $\hat{\beta} \cdot \hat{k}_o = -1$ :

$$\omega_o = \frac{\omega_e}{\gamma(1+\beta)} = \omega_e \sqrt{\frac{1-\beta}{1+\beta}}, \quad \cos\theta_e = -1.$$
(35)

La frecuencia observada es menor y corresponde al corrimiento al rojo.

• fuente acercándose en movimiento radial,  $\cos \theta_o = +1$ :

$$\omega_o = \frac{\omega_e}{\gamma(1-\beta)} = \omega_0 \sqrt{\frac{1+\beta}{1-\beta}}, \qquad \cos\theta_e = +1.$$
(36)

La frecuencia observada es mayor y corresponde al corrimiento al azul.

• fuente moviéndose perpendicularmente,  $\cos \theta_o = 0$ :

$$\omega_o = \frac{\omega_e}{\gamma}, \qquad \cos\theta_e = -\beta.$$
 (37)

Corrimiento transverso al rojo. Ángulo de emisión observado  $\theta_e \neq \theta_o$ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

## 4.1.6. Luz y fotones - beaming

 De acuerdo a (34), el ángulo observado no coincide con el de emisión en el marco de la fuente,

$$\cos\theta_o = \frac{\beta + \cos\theta_e}{1 + \beta\cos\theta_e} \,. \tag{38}$$

 Una fuente de radiación isotrópica, independiente de θ<sub>e</sub>, se observa anisotrópica al estar en movimiento, emitiendo en un ángulo sólido dado por,

$$d\Omega_o = 2\pi \, d(\cos\theta_o) = \frac{d\Omega_e}{\gamma^2 (1 + \beta \cos\theta_e)^2} \,. \tag{39}$$

► El haz se cierra y se intensifica en la dirección de movimiento, además del corrimiento al azul, dando lugar a una fuerte amplificación de la intensidad → "beaming".

## 4.1.6. Luz y fotones - beaming



Figura 2: Modificación de un patrón isotrópico, arriba en negro para  $\beta = 0.5$  y  $\beta = 0.9$ . El patrón modificado aparece abajo en azul.

500

4.1. Relatividad

4.6. Compton

## 4.1.7. Campos electromagnéticos - potenciales

Los campos electromagnéticos pueden derivarse del potencial escalar, φ, y el vectorial, A, combinados en el cuadrivector,

$$A^{\alpha} \equiv \left(\begin{array}{c} \phi \\ \vec{A} \end{array}\right). \tag{40}$$

> El operador (covariante) de derivación se define como,

$$\partial_{\alpha} \equiv \left(\frac{1}{c}\frac{\partial}{\partial t}, \nabla\right), \qquad (41)$$

permitiendo expresar ecuaciones de conservación y de onda de forma compacta.

Un primer ejemplo es la forma invariante de norma de Lorenz<sup>1</sup>,

$$\frac{1}{c}\frac{\partial\phi}{\partial t} + \nabla \cdot \vec{A} = 0 \quad \Rightarrow \quad \partial_{\alpha}A^{\alpha} = 0.$$
(42)

Los potenciales que la cumplen lo hacen en cualquier marco de referencia. En cambio, la norma de Coulomb,  $\nabla \cdot \vec{A} = 0$ , no es invariante.

・ロト・4日・4日・4日・4日・4日・

<sup>&</sup>lt;sup>1</sup>por Ludvig Lorenz, físico anterior a Hendrik Lorentz.

4.1. Relatividad

4.2. Campos 4.3. Sistemas

4.4. Bremsstrahlung

ung 4.5. Si

4.5. Sincrotrón

## 4.1.7. Campos electromagnéticos - carga y corriente

 Las fuentes de los potenciales y campos electromagnéticos son las cargas y corrientes eléctrica, con densidades,

$$j^{\alpha} \equiv \begin{pmatrix} \rho c \\ \vec{j} \end{pmatrix}.$$
(43)

> La ecuación de continuidad se puede expresar en forma covariante,

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \vec{j} = 0 \quad \Rightarrow \quad \partial_{\alpha} j^{\alpha} = 0.$$
(44)

 Las ecuaciones de Maxwell dan lugar a ecuaciones de onda para los potenciales en presencia de fuentes,

$$\partial_{\beta}\partial^{\beta}A^{\alpha} = -\frac{4\pi}{c}j^{\alpha} \iff \left[-\frac{1}{c^{2}}\frac{\partial^{2}}{\partial t^{2}} + \nabla^{2}\right] \left(\begin{array}{c}\phi\\\vec{A}\end{array}\right) = -\frac{4\pi}{c}\left(\begin{array}{c}\rho c\\\vec{j}\end{array}\right).$$
(45)

- En  $\S4.2$  se plantean estas ecuaciones para una carga en movimiento arbitrario.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

### 4.1.7. Campos electromagnéticos - tensores

- ► La descripción de campos electromagnéticos requiere el empleo de tensores:
- Un tensor de rango 0 es un escalar. Es invariante por construcción.
- Un tensor de rango 1 es un cuadrivector. Se transforma de forma contravariante o covariante (17,18),

$${\sf A}^{\prime lpha} = rac{\partial x^{\prime lpha}}{\partial x^eta} \, {\sf A}^eta \,, \quad {\sf A}^\prime_lpha = rac{\partial x^lpha}{\partial x^{\prime eta}} \, {\sf A}_eta \,.$$

- Los tensores de rango 2 se representan con matrices de 4  $\times$  4. Pueden ser contravariantes, transformándose de acuerdo a,

$$F^{\prime\alpha\beta} = \frac{\partial x^{\prime\alpha}}{\partial x^{\gamma}} \frac{\partial x^{\prime\beta}}{\partial x^{\delta}} F^{\gamma\delta} \,. \tag{46}$$

covariantes, o mixtos, transformándose de acuerdo a,

$$F_{\beta}^{\prime\alpha} = \frac{\partial x^{\prime\alpha}}{\partial x^{\gamma}} \frac{\partial x^{\delta}}{\partial x^{\prime\beta}} F_{\delta}^{\gamma} .$$
(47)

De forma similar se puede construir tensores de rango arbitrario...

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

## 4.1.7. Campos electromagnéticos - tensor de campo EM

► Los campos electromagnéticos se definen como un tensor de segundo rango,

$$F^{\alpha\beta} \equiv \partial^{\alpha} A^{\beta} - \partial^{\beta} A^{\alpha} \quad \Leftrightarrow \quad \left\{ \begin{array}{l} \vec{B} = \nabla \times \vec{A}, \\ \vec{E} = -\frac{1}{c} \frac{\partial \vec{A}}{\partial t} - \nabla \phi, \end{array} \right.$$
(48)

explícitamente,

$$F^{\alpha\beta} = \begin{pmatrix} F^{00} & F^{01} & F^{02} & F^{03} \\ F^{10} & F^{11} & F^{12} & F^{13} \\ F^{20} & F^{21} & F^{22} & F^{23} \\ F^{30} & F^{31} & F^{32} & F^{33} \end{pmatrix} = \begin{pmatrix} 0 & E_x & E_y & E_z \\ -E_x & 0 & B_z & -B_y \\ -E_y & -B_z & 0 & B_x \\ -E_z & B_y & -B_x & 0 \end{pmatrix}.$$
 (49)

- El tensor *F* es antisimétrico por construcción:  $F^{\alpha\beta} = -F^{\beta\alpha}$ .
- En particular  $F^{\alpha\alpha} = 0$ .

4.6. Compton

#### 4.1.7. Campos electromagnéticos - ecuaciones de Maxwell

► Las ecuaciones de Maxwell pueden escribirse de forma covariante,

$$\partial_{\beta}F^{\alpha\beta} = \frac{4\pi}{c}j^{\alpha}, \quad \partial^{\alpha}F^{\beta\gamma} + \partial^{\beta}F^{\gamma\alpha} + \partial^{\gamma}F^{\alpha\beta} = 0.$$
 (50)

> La expresión de la izquierda corresponde a las ecuaciones de Maxwell con fuentes,

$$abla \cdot \vec{E} = 4\pi\rho, \quad \nabla \times \vec{B} - \frac{1}{c}\frac{\partial \vec{E}}{\partial t} = \frac{4\pi}{c}\vec{j}.$$

 La expresión de la derecha en (50) se anula cuando hay índices repetidos. Para índices distintos entre sí,

$$\{\alpha\beta\gamma\} = \{123\} \Rightarrow \nabla \cdot \vec{B} = 0; \quad \{\alpha\beta\gamma\} \in \left\{ \begin{array}{c} \{012\}\\ \{013\}\\ \{023\} \end{array} \right\} \Rightarrow \nabla \times \vec{E} + \frac{1}{c} \frac{\partial \vec{B}}{\partial t} = 0.$$

 La definición del tensor F<sup>αβ</sup>, junto con la ecuación (50) con fuentes, permite obtener la ecuación de onda para los potenciales electromagnéticos (45). 4.1. Relatividad

4.6. Compton

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - 少へぐ

## 4.1.7. Campos electromagnéticos - transformación

• El campo electromagnético se trasforma según  $F^{\alpha\beta} = \Lambda^{\alpha}_{\gamma} \Lambda^{\beta}_{\mu} F'^{\gamma\mu}$ , de donde,

$$\vec{E}_{\parallel} = \vec{E}'_{\parallel}, \qquad \vec{E}_{\perp} = \gamma \left( \vec{E}'_{\perp} + \frac{\vec{v}}{c} \times \vec{B}'_{\perp} \right), \vec{B}_{\parallel} = \vec{B}'_{\parallel}, \qquad \vec{B}_{\perp} = \gamma \left( \vec{B}'_{\perp} - \frac{\vec{v}}{c} \times \vec{E}'_{\perp} \right).$$
(51)

- Un campo puramente eléctrico  $(\vec{B'} = 0)$  o magnético  $(\vec{E'} = 0)$  se transforma en electromagnético  $(\vec{B} \neq 0, \vec{E} \neq 0)$ .
- ► El invariante  $F_{\alpha\beta}F^{\alpha\beta} = 2(B^2 E^2)$  indica la existencia de un marco de referencia donde uno de los dos campos,  $\vec{E}$  o  $\vec{B}$ , es nulo.
- Para ondas EM:  $F_{\alpha\beta}F^{\alpha\beta} = 0.$
- Se puede definir el tensor de energía-momento del campo EM, el cual contiene al vector de Poynting<sup>2</sup>.

 $<sup>^2</sup>$  "The Classical Theory of Fields", Landau & Lifshitz,  $\S{23}$  a  $\S{33}.$ 

4.1. Relatividad

## 4.1.7. Campos electromagnéticos - fuerza de Lorentz

 La *fuerza de Lorentz* es producto del tensor de campo electromagnético y el cuadrivector de velocidad,

$$\mathcal{F}^{\alpha} = (q/c) \mathcal{F}^{\alpha}_{\ \beta} \, u^{\beta} = (q/c) \mathcal{F}^{\alpha \mu} u_{\mu} \,. \tag{52}$$

Con un poco de álgebra se obtiene de (29),

$$\frac{d}{dt}(\gamma mc^2) = q \vec{E} \cdot \vec{v}, \quad \frac{d}{dt}(\gamma m\vec{v}) = q\left(\vec{E} + \frac{\vec{v}}{c} \times \vec{B}\right).$$
(53)

A la izquierda es el cambio de energía por el trabajo del campo eléctrico; a la derecha la fuerza de Lorentz, con factor  $\gamma$ .

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

# 4.2. Campos de una carga en movimiento

- 4.2.1. Carga en reposo y en movimiento rectilíneo uniforme.
- 4.2.2. Potenciales de Liénard-Wiechert.
- 4.2.3. Fórmula de Larmor y distribución angular de la radiación.
- 4.2.4. Distribución espectral.

## 4.2.1. Carga en reposo

▶ La densidad de carga de un electrón, q = -e, en reposo en la posición  $\vec{r_e}$ , es

$$ho(ec r,t) = -e\,\delta(ec r-ec r_e), \quad ec j=0.$$

- ► El potencial escalar se obtiene de la ecuación de Poisson, (45) con  $\phi(\vec{r}, t) = \phi(\vec{r})$ ,  $\nabla^2 \phi = -4\pi\rho$ . (55)
- ▶ Cambio de variable  $\vec{R} = \vec{r} \vec{r_e}$  fija el origen en la carga. En coordenadas esféricas,

$$\rho(\vec{r},t) = \rho(\vec{R}) = \rho(R) = -e\,\delta(R)/R^2,$$

• Se integra (55) sobre una esfera de radio a(>0),

$$\frac{1}{R^2}\frac{d}{dR}\left(R^2\frac{d\phi}{dR}\right) = 4\pi e\frac{\delta(R)}{R^2} \quad \Rightarrow \quad a^2\frac{d\phi}{dR}(a) = 4\pi e$$

► Al integrar sobre a se obtiene el potencial y el campo de Coulomb,

$$\phi(\vec{r}) = \frac{-e}{R} = \frac{-e}{|\vec{r} - \vec{r_e}|}, \ \vec{A} = 0 \quad \Rightarrow \quad \vec{E}(\vec{r}) = -e\frac{\hat{R}}{R^2} = -e\frac{\vec{r} - \vec{r_e}}{|\vec{r} - \vec{r_e}|^3}, \ \vec{B} = 0.$$

#### 4.2.1. Carga en movimiento rectilíneo uniforme

- Un electrón en movimiento rectilíneo uniforme,  $\vec{r_e}(t) = \hat{x}v_e t$ ,  $y_e = z_e = 0$ .
- ▶ En el marco propio del electrón los potenciales son de Coulomb (56),

$$\phi'(\vec{r'}) = \frac{-e}{|\vec{r'} - \vec{r'_e}|} = \frac{-e}{\sqrt{x'^2 + y'^2 + z'^2}}, \quad \vec{A'} = 0 \quad \text{para} \quad \vec{r'_e} = 0.$$

▶ Se transforman de acuerdo a (19),

$$\phi = \gamma \phi' + \gamma \vec{\beta} \cdot \vec{\mathcal{A}'} = \gamma \phi' \,, \quad \vec{\mathcal{A}} = \gamma \vec{\beta} \phi' + \vec{\mathcal{A}'} + (\gamma - 1) \, (\hat{\beta} \cdot \vec{\mathcal{A}'}) \hat{\beta} = \gamma \beta \hat{x} \, \phi' \,,$$

es decir,

$$\phi(\vec{r},t) = \frac{-e\,\gamma}{\sqrt{\gamma^2(x-v_et)^2 + y^2 + z^2}}, \quad \vec{A}(\vec{r},t) = \frac{-e\,\gamma v_e\,\hat{x}\,/c}{\sqrt{\gamma^2(x-v_et)^2 + y^2 + z^2}},$$
(57)
transformando también las coordenadas,  $x' = \gamma(x-v_et), \ y' = y, \ z' = z.$ 

#### 4.2.1. Carga en movimiento rectilíneo uniforme

- Los campos electromagnéticos se derivan de estos potenciales.
- ▶ Alternativamente, se pueden obtener los campos con las transformaciones (56),

$$ec{E}_{\parallel}=ec{E}_{\parallel}', \quad ec{E}_{\perp}=\gammaec{E}_{\perp}', \quad ec{B}=ec{B}_{\perp}=\gammarac{ec{V}}{c} imesec{E}_{\perp}',$$

aplicadas a un campo de Coulomb.
- El campo electromagnético producido por una carga en movimiento arbitrario se obtiene de las ecuaciones (50), dadas las formas funcionales de ρ(r, t), j(r, t).
- > Para un electrón que sigue una trayectoria arbitraria  $\vec{r_e}(t)$ ,

$$\rho(\vec{r},t) = -e \,\,\delta\left[\vec{r} - \vec{r_e}(t)\right] \,, \quad \vec{j}(\vec{r},t) = -e \,\,\vec{v_e}(t) \,\delta\left[\vec{r} - \vec{r_e}(t)\right] \,, \tag{58}$$

con  $\delta(\vec{r})$  la función delta de Dirac.

- Los potenciales A<sup>α</sup> se pueden obtener integrando la ecuación de onda (45) mediante el método de la función de Green<sup>3</sup>.
- Alternativamente, se puede hacer una deducción aprovechando invariantes (Shu §13).

<sup>&</sup>lt;sup>3</sup>Jackson §12.11 y capítulo 14 muestran la deducción mediante la función de Green. 🖙 👘 🚊 🔊 🧟



Figura 3: Electrón en movimiento arbitrario visto desde el marco de referencia O. El vector  $\vec{r}$  denota la posición donde se mide el campo en el instante t, frecuentemente fija, y  $\vec{r_e}(t_e)$  la del electrón en el instante  $t_e$ . El vector  $\vec{R}$ conecta ambos eventos.

- El potencial es Coulombiano en un marco O' en reposo instantáneo con el electrón.
- Se hace la transformación al observador (O), considerando la posición del electrón en un instante t<sub>e</sub>', distinto al tiempo de la medición, t' (fig. 3).
- Así, consideramos los potenciales en O' en el instante  $t'_e$ ,

$$\phi'(\vec{r'},t') = \frac{-e}{|\vec{r'} - \vec{r'_e}(t'_e)|}, \quad \vec{A'}(\vec{r'},t') = 0,$$
(59)

con A'<sup>α</sup>A'<sub>α</sub> = -e<sup>2</sup>/|r' - r'<sub>e</sub>(t'<sub>e</sub>)|<sup>2</sup> invariante para una elección adecuada de t'<sub>e</sub>.
La expresión para {t<sub>e</sub>, t'<sub>e</sub>} se obtiene del cuadrivector que describe el contacto causal entre el electrón y el observador,

$$R^{\alpha} \equiv \begin{pmatrix} ct - ct_e \\ \vec{r} - \vec{r_e}(t_e) \end{pmatrix}, \qquad (60)$$

con  $R_{\alpha}R^{\alpha} = 0$  en cualquier marco de referencia, por construcción.

El tiempo retardado, t<sub>e</sub>, queda definido por la norma nula de R,

$$R_{\alpha}R^{\alpha} = -c^{2}(t-t_{e})^{2} + |\vec{r}-\vec{r_{e}}(t_{e})|^{2} = 0 \quad \Rightarrow \quad t_{e} = t - \frac{|\vec{r}-\vec{r_{e}}(t_{e})|}{c}.$$
 (61)

► La invariancia de  $R_{\alpha}R^{\alpha}$ , vista en el marco de referencia del electrón, implica,

$$R'_lpha R'^{\,lpha} = -c^2 (t'-t'_e)^2 + |ec{r'}-ec{r'_e}(t')|^2 = 0 \quad \Rightarrow \quad \phi'(ec{r'},t') = rac{-e}{c\,(t'-t'_e)}\,.$$

 Por otro lado, el producto de R<sup>α</sup> con la velocidad de la partícula, u<sup>α</sup>, en t<sub>e</sub>, produce el escalar invariante,

$$u^{lpha} R_{lpha} = -\gamma c^2 \left(t - t_e\right) + \gamma ec{v_e}(t_e) \cdot \left(ec{r} - ec{r_e}(t_e)
ight) = -c^2 \left(t' - t'_e
ight) \,.$$

► El invariante  $u^{\alpha}R_{\alpha}$  permite expresar  $\phi'$  en términos de t y  $t_{e}$ ,

$$\phi' = \frac{-e}{\gamma |\vec{r} - \vec{r_e}(t_e)| - \gamma \left(\vec{v_e}(t_e)/c\right) \cdot \left(\vec{r} - \vec{r_e}(t_e)\right)} = \frac{-e}{\gamma R \left(1 - \vec{v_e}(t_e) \cdot \hat{R}/c\right)},$$

con  $\vec{R} = \vec{r} - \vec{r_e}(t_e)$ , la parte espacial de  $R^{\alpha}$ . En general, el vector  $\vec{r}$  es fijo.

## 4.2.2. Potenciales de Liènard-Wiechert

> La transformación de Lorentz al marco del observador,

$$\phi = \gamma \phi', \quad \vec{A} = \gamma \vec{\beta} \phi',$$

resulta en los potenciales,

$$\phi(\vec{r},t) = \frac{-e}{R\left(1 - \vec{v_e}(t_e) \cdot \hat{R}/c\right)}, \quad \vec{A} = \frac{-e\vec{v_e}/c}{R\left(1 - \vec{v_e}(t_e) \cdot \hat{R}/c\right)},$$

que pueden ser escritos en forma covariante,

$$A^{\beta} = \frac{-e \, u^{\beta}}{u^{\alpha} R_{\alpha}} = \frac{-e}{R \left(1 - \vec{v}_{e} \cdot \hat{R}/c\right)} \left(\begin{array}{c} 1\\ \vec{v}_{e}/c \end{array}\right) \,. \tag{62}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 Los potenciales (62) se conocen como potenciales de Liénard-Wiechert, también escritos como,

$$\phi(\vec{r},t) = \left[\frac{-e}{R\left(1 - \hat{R} \cdot \vec{v_e}/c\right)}\right]_{t_e}, \quad \vec{A}(\vec{r},t) = \left[\frac{-e\,\vec{v_e}/c}{R\left(1 - \hat{R} \cdot \vec{v_e}/c\right)}\right]_{t_e}.$$
 (63)

Son covariantes y Coulombianos en el marco del electrón.

- ► Formalmente existe una solución *avanzada* de estos potenciales, que corresponde con la posición futura del electrón en  $t_a = t + |\vec{r} \vec{r_a}(t_a)|/c$ .
- ► Esta solución se descarta al ser inconsistente con el principio de causalidad.
- Una versión del principio de causalidad distingue a los potenciales retardados, que describen ondas que divergen de las cargas, de los potenciales avanzados, que resultan en ondas que convergen hacia ellas, contrariamente a lo observado en la naturaleza<sup>4</sup>.

<sup>&</sup>lt;sup>4</sup>Zeh (1989), "The physical basis of the arrow of time", Springer-Verlag.  $\langle \Box \rangle$   $\langle$ 

#### 4.2.2. Potenciales de Liènard-Wiechert - campos

► Los campos correspondientes a los potenciales de Liénard-Weichert son,

$$\vec{E}(\vec{r},t) = \frac{-e}{R^2} \left[ \frac{\hat{R} - \vec{\beta}}{\gamma^2 (1 - \hat{R} \cdot \vec{\beta})^3} \right]_{t_e} + \frac{-e}{Rc} \left[ \frac{\hat{R} \times ((\hat{R} - \vec{\beta}) \times \dot{\vec{\beta}})}{(1 - \hat{R} \cdot \vec{\beta})^3} \right]_{t_e},$$
  
$$\vec{B}(\vec{r},t) = \hat{R} \times \vec{E}(\vec{r},t), \qquad (64)$$

con el movimiento del electrón evaluado en el tiempo retardado,

$$t_e = t - rac{|\vec{r} - \vec{r_e}(t_e)|}{c} = t - R/c, \quad R = |\vec{r} - \vec{r_e}(t_e)|, \quad \vec{eta} = \vec{v_e}(t_e)/c.$$

- El campo tiene dos componentes:
- el "campo de velocidad" ( $\propto 1/R^2$ ), generalización del campo de Coulomb;
- el "campo de aceleración" ( $\propto 1/R$ ), o "campo de radiación",

$$\vec{E}_{rad}(\vec{r},t) = \frac{-e}{Rc} \left[ \frac{\hat{R} \times ((\hat{R} - \vec{\beta}) \times \dot{\vec{\beta}})}{(1 - \hat{R} \cdot \vec{\beta})^3} \right]_{t_e}, \quad \vec{B}_{rad}(\vec{r},t) = \hat{R} \times \vec{E}_{rad}(\vec{r},t).$$
(65)

### **4.2.2.** Potenciales de Liènard-Wiechert - flujo y potencia

El flujo de energía está dado por el vector de Poynting del campo de radiación,

$$\vec{S} = \frac{c}{4\pi} \vec{E}_{rad} \times \vec{B}_{rad} = \frac{c}{4\pi} \left| \vec{E}_{rad} \right|^2 \hat{R}, \tag{66}$$

aprovechando  $\{\vec{E}_{rad} \perp \vec{B}_{rad}\} \perp \hat{R}$ .

► La potencia radiada por el electrón es la integral sobre área,

$$P = \int \vec{S} \cdot d\vec{a}_{s} = \int \frac{c}{4\pi} \left| \vec{E}_{rad} \right|^{2} R^{2} d\Omega, \qquad (67)$$

donde  $|\vec{E}_{rad}| = |\vec{B}_{rad}| \propto 1/R$ , implica que la radiación se diluye  $\propto 1/R^2$ . La radiación tiene una distribución angular determinada por,

$$\frac{dP}{d\Omega}(t) = \frac{c}{4\pi} |R\vec{E}_{rad}|^2 = \frac{e^2}{4\pi c^3} \left[ \frac{\hat{R} \times \left( (\hat{R} - \vec{\beta}) \times \vec{a} \right)}{(1 - \hat{R} \cdot \vec{\beta})^3} \right]_{t_e}^2, \quad (68)$$

con {  $\vec{r}_e$ ,  $\vec{\beta} = \vec{v}_e/c$ ,  $\vec{a}$  } evaluados en el tiempo retardado  $t_e$ .

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

#### 4.2.2. Potenciales de Liènard-Wiechert - geometría



Figura 4: Selección del marco O tal que  $r_e \ll r$ . El origen está en el punto negro, cercano a la carga, situada en  $\vec{r_e}$ . El punto de medición está en  $\vec{r}$ , a la izquierda.

- ► Las distancias a las fuentes astrofísicas son mucho mayores que las dimensiones de sus regiones emisoras,  $r_e \ll r$ .
- > Con la elección adecuada del sistema de referencia (fig. 4), podemos aproximar,

$$R = |\vec{r} - \vec{r_e}| \approx r - \hat{r} \cdot \vec{r_e}(t_e), \qquad t_e \approx t - r/c + \hat{r} \cdot \vec{r_e}(t_e)/c.$$
(69)

- A orden cero  $R \approx r$ , siendo la posición del observador,  $\vec{r}$ , un vector fijo (fig. 4).

La distribución angular de la potencia radiada (68), bajo la aproximación (69),

$$\frac{dP}{d\Omega}(t) = \frac{e^2}{4\pi c^3} \left[ \frac{\hat{r} \times \left( (\hat{r} - \vec{\beta}) \times \vec{a} \right)}{(1 - \hat{r} \cdot \vec{\beta})^3} \right]_{t_e}^2 . \tag{70}$$

### 4.2.3. Emisión por partículas no relativistas - fórmula de Larmor

 $\blacktriangleright$  En movimiento no relativista ( $eta \ll 1$ ), los campos de radiación (65) son,

$$\vec{E}_{rad} \simeq -\frac{e}{c^2} \, \frac{\hat{r} \times (\hat{r} \times \vec{a})}{r} \,, \quad \vec{B}_{rad} \simeq \frac{e}{c^2} \, \frac{\hat{r} \times \vec{a}}{r},$$
(71)

con  $t_e \approx t - r/c$ .

La potencia radiada por ángulo sólido es,

$$\frac{dP}{d\Omega}(t) = \frac{c}{4\pi} |R\vec{E}_{rad}|^2 \simeq \frac{e^2}{4\pi c^3} |\hat{r} \times (\hat{r} \times \vec{a})|^2 = \frac{e^2 a^2}{4\pi c^3} \sin^2 \theta , \qquad (72)$$

siendo  $\theta$  el ángulo entre la línea de visión,  $\hat{r}$ , y la aceleración,  $\vec{a}$ .

> Al integrar se obtiene la expresión no relativista de la fórmula de Larmor,

$$\frac{dP(t)}{d\Omega} = \frac{e^2 a^2}{4\pi c^3} \sin^2 \theta \quad \Rightarrow \quad P(t) = \frac{2 e^2 a^2}{3 c^3}.$$
 (73)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

### 4.2.3. Emisión por partículas no relativistas - patrón dipolar



Figura 5: La emisión de radiación por una partícula no relativista sigue un patrón dipolar.

Para una partícula no relativista:

- (i) la potencia es proporcional al cuadrado de la carga y de la aceleración,  $P \propto a^2 e^2$ .
- (ii) La emisión sigue un patrón dipolar ( $\propto \sin^2 \theta$ ).
- (iii) Si  $\vec{a}$  tiene dirección fija,  $\vec{E} \propto \hat{r} \times (\hat{r} \times \vec{a})$  es fijo  $\rightarrow$  la polarización es lineal.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の 0 0

#### 4.2.3. Emisión por partículas relativistas - fórmula de Larmor

▶ La fórmula de Larmor (73) se generaliza a la expresión covariante,

$$P' = rac{2e^2}{3c^3}a'^2 \quad \Rightarrow \quad P = rac{2e^2}{3c^3}a_\mu a^\mu \quad \Rightarrow \quad P(t) = rac{2e^2}{3c^3}\left(\gamma^4 a_\perp^2 + \gamma^6 a_\parallel^2
ight), \quad (74)$$

con {a<sub>||</sub>, a<sub>⊥</sub>} componentes de *a* paralela y perpendicular a la velocidad (ec. 31).
El patrón de emisión relativista está dado por la expresión general (70),

$$rac{dP(t)}{d\Omega} = rac{e^2}{4\pi c^3} \left[ rac{\hat{r} imes \left( (\hat{r} - ec{eta}) imes ec{a} 
ight)}{(1 - \hat{r} \cdot ec{eta})^3} 
ight]_{t_e}^2$$

- La integración sobre el tiempo debe tomar en cuenta que  $dP(t)/d\Omega$  se evalúa en  $t_e$ , con la relación diferencial,

$$dt = (1 - \hat{r} \cdot \vec{\beta}) dt_e 
ightarrow dt_e / 2\gamma^2.$$

- Se distinguen los casos  $\vec{a} \parallel \vec{\beta}$ , y  $\vec{a} \perp \vec{\beta}$ .

・ロト < 団ト < 三ト < 三ト < 三 ・ のへぐ</li>

# **4.2.3. Emisión por partículas relativistas** - movimiento $\vec{a} \parallel \vec{v}$

• Si  $\vec{a} \parallel \vec{\beta}$ , la expresión (70) da,

$$\frac{dP(t)}{d\Omega} = \frac{e^2}{4\pi c^3} \left[ \frac{\hat{r} \times (\hat{r} \times \vec{a})}{(1 - \hat{r} \cdot \vec{\beta})^3} \right]_{t_e}^2 = \frac{e^2 a^2}{4\pi c^3} \frac{\sin^2 \theta}{(1 - \beta \cos \theta)^6} \,. \tag{75}$$

Los extremos del patrón de emisión son:

- mínimo en  $\theta = 0$ , donde la emisión es nula; máximo en,

$$\cos heta_{max} = (\sqrt{1+24eta^2}-1)/4eta \quad \Rightarrow \quad heta_{max}(\gamma o \infty) o 1/\sqrt{5}\,\gamma\,.$$

 $\blacktriangleright$  En el límite ultrarelativista,  $\gamma\gg$  1, y para ángulos pequeños,  $\theta\ll$  1, se aproxima,

$$\beta \simeq 1 - 1/2\gamma^2, \quad \sin\theta \simeq \theta, \quad \cos\theta \simeq 1 - \theta^2/2,$$

de donde, la forma del cono de emisión queda descrita por,

$$\frac{dP(t)}{d\Omega} \longrightarrow \gamma^{10} \left(\frac{16e^2}{\pi c^3}\right) \frac{\gamma^2 \theta^2}{(1+\gamma^2 \theta^2)^6}$$

- La figura 6 ilustra los casos semi-relativista y  $\gamma \to \infty.$ 

### **4.2.3. Emisión por partículas relativistas** - movimiento $\vec{a} \parallel \vec{v}$



Figura 6: Emisión de una carga con movimiento lineal,  $\vec{a} \parallel \vec{\beta}$  sobre el eje  $\hat{z}$ . Casos semi-relativista (*izquierda*) y relativista, escalado por  $\gamma^{10}$  (*centro, derecha*).

- $dP(t)/d\Omega \propto \gamma^8$ , al considerar  $t_e 
  ightarrow t$ .
- La integración sobre  $d\Omega$  introduce otro factor  $\gamma^{-2}$ , de manera que  $P\propto\gamma^6 a^2$ .

### **4.2.3. Emisión por partículas relativistas** - movimiento $\vec{a} \perp \vec{v}$

• En el caso  $\vec{a} \cdot \vec{\beta} = 0$ , se obtiene de la expresión general (70),

$$\frac{dP}{d\Omega} = \frac{e^2 a^2}{4\pi c^3} \left[ \frac{(1 - \hat{r} \cdot \vec{\beta})^2 - (\hat{r} \cdot \hat{a})^2 / \gamma^2}{(1 - \hat{r} \cdot \vec{\beta})^6} \right]_{t_e},$$
(76)

con un término de amplificación para  $\vec{\beta}$  en la línea de visión, con la emisión restringida a un cono de ángulo  $1/\gamma$ , junto al término  $(\hat{r} \cdot \hat{a})$  atenuado.

- patrón dipolar para el caso no relativista,

4.1. Relatividad

$$rac{dP}{d\Omega} \longrightarrow rac{e^2 a^2}{4\pi c^3} \left(1 - (\hat{r} \cdot \hat{a})^2
ight).$$

- máxima amplificación en la dirección  $\hat{r}=\hat{eta},$ 

$$rac{dP}{d\Omega} ~\longrightarrow~ rac{e^2 a^2}{4\pi c^3} rac{1}{(1-eta)^4} \simeq 16 \gamma^8 \, rac{e^2 a^2}{4\pi c^3}$$

-  $dP(t)/d\Omega \propto \gamma^6$ , al considerar  $t_e o t$ ;  $P \propto \gamma^4 a^2$  al integrar sobre  $d\Omega$ .

### **4.2.3. Emisión por partículas relativistas** - movimiento $\vec{a} \perp \vec{v}$

 Situando la aceleración y velocidad perpendiculares en el plano x – y, con θ el ángulo entre la línea de visión y el plano de movimiento,

$$ec{a} = a \hat{x}, \quad ec{eta} = eta \hat{y}, \quad \hat{r} = (\hat{x} \cos \phi + \hat{y} \sin \phi) \sin \theta + \hat{z} \cos \theta$$
 .

- La expresión (76) queda como,

$$\frac{dP}{d\Omega} = \frac{e^2 a^2}{4\pi c^3} \left[ \frac{(1-\beta \sin \theta \sin \phi)^2 - \sin^2 \theta \cos^2 \phi/\gamma^2}{(1-\beta \sin \theta \sin \phi)^6} \right].$$

- Tomando como referencia el plano z = 0, en el caso relativista,

$$\frac{dP}{d\Omega} \simeq \frac{e^2 a^2}{4\pi c^3} \frac{1}{(1-\beta\sin\phi)^4} \rightarrow \frac{e^2 a^2}{4\pi c^3} \frac{16\gamma^8}{(1+\gamma^2\Delta\phi^2)^4},$$

que describe una amplificación  $\propto \gamma^8$  dentro de un cono de apertura  $\sim 1/\gamma$ , alrededor de  $\vec{\beta}$  ( $\Rightarrow \Delta \phi = \phi - \pi/2$ ).

#### **4.2.3. Emisión por partículas relativistas** - movimiento $\vec{a} \perp \vec{v}$



Figura 7: Patrones de emisión para  $\vec{a} \perp \vec{\beta}$ , en el caso moderadamente relativista,  $\beta \leq 0.5$ . El patrón migra de dipolar  $\beta = 0$  a amplificado por un factor de 16 en la dirección de la velocidad. Se muestran los planos de movimiento (izquierda), normal a  $\vec{a}$  (centro) y normal a  $\vec{v}$  (derecha). En el caso  $\gamma \gg 1$  la emisión queda restringida a un cono de apertura  $1/\gamma$  alrededor del eje de velocidad.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

# 4.2.4. Distribución espectral de la radiación

- La potencia describe la energía radiada por unidad de tiempo,  $P(t) = d\mathcal{E}/dt$ ;
- el espectro,  $P(\omega) = d\mathcal{E}/d\omega$ , describe la distribución en frecuencias. Tomando en cuenta su distribución angular se tiene,

$$\frac{d\mathcal{E}}{d\Omega} = \int_{-\infty}^{+\infty} \frac{d\mathcal{E}}{d\Omega dt} \, dt = \int_{0}^{+\infty} \frac{d\mathcal{E}}{d\Omega d\omega} \, d\omega \,, \tag{77}$$

donde las frecuencias negativas no contribuyen.

▶ De (68), considerando que  $\vec{E}$  real  $\Rightarrow$   $\vec{E}(-\omega) = \vec{E}^*(\omega)$ , se obtiene,

$$\int_{0}^{+\infty} \frac{d\mathcal{E}}{d\omega d\Omega} \, d\omega = \int_{-\infty}^{+\infty} \frac{c}{4\pi} \, |RE(t)|^2 \, dt = \frac{c}{2\pi} \int_{0}^{+\infty} \left| R\vec{E}(\omega) \right|^2 d\omega \, .$$

▶  $R\vec{E}(t)$  y  $R\vec{E}(\omega)$  se relacionan mediante transformada de Fourier,

$$R\vec{E}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} R\vec{E}(t) e^{i\omega t} dt, \ R\vec{E}(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} R\vec{E}(\omega) e^{-i\omega t} d\omega.$$
(78)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の 0 0

## 4.2.4. Distribución espectral de la radiación

▶ Al introducir la expresión para el campo de radiación (65), se tiene,

$$\frac{d\mathcal{E}}{d\Omega d\omega} = \frac{e^2}{4\pi^2 c} \left| \int_{-\infty}^{+\infty} \left[ \frac{\hat{R} \times \{ (\hat{R} - \vec{\beta}) \times \dot{\vec{\beta}} \}}{(1 - \hat{R} \cdot \vec{\beta})^3} \right]_{t_e} e^{i\omega t} dt \right|^2.$$

► Al aproximar

$$R\simeq r, \qquad t\simeq t_e+r/c-\hat{r}\cdot ec{r_e}(t_e)/c\,,$$

y cambiar variable de integración,

$$dt = (1 - ec{eta} \cdot \hat{r}) dt_e$$

despreciando el término (de fase)  $e^{i\omega r/c}$ , se obtiene

$$\frac{dP(\omega)}{d\Omega} = \frac{d\mathcal{E}}{d\Omega d\omega} = \frac{e^2}{4\pi^2 c} \left| \int_{-\infty}^{+\infty} \left[ \frac{\hat{r} \times \{(\hat{r} - \vec{\beta}) \times \dot{\vec{\beta}}\}}{(1 - \hat{r} \cdot \vec{\beta})^2} \right] e^{i\omega(t_e - \hat{r} \cdot \vec{r_e}(t_e)/c)} dt_e \right|^2.$$

### 4.2.4. Distribución espectral de la radiación

▶ Jackson (§14) afirma que el término en paréntesis es una diferencial exacta<sup>5</sup>,

$$\left[rac{\hat{r} imes\{(\hat{r}-ec{eta}) imesec{eta}\}}{(1-\hat{r}\cdotec{eta})^2}
ight]=rac{d}{dt}\left[rac{\hat{r} imes(\hat{r} imesec{eta})}{1-\hat{r}\cdotec{eta}}
ight],$$

lo que permite integrar por partes y, notando que la variable de integración es muda, reducir la expresión a,

$$\frac{dP(\omega)}{d\Omega} = \frac{d\mathcal{E}}{d\Omega d\omega} = \frac{e^2\omega^2}{4\pi^2 c} \left| \int_{-\infty}^{+\infty} \hat{r} \times (\hat{r} \times \vec{\beta}) e^{i\omega(t-\hat{r}\cdot\vec{r_e}(t)/c)} dt \right|^2.$$
(79)

 El espectro integrado sobre ángulo sólido representa la expresión general para el espectro de una partícula en movimiento,

$$P(\omega) = \frac{d\mathcal{E}}{d\omega} = \frac{e^2\omega^2}{4\pi^2c} \int \left| \int_{-\infty}^{+\infty} \hat{r} \times (\hat{r} \times \vec{\beta}) e^{i\omega(t - \hat{r} \cdot \vec{r_e}(t)/c)} dt \right|^2 d\Omega.$$
(80)

<sup>5</sup>aprovechando la identidad  $\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c})\vec{b} - (\vec{a} \cdot \vec{b})\vec{c}.$ 

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ○ ● ●

▲□▶ ▲□▶ ★ □▶ ★ □▶ = 三 の へ ()

## 4.3. Sistemas de cargas en movimiento

- 4.3.1. Aproximación dipolar.
- 4.3.2. Expansión multipolar.

## 4.3.1. Aproximación dipolar

▶ Un sistema de cargas en movimiento no relativista se describe generalizando la expresión de Larmor (73), con la definición del momento dipolar del sistema,  $\vec{d}$ ,

$$P(t) = \sum_{i} \frac{2q_{i}^{2}a_{i}^{2}}{3c^{3}} = \frac{2|\vec{d}(t)|^{2}}{3c^{3}}, \quad \vec{d}(t) = \sum_{i} q_{i}\vec{r_{i}}(t) = \int \rho(\vec{r},t) \, \vec{r} \, d^{3}r.$$
(81)

► La expresión (71) para campos y distribución angular de la emisión se generaliza,

$$\vec{E}_{rad}(t) = \frac{\hat{r} \times (\hat{r} \times \ddot{\vec{d}})}{rc^2}, \quad \vec{B}_{rad}(t) = -\frac{\hat{r} \times \ddot{\vec{d}}}{rc^2}, \quad \frac{dP(t)}{d\Omega} = \frac{|\ddot{\vec{d}}|^2}{4\pi c^3} \sin^2\theta, \quad (82)$$

con r la posición del observador con respecto al centro de la distribución de carga.
El comportamiento espectral se obtiene al transformar los campos,

$$\vec{E}_{rad}(\omega) = -\left(\frac{\omega}{c}\right)^2 \, \frac{\hat{r}}{r} \times \left(\hat{r} \times \vec{d}(\omega)\right), \quad \vec{B}_{rad}(\omega) = \left(\frac{\omega}{c}\right)^2 \, \frac{\hat{r}}{r} \times \vec{d}(\omega), \qquad (83)$$

con  $\vec{d}(\omega)$  la transformada de  $\vec{d}(t)$ . El factor  $-\omega^2$  proviene de la segunda derivada.

## 4.3.1. Aproximación dipolar

► Dejando de lado el término  $\hat{r} \cdot \vec{r_e}/c$  en la exponencial armónica (79), se obtiene el espectro dipolar,

$$\frac{dP(\omega)}{d\Omega} = \frac{c}{4\pi} \left| r \vec{B}_{rad}(\omega) \right|^2 = \frac{\omega^4}{2\pi c^3} \left| \vec{d}(\omega) \right|^2 \sin^2 \theta \,, \quad P(\omega) = \frac{4\omega^4}{3c^3} \left| \vec{d}(\omega) \right|^2 \,, \quad (84)$$

siendo  $P(\omega) = d\mathcal{E}/d\omega$  la distribución espectral de la energía radiada.

- ► La aproximación dipolar es válida para conjuntos de cargas en movimiento no relativista, acotadas a una región emisora de tamaño  $L \ll r$ .
- Aplicaciones directas son la dispersión de Rayleigh y la emisión de frenado, o bremsstrahlung.

## 4.3.2. Expansión multipolar - desarrollo

Un tratamiento general de los campos debidos a distribuciones de cargas no estáticas considera la solución formal de la ecuación de onda (45), para los potenciales electromagnéticos, dada una distribución de cargas y corrientes,

$$A^{\alpha}(\vec{r},t) = \frac{1}{c} \int \frac{j^{\alpha}(\vec{x},t')}{|\vec{r}-\vec{x}|} \,\delta\left(t'-t+\frac{|\vec{r}-\vec{x}|}{c}\right) \,d^{3}x \,dt'. \tag{85}$$
$$A^{\alpha} = \left(\begin{array}{c}\phi\\\vec{A}\end{array}\right), \quad j^{\alpha} = \left(\begin{array}{c}\rho c\\\vec{j}\end{array}\right).$$

- Las distribuciones de carga y corriente se sitúan en la región descrita por  $\vec{x}$ , y se evalúan en el tiempo retardado, t', a través de la función  $\delta$ .
- ► Se aproxima  $|\vec{r} \vec{x}| \approx r$  en denominador,  $|\vec{r} \vec{x}| \approx r \vec{r} \cdot \vec{x}$  en el tiempo retardado,

$$A^{\alpha}(\vec{r},t) = \frac{1}{rc} \int j^{\alpha}\left(\vec{x},t'\right) \delta\left(t'-t+\frac{r}{c}-\frac{\hat{r}\cdot\vec{x}}{c}\right) d^{3}x \, dt'.$$
(86)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 - のへぐ

.

4.6. Compton

## 4.3.2. Expansión multipolar - desarrollo

> El espectro considera la transformada de Fourier de estos potenciales,

$$A^{lpha}(\vec{r},\omega) = rac{1}{rc} \int j^{lpha}\left(\vec{x},t'
ight) \delta\left(t'-t+rac{r}{c}-rac{\hat{r}\cdot\vec{x}}{c}
ight) \, e^{i\omega t} \, d^{3}x \, dt' dt \, .$$

> Se integra la transformada sobre t, aprovechando la función  $\delta$ , para obtener

$$A^{\alpha}(\vec{r},\omega) = \frac{1}{rc} \int j^{\alpha}(\vec{x},t') e^{i\omega(t'-r/c+\hat{r}\cdot\vec{x}/c)} d^{3}x dt'$$
  
$$= \frac{e^{-i\omega r/c}}{rc} \int j^{\alpha}(\vec{x},\omega) e^{i\omega\hat{r}\cdot\vec{x}/c} d^{3}x.$$
(87)

> El desarrollo en serie la exponencial da lugar a la expansión multipolar,

$$A^{\alpha}(\vec{r},\omega) = \frac{e^{-i\omega r/c}}{rc} \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{i\omega}{c}\right)^n \int \left(\hat{r} \cdot \vec{x}\right)^n \, j^{\alpha}(\vec{x},\omega) d^3x \,. \tag{88}$$

- La expansión converge rápidamente para  $|\omega \vec{x}/c| \ll 1 \Rightarrow x \ll \lambda$ , un emisor menor que la longitud de onda que emite.

## 4.3.2. Expansión multipolar - condición de convergencia

- ► La condición de convergencia,  $x \ll \lambda$ , no parece obvia en entornos astrofísicos.
- Las dimensiones x se refieren a las de emisión coherente, como las recorridas por cargas emitiendo con frecuencia  $\omega$  durante un periodo de vibración,

$$\mathbf{x}\sim\mathbf{v}\,2\pi/\omega=\mathbf{v}(\lambda/c)\ll\lambda\,,$$

para  $v \ll c$ .

- ► Algunos sistemas macroscópicos, como estrellas de neutrones, no cumplen  $x \ll \lambda$ .
- Tampoco lo cumplen regiones con cargas altamente relativistas.
- En cualquier caso, la expresión general (87) es aplicable,

$$\mathcal{A}^{lpha}(ec{r},\omega)=rac{e^{-i\omega r/c}}{rc}\int \jmath^{lpha}\left(ec{x},\omega
ight)e^{i\omega\hat{r}\cdotec{x}/c}d^{3}x.$$

4.1. Relatividad

#### **4.3.2. Expansión multipolar** - campos y potencial vectorial

Lejos de la región emisora, el campo se comporta como una superposición de ondas planas, que se puede describir directamente con el potencial vectorial A,

$$ec{B}(ec{r},t) = 
abla imes ec{A}, \quad ec{E}(ec{r},t) = ec{B} imes \hat{r} \,.$$

En analogía al caso dipolar (82),

$$ec{B}_{rad}(ec{r},t)=rac{\ddot{ec{d}} imes \hat{r}}{rc^2}, \quad ec{E}_{rad}(ec{r},t)=rac{\hat{r} imes (\hat{r} imes \ddot{ec{d}})}{rc^2}, \quad \mathrm{con} \quad ec{A}(ec{r},t)=rac{\dot{ec{d}}}{rc}\,,$$

los campos pueden ser descritos directamente con el potencial vectorial ,

$$\vec{B}(\vec{r},t) = \dot{\vec{A}} \times \hat{r}/c, \qquad \vec{E}(\vec{r},t) = (\dot{\vec{A}} \times \hat{r}) \times \hat{r}/c, \vec{B}(\vec{r},\omega) = -i(\omega/c)\vec{A} \times \hat{r}, \quad \vec{E}(\vec{r},\omega) = -i(\omega/c)(\vec{A} \times \hat{r}) \times \hat{r},$$
(89)

generalizado con la expansión multipolar,

$$\vec{A}(\vec{r},\omega) = \frac{e^{-i\omega r/c}}{rc} \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{i\omega}{c}\right)^n \int (\hat{r} \cdot \vec{x})^n \vec{j}(\vec{x},\omega) d^3x , \ \dot{\vec{A}}(t) \to -i\omega \vec{A}(\omega).$$
(90)

## 4.3.2. Expansión multipolar - momento dipolar eléctrico

 La expansión en serie (88) da lugar a los momentos multipolares. Para el desarrollo se emplea el potencial vectorial, partiendo de la relación entre densidades,

$$ec{j}(ec{x},t) \;= 
ho(ec{x},t)\dot{ec{x}} \; \Rightarrow \; ec{j}(ec{x},\omega) = -i\omegaec{x}\,
ho(ec{x},\omega)\,,$$

- $n = 0 \Rightarrow$  momento **dipolar eléctrico**:
- a orden cero el potencial vectorial es,

$$\vec{A}^{(0)}(\vec{r},\omega) = \frac{e^{-i\omega r/c}}{rc} \int \vec{j}(\vec{x},\omega) \, d^3x = \frac{e^{-i\omega r/c}}{rc} \left(-i\omega\right) \vec{d}(\omega) \,. \tag{91}$$

- Los campos correspondientes están dados por,

$$\vec{B}(\vec{r},\omega) = -\frac{i\omega}{c}\vec{A}\times\hat{r} = -e^{-i\omega r/c} \left(\frac{\omega^2}{rc^2}\right) \vec{d}(\omega)\times\hat{r}, \quad \vec{E} = \vec{B}\times\hat{r}.$$
(92)

- Transformando de regreso tenemos el potencial y campos dipolares,

$$\vec{A}^{(0)}(\vec{r},t) = \frac{\dot{\vec{d}}}{rc} \quad \Rightarrow \quad \vec{B}(\vec{r},t) = \frac{\ddot{\vec{d}} \times \hat{r}}{rc^2}, \quad \vec{E}(\vec{r},t) = \frac{(\ddot{\vec{d}} \times \hat{r}) \times \hat{r}}{rc^2}. \tag{93}$$

#### **4.3.2. Expansión multipolar** - momentos superiores

- $n = 1 \Rightarrow$  momentos dipolar magnético y cuadrupolar eléctrico:
- el término n = 1 de la expansión es,

$$\vec{A}^{(1)}(\vec{r},\omega) = rac{e^{-i\omega r/c}}{rc} \left(rac{i\omega}{c}\right) \int (\hat{r}\cdot\vec{x}) \, \vec{j}(\vec{x},\omega) \, d^3x \, .$$

- La identidad  $(\vec{x} imes \vec{j}) imes \hat{r} = (\hat{r} \cdot \vec{x})\vec{j} - (\hat{r} \cdot \vec{j})\vec{x}$ , permite separar la integral como,

$$(\hat{r} \cdot \vec{x}) \ \vec{j} = \frac{1}{2} (\vec{x} \times \vec{j}) \times \hat{r} + \frac{1}{2} (\hat{r} \cdot \vec{x}) \ \vec{j} + \frac{1}{2} (\hat{r} \cdot \vec{j}) \ \vec{x}.$$
 (94)

- ▶ El término en  $(\vec{x} \times \vec{j})$  corresponde al **momento dipolar magnético**.
- > Los otros dos términos corresponden al momento cuadrupolar eléctrico.

## 4.3.2. Expansión multipolar - momento dipolar magnético

- $n = 1 \Rightarrow$  momentos dipolar magnético:
- Al definir el momento dipolar magnético,

$$\vec{m} = \frac{1}{2} \int \left( \vec{x} \times \vec{j} \right) \, d^3 x \,, \tag{95}$$

se obtiene el potencial respectivo,

$$\vec{A}_{dm}^{(1)}(\vec{r},\omega) = \frac{e^{-i\omega r/c}}{rc} \left(\frac{i\omega}{c}\right) \int \frac{1}{2} \left(\vec{x} \times \vec{j}\right) \times \hat{r} \ d^3x = \frac{e^{-i\omega r/c}}{rc} \left(\frac{i\omega}{c}\right) \vec{m} \times \hat{r}.$$
 (96)

- y los campos electromagnéticos asociados,

$$\vec{B}(\vec{r},\omega) = \frac{e^{-i\omega r/c}}{rc} \left(\frac{\omega}{c}\right)^2 (\vec{m} \times \hat{r}) \times \hat{r}, \quad \vec{E}(\vec{r},\omega) = \frac{e^{-i\omega r/c}}{rc} \left(\frac{\omega}{c}\right)^2 \hat{r} \times \vec{m}.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

#### **4.3.2. Expansión multipolar** - momento dipolar magnético

- El patrón para la emisión de un dipolo magnético resulta de,

$$\frac{dP(\omega)}{d\Omega} = \frac{c}{4\pi} \left| r \vec{E}(\omega) \right|^2 = \frac{c}{2\pi} \left( \frac{\omega}{c} \right)^4 \left| \hat{r} \times \vec{m} \right|^2 = \frac{\omega^4}{2\pi c^3} \left| \vec{m} \right|^2 \sin^2 \theta,$$

con  $\theta$  el ángulo entre  $\vec{m}(\omega)$  y la línea de visión  $\hat{r}$ , y

$$P(\omega) = rac{d \mathcal{E}}{d \omega} = rac{4 \omega^4}{3 c^3} \left| ec{m}(\omega) 
ight|^2 \, .$$

## 4.3.2. Expansión multipolar - momento cuadrupolar eléctrico

- $n = 1 \Rightarrow$  momento **cuadrupolar eléctrico**.
- El segundo término en (94) da lugar a,

$$\vec{A}_{qe}^{(1)}(\vec{r},\omega) = \frac{e^{-i\omega r/c}}{rc} \left(\frac{i\omega}{c}\right) \frac{1}{2} \int \left[\left(\hat{r}\cdot\vec{x}\right)\vec{j} + \left(\hat{r}\cdot\vec{j}\right)\vec{x}\right] d^3x, \qquad (97)$$

$$= \frac{e^{-i\omega r/c}}{rc} \left(\frac{i\omega}{c}\right) \frac{\left(-i\omega\right)}{2} \int \vec{x} \left(\hat{r}\cdot\vec{x}\right) \rho(\vec{x}) d^3x = \frac{e^{-i\omega r/c}}{rc} \left(\frac{\omega^2}{6c}\right) \vec{Q}(\hat{r}).$$

-  $\vec{Q}(\hat{r}) = \mathbf{Q} \cdot \hat{r}$  es la proyección de  $\mathbf{Q}$ , tensor de momento cuadrupolar eléctrico, definido simétrico con traza cero,

$$Q_{ij} = \int \left( 3x_i x_j - r^2 \delta_{ij} \right) \rho(\vec{x}) d^3 x , \qquad (98)$$

sobre la línea de visión,  $\hat{r} = (\hat{x} \cos \phi + \hat{y} \sin \phi) \sin \theta + \hat{z} \cos \theta$ .

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

### 4.3.2. Expansión multipolar - momento cuadrupolar eléctrico

- La expresión cuadrupolar (97) se puede escribir más explícitamente con  $ec{Q}(\hat{r})$ ,

$$\vec{A} = \frac{e^{-i\omega r/c}}{6r} \left(\frac{\omega}{c}\right)^2 \left(\begin{array}{c} (Q_{xx}\cos\phi + Q_{xy}\sin\phi)\sin\theta + Q_{xz}\cos\theta\\ (Q_{yx}\cos\phi + Q_{yy}\sin\phi)\sin\theta + Q_{yz}\cos\theta\\ (Q_{zx}\cos\phi + Q_{zy}\sin\phi)\sin\theta + Q_{zz}\cos\theta \end{array}\right)$$

- Los campos correspondientes son,

$$\vec{B}(\vec{r},\omega) = -ie^{-i\omega r/c} \left(\frac{\omega}{c}\right)^3 \frac{\vec{Q}(\hat{r}) \times \hat{r}}{6r}, \quad \vec{E}(\vec{r},\omega) = -ie^{-i\omega r/c} \left(\frac{\omega}{c}\right)^3 \frac{\left(\vec{Q}(\hat{r}) \times \hat{r}\right) \times \hat{r}}{6r}.$$

> La potencia radiada por un cuadrupolo viene dada por

$$\frac{dP(\omega)}{d\Omega} = \frac{c}{4\pi} \left| r\vec{B}(\omega) \right|^2 = \frac{c}{72\pi} \left( \frac{\omega}{c} \right)^6 \left| \vec{Q}(\hat{r}) \times \hat{r} \right|^2, \quad P(\omega) = \frac{\omega^6}{90c^5} ||\mathbf{Q}(\omega)||^2.$$
(99)

## 4.3.2. Expansión multipolar - resumen

El potencial vectorial en función del tiempo y desarrollado hasta n = 1,

$$\vec{A}(\vec{r},t) = \frac{\dot{\vec{d}}}{rc} + \frac{\dot{\vec{m}} \times \hat{r}}{rc} + \frac{\hat{r} \cdot \ddot{\vec{Q}}(\hat{r})}{6rc^2} + \dots , \qquad (100)$$

Los campos electromagnéticos quedan como,

$$\vec{B}(\vec{r},t) = \frac{1}{rc^2} \left\{ \ddot{\vec{d}} \times \hat{r} + (\ddot{\vec{m}} \times \hat{r}) \times \hat{r} + \frac{1}{6c} \vec{Q}(\hat{r}) \times \hat{r} + \ldots \right\}, \quad (101)$$

$$\vec{E}(\vec{r},t) = \frac{1}{rc^2} \left\{ (\vec{\vec{d}} \times \hat{r}) \times \hat{r} + \hat{r} \times \ddot{\vec{m}} + \frac{1}{6c} (\vec{\vec{Q}}(\hat{r}) \times \hat{r}) \times \hat{r} + \ldots \right\} . (102)$$

> El desarrollo multipolar resulta en la expansión para la potencia,

$$P(t) = \frac{2|\vec{\vec{d}}|^2}{3c^3} + \frac{2|\vec{\vec{m}}|^2}{3c^3} + \frac{||\vec{\mathbf{Q}}||^2}{180 c^5} + \dots \Rightarrow P(\omega) = \frac{4\omega^4}{3c^3} \left(|\vec{d}|^2 + |\vec{m}|^2\right) + \frac{\omega^6}{90c^5} ||\vec{\vec{Q}}||^2 + \dots,$$
(103)

Para continuar la expansión conviene expresar (87, 88) con armónicos esféricos.

# 4.4. Bremsstrahlung

- 4.4.1. Deflexión de un electrón por un núcleo.
- 4.4.2. Deflexiones pequeñas.
- 4.4.3. Movimiento hiperbólico.
- 4.4.4. Bremsstrahlung térmico.
- 4.4.5. Absorción libre-libre.
- 4.4.6. Bremsstrahlung relativista.

# 4.4. Bremsstrahlung

- La radiación debida a la deflexión Coulombiana entre cargas se conoce como bremsstrahlung, radiación de frenado o radiación libre-libre.
- El bremsstrahlung es un mecanismo de enfriamiento importante en plasmas astrofísicos.
- La interacción se trata de manera clásica si la energía radiada es mucho menor que la energía inicial del sistema; el caso opuesto requiere un formalismo cuántico.
- ► Para movimientos no relativistas (v ≪ c) se emplea la aproximación dipolar.
- ► Dos partículas de misma carga y masa no tienen dipolo ⇒ la interacción entre dos electrones es cuadrupolar (TBD!).


#### 4.4.1. Deflexión de un electrón por núcleo - planteamiento clásico

- Si la energía radiada es despreciable frente a la energía total, podemos describir la interacción entre dos cargas con la solución clásica del problema de dos cuerpos bajo el potencial de Coulomb.
- Se conservan energía y momento angular:

$$\mathcal{E} = \frac{1}{2}m_1|\vec{v_1}|^2 + \frac{1}{2}m_2|\vec{v_2}|^2 + \frac{q_1q_2}{|\vec{r_1} - \vec{r_2}|}, \quad \vec{L} = \vec{r_1} \times m_1\vec{v_1} + \vec{r_2} \times m_2\vec{v_2}, \quad (104)$$

con  $m_1 = m_e$ ,  $q_1 = -e$ ,  $m_2 = Am_p$ ,  $q_2 = Ze$ .

► El problema se reduce con la posición relativa,  $\vec{r} = \vec{r_1} - \vec{r_2}$ , y la masa reducida  $m = m_1 m_2 / (m_1 + m_2)$ , considerando conservación de energía y momento angular,

$$\mathcal{E} = \frac{1}{2}m|\vec{v}|^2 - \frac{Ze^2}{r}, \quad \vec{L} = m \ \vec{r} \times \vec{v}.$$
 (105)

• El movimiento relativo coincide prácticamente con el electrón:  $\vec{r} \rightarrow \vec{r_e}$  ,  $m \rightarrow m_e$ .

## 4.4.1. Deflexión de un electrón por núcleo - parámetros

Fijando  $\vec{L} = L\hat{z}$ , se describe el movimento en el plano  $\{r, \varphi\}$ ,

$$\mathcal{E} = \frac{1}{2}m\left(\dot{r}^2 + r^2\dot{\varphi}^2\right) - \frac{Ze^2}{r}, \quad L = mr^2\dot{\varphi}.$$
 (106)

Trayectorias  $r(\varphi)$  elípticas<sup>6</sup> ( $\mathcal{E} < 0$ ), parabólicas ( $\mathcal{E} = 0$ ), o hiperbólicas ( $\mathcal{E} > 0$ ). La solución para  $\mathcal{E} > 0$  es la hipérbola dada por,

$$r(\varphi) = \frac{a\left(\varepsilon^2 - 1\right)}{\varepsilon\cos\varphi + 1},$$
(107)

con semi-eje mayor y excentricidad,

$$a = rac{Ze^2}{2\mathcal{E}}, \quad arepsilon = \left(1 + rac{2\mathcal{E}L^2}{mZ^2e^4}
ight)^{1/2} > 1.$$

► La hipérbola tiene asíntotas dadas por las rectas:  $x = a\varepsilon \pm y/\sqrt{\varepsilon^2 - 1}$ .

<sup>&</sup>lt;sup>6</sup>Órbitas cerradas requieren una descripción cuántica.

4.2. Campos 4.3. Sistemas

4.4. Bremsstrahlung

4.5. Sincrotrón

4.6. Compton

#### 4.4.1. Deflexión de un electrón por núcleo - trayectoria



Figura 8: Movimiento de una carga en un campo central Coulombiano, para  $a = 1, \varepsilon = 2 \Rightarrow \Delta \theta = 60^{\circ}$ . El centro de atracción está en el origen, el parámetro de impacto es  $b = \sqrt{3}$ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の 0 0

### 4.4.1. Deflexión de un electrón por núcleo - parámetro de impacto

 Conviene emplear como parámetros la velocidad inicial, v<sub>0</sub>, y el parámetro de impacto, b, relacionados con la energía y el momento angular mediante,

$$\mathcal{E} = \frac{1}{2}mv_0^2, \ L = mbv_0 \quad \Rightarrow \quad v_0 = \sqrt{\frac{2\mathcal{E}}{m}}, \ b = \frac{L}{\sqrt{2m\mathcal{E}}} = a\sqrt{\varepsilon^2 - 1}.$$
 (108)

La escala de tiempo de interacción es

$$\tau = \frac{Ze^2}{mv^3} = \frac{a}{v} = \frac{b/v}{\sqrt{\varepsilon^2 - 1}}.$$
 (109)

• En el caso de deflexiones pequeñas se puede emplear alternativamente  $\tau = b/v$ .

# 4.4.1. Deflexión de un electrón por núcleo - límites

► La aproximación clásica (no-cuántica) es válida para,

$$L \gg \hbar \quad \Rightarrow \quad b \gg \frac{\hbar}{mv_0} \,.$$
 (110)

► Las asíntotas de la hipérbola, dadas por x = aε ± y/√ε<sup>2</sup> − 1, dan deflexiones pequeñas si,

$$\tan\left(\frac{\Delta\varphi}{2}\right) = \sqrt{\varepsilon^2 - 1} = \frac{Ze^2}{bmv_0^2} \ll 1 \quad \Rightarrow \quad b \gg \frac{Ze^2}{mv_0^2}, \quad (111)$$

siendo  $\Delta \varphi$  el angulo entre asíntotas.

La cota de deflexiones pequeñas implica un tratamiento clásico si

$$\frac{Ze^2}{mv_0^2} \gg \frac{\hbar}{mv_0} \quad \Rightarrow \quad \frac{v_0}{c} \ll Z\alpha, \tag{112}$$

con  $\alpha = e^2/\hbar c \simeq 1/137$  la constante de estructura fina.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

### 4.4.2. Aproximación para deflexiones pequeñas



Figura 10: Trayectoria en una interacción con deflexión pequeña.

# 4.4.2. Aproximación para deflexiones pequeñas

- Consideramos una trayectoria rectilínea a velocidad constante,  $\vec{r}(t) = \hat{x} vt + \hat{y} b$ .
- Parametrizamos el tiempo es términos de  $\tau = b/v$ .
- El espectro  $P(\omega)$  depende de la transformada del dipolar eléctrico  $\vec{d} = -e\vec{r}$ .
- Esta se obtiene de transformar  $\ddot{ec{d}}=-eec{a}$ ,

$$-\omega^2 \vec{d}(\omega) = \frac{-e}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \vec{a}(t) e^{-i\omega t} dt \,. \tag{115}$$

La aceleración está dada por,

$$m\vec{a}(t) = -\frac{Ze^2}{r^2}\,\hat{r} = -Ze^2\,\frac{(\hat{x}\,vt+\hat{y}\,b)}{[v^2t^2+b^2]^{3/2}} \ \Rightarrow \ \vec{a}(t) = -\frac{Ze^2}{mb^2}\,\frac{(\hat{x}\,t/\tau+\hat{y})}{\left[(t/\tau)^2+1\right]^{3/2}}.$$

• Se hace el cambio de variable s = vt/b,

$$\vec{d}(\omega) = \frac{e}{\omega^2 \sqrt{2\pi}} \left( -\frac{Ze^2}{mb^2} \right) \tau \int_{-\infty}^{+\infty} \frac{\hat{x}\,s + \hat{y}}{(s^2 + 1)^{3/2}} \exp\left\{ -i\,\omega\tau s \right\} ds \,. \tag{116}$$

#### 4.4.2. Deflexiones pequeñas - movimiento y aceleración



Figura 11: Trayectoria y aceleración en una interacción con deflexión pequeña. El tiempo característico de interacción es  $\tau = b/v$ .

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

## 4.4.2. Deflexiones pequeñas - espectro por un electrón

- La interacción dura un tiempo  $t \sim au = b/v$ , actuando en frecuencias  $\omega au \lesssim 1$ .
- Para  $\omega \tau \gg 1$ , la exponencial compleja oscila muy rápidamente, cancelando términos sucesivos en la integración. La integral tiende a un valor muy pequeño.
- Para  $\omega \tau \ll 1$ , se aproximamos la exponencial a uno, resultando en  $d_x(\omega) \to 0$ , y la integral sobre la componente  $\hat{y}$  igual a 2, de donde

$$\vec{d}(\omega) \approx \begin{cases} -(e/\omega^2 \sqrt{2\pi}) \left(2Ze^2/mbv\right) \hat{y} \quad \text{para} \quad \omega\tau \ll 1, \\ 0 \quad \text{para} \quad \omega\tau \gg 1. \end{cases}$$
(119)

De aquí la energía radiada por unidad de frecuencia en la colisión de un electrón con velocidad v, parámetro de impacto b, con un núcleo de carga +Ze,

$$\frac{d\mathcal{E}}{d\omega}(v,b) = \frac{4\omega^4}{3c^3} |\vec{d}(\omega)|^2 = \begin{cases} 8Z^2 e^6 / 3\pi m^2 c^3 v^2 b^2 & \text{para} \quad \omega\tau \ll 1, \\ 0 & \text{para} \quad \omega\tau \gg 1, \end{cases}$$
(120)

- A primer orden, el espectro es independiente de  $\omega,$  excepto por el corte a  $\omega\tau\gg 1.$ 

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

#### 4.4.2. Deflexiones pequeñas - espectro por un electrón



4.1. Relatividad

4.6. Compton

# 4.4.2. Deflexiones pequeñas - en un plasma

La emisión por un plasma con densidad de iones n<sub>i</sub>, densidad de electrones n<sub>e</sub>, considera el flujo de electrones de velocidad v incidiendo en un anillo de radio b y ancho db alrededor de cada núcleo:

$$\frac{d\mathcal{E}(v)}{dt\,dVd\omega} = n_i \, n_e v \int_{b_{min}}^{b_{max}} \frac{d\mathcal{E}}{d\omega}(v,b) \, 2\pi b \, db = \frac{16}{3\pi} \frac{Z^2 e^6}{m^2 c^3 \, v} n_e n_i \ln\left(\frac{b_{max}}{b_{min}}\right) \,, \quad (121)$$

donde el rango finito de b asegura la convergencia de la integral.

- El límite superior viene dado por:  $\omega au pprox 1 \Rightarrow b_{max} pprox {\sf v}/\omega.$
- Dos opciones a considerar para el límite inferior:
- deflexiones pequeñas, b<sup>(1)</sup><sub>min</sub> ≡ Ze<sup>2</sup>/mv<sup>2</sup>;
   el límite cuántico, b<sup>(2)</sup><sub>min</sub> ≡ ħ/mv.
   Al considerar b<sup>(1)</sup><sub>min</sub> ≫ b<sup>(2)</sup><sub>min</sub> suponemos v/c ≪ Zα ≃ Z/137.

4.1. Relatividad

# 4.4.2. Aproximación para deflexiones pequeñas

 El resultado (121) puede escribirse de forma general definiendo el factor de Gaunt, g<sub>ff</sub>(v, ω), tal que

$$\frac{d\mathcal{E}(v)}{dt\,dV\,d\omega} = \frac{16\pi}{3\sqrt{3}} \frac{Z^2 e^6}{m^2 c^3 \, v} n_e n_i \, g_{ff}(v,\omega) \,. \tag{122}$$

• Para deflexiones pequeñas ( $v/c \ll \alpha Z$ ),

$$g_{ff}(v,\omega) = \frac{\sqrt{3}}{\pi} \ln\left(\frac{b_{max}}{b_{min}}\right) = \frac{\sqrt{3}}{\pi} \ln\left(\frac{mv^3/Ze^2}{\omega}\right),$$
 (123)

válida para  $\omega \ll m v^3/Z e^2 = v/b_{min}.$ 

- La condición de que energía radiada sea mucho menor que  ${\mathcal E}$  equivale a,

$$\left(\frac{d\mathcal{E}}{d\omega}\right)\left(\frac{v}{b}\right) \ll \frac{1}{2}mv^2 \quad \Rightarrow \quad b \gg \frac{Ze^2}{mv^2}\left(\frac{v}{c}\right)\left(\frac{16}{3\pi Z}\right)^{1/3}, \tag{124}$$

la cual se cumple para deflexiones pequeñas y movimiento no relativista.

#### 4.4.3. Bremsstrahlung clásico - trayectoria hiperbólica



Figura 13: Izquierda: trayectoria hiperbólica de una carga en el campo de un núcleo. Siguiendo la parametrización (125), se usó  $\varepsilon = 2$  ( $\rightarrow$  parámetro de impacto  $b = \sqrt{3}$ ),  $\psi \in (-3, +3)$ . Al igual que para deflexiones pequeñas, x(t) es impar mientras que y(t) es par. Derecha: componentes de aceleración:  $a_y$  representa la contribución dominante al proceso.

◆□ > ◆□ > ◆ □ > ◆ □ > ● □ ● ● ● ●

# 4.4.3. Bremsstrahlung clásico - trayectoria hiperbólica

- Un tratamiento más preciso se basa en el movimiento hiperbólico descrito con ecuaciones paramétricas<sup>7</sup>.
- En coordenadas cartesianas,

$$x = a\sqrt{arepsilon^2 - 1} \, \sinh \psi, \quad y = a \, (arepsilon - \cosh \psi) \,, \quad t = au \, (arepsilon \sinh \psi - \psi) \,.$$
 (125)

$$\operatorname{con} a = Ze^2/2\mathcal{E}, \ \tau = Ze^2/mv^3 = a/v, \ \psi \in (-\infty, +\infty).$$

- Se puede verificar  $v = a/\tau$ ,  $b = a\sqrt{\varepsilon^2 1}$ .
- El espectro se obtiene de (84), con el dipolo,

$$ec{d}(\omega)=mec{r}(\omega)(q_1/m_1-q_2/m_2)pprox-eec{r}(\omega)$$
 .

En este problema, el cálculo de  $\vec{r}(\omega)$  es más directo integrando velocidades,

$$\left(\begin{array}{c} x(\omega)\\ y(\omega) \end{array}\right) = \frac{a}{-i\omega\sqrt{2\pi}} \int_{-\infty}^{+\infty} \left(\begin{array}{c} \sqrt{\varepsilon^2 - 1}\cosh\psi\\ -\sinh\psi \end{array}\right) \exp\left\{i\omega\tau(\psi - \varepsilon\sinh\psi)\right\} \, d\psi.$$

 $^7$  "The Classical Theory of Fields" ,  $\S70,$  Landau & Lifshitz.

◆□ → < 個 → < 目 → < 目 → ○ < ○ </p>

#### 4.4.3. Bremsstrahlung clásico - trayectoria hiperbólica

Las integrales quedan como

$$x(\omega) = -i\frac{a}{\omega} \left(\frac{\pi}{2}\right)^{1/2} \frac{\sqrt{\varepsilon^2 - 1}}{\varepsilon} H^{(1)}_{i\omega\tau}(i\omega\tau\varepsilon), \ y(\omega) = i\frac{a}{\omega} \left(\frac{\pi}{2}\right)^{1/2} H^{(1)\prime}_{i\omega\tau}(i\omega\tau\varepsilon),$$

con  $H_{\rho}^{(1)}$  la primera función de Hankel de orden p, y  $H_{\rho}^{(1)\prime}$  su derivada,

$$H^{(1)}_p(ix) = rac{1}{i\pi}\int_{-\infty}^{+\infty}e^{p\psi-ix\sinh\psi}d\psi\,.$$

▶ La distribución espectral debida a una colisión es análoga a (120),

$$\frac{d\mathcal{E}}{d\omega} = \frac{2\pi e^2 a^2 \omega^2}{3c^3} \left( |H'_{i\omega\tau}(i\omega\tau\varepsilon)|^2 + \frac{\varepsilon^2 - 1}{\varepsilon^2} |H_{i\omega\tau}(i\omega\tau\varepsilon)|^2 \right) \,. \tag{126}$$

4.6. Compton

## 4.4.3. Bremsstrahlung clásico - trayectoria hiperbólica

En un plasma con densidades de electrones e iones  $\{n_e, n_i\}$ , al integrar sobre parámetros de impacto, o de manera equivalente sobre  $a^2 \varepsilon d\varepsilon = b db$ ,

$$\frac{d\mathcal{E}}{d\omega \, dV \, dt} = \frac{4\pi^2 Z^2 e^6}{3m^2 c^3 v} \, n_e n_i \, \omega \tau \left| H'_{i\omega\tau}(i\omega\tau) \right| \, H_{i\omega\tau}(i\omega\tau). \tag{127}$$

- Que corresponde con la expresión general (122) con un factor de Gaunt

$$g_{ff}(\mathbf{v},\omega) = \frac{\pi\sqrt{3}}{4} \,\omega\tau |H'_{i\omega\tau}(i\omega\tau)| H_{i\omega\tau}(i\omega\tau).$$
(128)

- ▶ Presuntamente, para  $\omega \tau$ ,  $\omega \tau \varepsilon \ll 1$  se tiene  $H_p(i\omega \tau \varepsilon) \rightarrow (2/i\pi) \ln(2/\gamma \omega \tau \varepsilon)$ ,  $2\pi(\omega\tau)^2(|H'|^2 + (1-\varepsilon^{-2})|H|^2) \to 8/(\varepsilon^2-1).$
- El comportamiento asintótico es casí idéntico al correspondiente a deflexiones pequeñas (123),

$$g_{ff}(v,\omega) \simeq \left(\sqrt{3}/\pi\right) \ln\left(2mv^3/\gamma_e\,\omega Ze^2\right) \quad \text{para} \quad \omega \ll mv^3/Ze^2/mv^3, \quad (129)$$
  
con  $\gamma_e = e^C \simeq 1.781073$ , y  $C \simeq 0.57721566...$  la constante de Euler.

## 4.4.4. Bremsstrahlung térmico - emisividad

- ► Las expresiones anteriores describen electrones mono-energéticos de velocidad *v*.
- ▶ Poblaciones de electrones se describen con distribuciones de velocidades,  $f(\vec{v})$ .
- Para electrones en equilibrio termodinámico,  $f(\vec{v}) d^3 v \propto \exp\{-mv^2/2kT\} v^2 dv$ ,

$$4\pi j_{\nu} = \frac{d\mathcal{E}(T)}{dt \, dV \, d\nu} = \int \frac{d\mathcal{E}(v)}{dt dV d\nu} f(v) dv = \frac{32\pi e^6}{3mc^3} \, n_e n_i Z^2 \, \sqrt{\frac{2\pi}{3mkT}} \, e^{-h\nu/kT} \, \overline{g}_{ff} \,, \tag{130}$$

donde  $\bar{g}_{ff}$  es el promedio del factor de Gaunt,  $j_{\nu}$  la emisividad (isotrópica).

Integrando sobre frecuencias se obtiene la potencia radiada por volumen,

$$\frac{d\mathcal{E}(T)}{dtdV} = \frac{32\pi e^6}{3hmc^3} \sqrt{\frac{2\pi kT}{3m}} n_e n_i Z^2 \,\bar{g}_B = 1.426 \times 10^{-27} \,\mathrm{erg \ s^{-1} \ cm^{-3}} T^{1/2} n_e n_i Z^2 \,\bar{g}_B \,,$$
(131)  
siendo  $\bar{g}_B$  el factor de Gaunt promediado sobre frecuencias. Rybicki-Lightman da

una discusión sobre el factor de Gaunt, generalmente de orden uno.

・ロト・西ト・山田・山田・山下

# 4.4.5. Absorción libre-libre

(

- ► El bremsstrahlung (131) es un proceso eficiente de enfriamiento en regiones ionizados, creciente con temperatura (T<sup>1/2</sup>), densidad (n<sub>e</sub>n<sub>i</sub>) y metalicidad (Z<sup>2</sup>).
- Siguiendo la ley de Kirchhoff, a todo proceso de emisión le corresponde uno de absorción, con coeficiente α<sub>ν</sub> = j<sub>ν</sub>/B<sub>ν</sub>(T), siendo j<sub>ν</sub> el coeficiente de emisión y B<sub>ν</sub>(T) la función de Planck. Para bremsstrahlung térmico tenemos,

$$\begin{aligned} \alpha_{\nu} &= \frac{4e^{6}}{3mhc} n_{e} n_{i} Z^{2} \sqrt{\frac{2\pi}{3m \, kT}} \, \nu^{-3} \left( 1 - e^{-h\nu/kT} \right) \bar{g}_{ff}, \\ &= 3.7 \times 10^{8} \, \mathrm{cm}^{-1} n_{e} n_{i} Z^{2} \, T^{-1/2} \nu^{-3} \left( 1 - e^{-h\nu/kT} \right) \bar{g}_{ff} \,. \end{aligned} \tag{132}$$

▶ Útil en modelos de estructura estelar es el coeficiente de absorción medio de Rosseland, dado por el promedio de  $\alpha^{-1}$  con  $\partial B/\partial T$  cómo función de peso,

$$\alpha_R = 1.7 \times 10^{-25} \,\mathrm{cm}^{-1} \, T^{-7/2} Z^2 n_e n_i \, \bar{g}_R \,, \tag{133}$$

con  $\bar{g}_R$  el promedio correspondiente de la función de Gaunt.

### 4.4.6. Bremsstrahlung relativista

- Son comunes las situaciones que involucran electrones relativistas. Dos consideraciones importantes son:
- (1) un tratamiento relativista no cuántico supone deflexiones pequeñas,

$$rac{v}{c} > Z lpha \quad \Rightarrow \quad b^{(1)}_{min} = rac{\hbar}{mv} > b^{(2)}_{min} = rac{Ze^2}{mv^2},$$

con  $\alpha = e^2/\hbar c \simeq 1/137$  la constante de estructura fina y  $Z\alpha \lesssim 0.001 \rightarrow 0.02$ para núcleos más ligeros que el hierro.

- (2) El patrón dipolar clásico se altera por el movimiento relativista (beaming).
  - En el caso relativista cuántico, el espectro puede estar dominado por unos cuantos fotones de alta energía propagados en la dirección original del electrón.
  - Un tratamiento conveniente es considerar el marco de referencia del electrón. aprovechando en el regreso al marco del observador que la potencia radiada es invariante (ecuación 74), al ser  $P = d\mathcal{E}/dt$  cociente de dos componentes temporales, que se transforman de misma forma.

### 4.4.6. Bremsstrahlung relativista

 En el marco propio, el electrón percibe el campo del núcleo en movimiento, dado por los potenciales (57), el cual le proporciona una aceleración,

$$ec{a'}(t')=-rac{eec{E'}}{m}=rac{Ze^2}{m}\,rac{(\hat{x}\,\gamma\,vt'+\hat{y}\gamma\,b)}{\left[\gamma^2v^2t'^2+b^2
ight]^{3/2}}\,.$$

> El desarrollo es análogo al no relativista, obteniéndose,

$$\frac{d\mathcal{E}'}{d\omega'}(v,b) \approx \frac{8Z^2 e^6}{3\pi m^2 c^3} \frac{1}{b^2 v^2} \quad \text{para} \quad \omega' \ll \frac{\gamma v}{b}, \qquad (134)$$

con  $d{\cal E}'/d\omega' 
ightarrow 0$  para  $\omega' \gg \gamma v/b$ .

- Coincide con (120), con un factor  $\gamma$  en el corte.
- ► Se integra sobre parámetros de impacto para un sólo electrón, considerando un flujo de núcleos aumentado por  $\gamma$  en la dirección de movimiento, de forma que,

$$\frac{d\mathcal{E}'}{dt'd\omega'}(v) = \gamma n_i v \int_{b_{min}}^{b_{max}} \left(\frac{d\mathcal{E}'}{d\omega'}\right) 2\pi b db = \frac{16 n_i Z^2 e^6}{3m^2 c^3} \frac{\gamma}{v} \ln\left(\frac{b_{max}}{b_{min}}\right).$$
(135)

describe el espectro de energía radiado por el electrón en su marco propio.

4.6. Compton

### 4.4.6. Bremsstrahlung relativista

- ▶ Bajo la restricción del tratamiento no cuántico,  $b_{min} = \hbar/mv \rightarrow \hbar/mc$ , sin factor  $\gamma$ , al ser *b* transversal al movimiento.
- ▶ En átomos neutros,  $b_{max} \simeq 1.4a_0 Z^{-1/3}$  por el apantallamiento del núcleo por las cargas electrónicas, con  $a_0 = \hbar/me^2$  el radio de Bohr.
- ▶ Dado  $a_0/(\hbar/mc) = e^2/\hbar c = \alpha$ , se obtiene en (135), para  $v \to c$ ,

$$\frac{d\mathcal{E}}{dt\,d\omega} = \frac{16\,n_i\,Z^2e^6}{3m^2c^4}\ln(192\,Z^{-1/3})\,,\tag{136}$$

con el  $\gamma$  eliminado al regresar al marco del observador.

▶ La pérdida de energía se obtiene integrando sobre frecuencias,  $\omega = 0 \rightarrow \mathcal{E}/\hbar$ ,

$$\frac{d\mathcal{E}}{dt} = \frac{16 \, Z^2 e^6 \, \mathcal{E}}{3 \hbar m^2 c^4} \ln(192 \, Z^{-1/3}) \, n_i \, .$$

<□> <@> < E> < E> E のQ@

#### 4.4.6. Bremsstrahlung relativista

> El resultado es una pérdida exponencial de energía del electrón,

$$\frac{d\mathcal{E}}{dX} = -\frac{\mathcal{E}}{X_0},\tag{137}$$

al atravesar un medio con escala característica de densidad de columna,

$$X_0 = \frac{716 \,\mathrm{g \, cm^{-2}} \,A}{Z(Z+1.3) \left\{ \ln(183 \, Z^{-1/3}) + 1/8 \right\}} \,, \tag{138}$$

donde A es la masa atómica del medio. Ec (138) incorpora el cálculo original de Bethe y Heitler.

▶ Un electrón relativista en el aire emite fotones de alta energía al atravesar una densidad de columna  $\sim X_0 = 36.5 \,\mathrm{g \, cm^{-2}}$ , mucho menor que el grosor de la atmósfera (1032 g cm<sup>-2</sup>).

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ● ●

# 4.5. Radiación sincrotrón

- 4.5.1. Carga en un campo magnético uniforme.
- 4.5.2. Radiación sincrotrón por un electrón.
- 4.5.3. Radiación sincrotrón por una población de electrones.
- 4.5.4. Función fuente y auto-absorción.

# 4.5. Radiación sincrotrón

- La radiación sincrotrón proviene principalmente de electrones de alta energía en campos magnéticos.
- ▶ Por su polarización, es indicativa de campos magnéticos.
- > Se da en el medio interestelar, remanentes de supernova y galaxias activas.
- Al tratar poblaciones de electrones relativistas requiere ir más allá de la aproximación dipolar.

#### 4.5.1. Carga en un campo magnético uniforme - movimiento

▶ El comportamiento de un electrón (q = -e) en un campo magnético se describe con la ecuación de movimiento bajo la fuerza de Lorentz (53),

$$\frac{d(\gamma mc^2)}{dt} = -e \ \vec{E} \cdot \vec{v}, \quad \frac{d(\gamma m\vec{v})}{dt} = -e \left(\vec{E} + \frac{\vec{v}}{c} \times \vec{B}\right). \tag{139}$$

• En un campo puramente magnético ( $\vec{E} = 0$ ), la energía se conserva y la ecuación de movimiento se reduce a

$$\gamma m \frac{d\vec{v}}{dt} = -e\left(\frac{\vec{v}}{c} \times \vec{B}\right) \quad \Rightarrow \quad \frac{d\vec{v}}{dt} = \vec{\omega}_B \times \vec{v}, \qquad (140)$$

con  $\vec{\omega}_B \equiv e\vec{B}/\gamma mc$ , la frecuencia de sincrotrón ( $\vec{\omega}_B = eBc/\mathcal{E}$ ).

► La frecuencia de sincrotrón se expresa también como  $\omega_B = \omega_\ell / \gamma$ , siendo  $\omega_\ell = eB/mc$  la frecuencia de Larmor, característica del campo magnético.

#### 4.5.1. Carga en un campo magnético uniforme - movimiento

• Tomando  $\vec{B} = B\hat{z}$  obtenemos,

$$\vec{v}(t) = v \sin \alpha \left\{ \hat{x} \cos(\omega_B t + \phi_0) + \hat{y} \sin(\omega_B t + \phi_0) \right\} + \hat{z} v \cos \alpha,$$

$$\Rightarrow \qquad (141)$$

$$\vec{r}(t) = r_{\ell} \left\{ \hat{x} \sin(\omega_B t + \phi_0) - \hat{y} \cos(\omega_B t + \phi_0) \right\} + \hat{z} v \cos \alpha t + \vec{r_0}.$$

donde  $\alpha$  es el ángulo<sup>8</sup> entre  $\vec{v}$  y  $\vec{B}$ ,  $\{v, \phi_0, \vec{r_0}\}$  son las condiciones iniciales .

- El movimiento es una superposición de rectilíneo uniforme a lo largo de la línea de campo magnético, y circular uniforme en el plano perpendicular a  $\vec{B}$ .
- La componente de movimiento circular se escala con el radio de Larmor,

$$r_{\ell} \equiv v \sin \alpha / \omega_{B} = p_{\perp} c / eB, \qquad (142)$$

con la rigidez magnética del electrón definida como  $p_{\perp}c/e$ .

<sup>&</sup>lt;sup>8</sup> "pitch angle" en inglés.

### 4.5.1. Carga en un campo magnético uniforme - potencia radiada



► La potencia radiada está dada por la ec. (74), con a<sub>||</sub> = 0,

$$P(t) = rac{2e^2}{3c^3} a_\mu a^\mu = rac{2e^2}{3c^3} \gamma^4 a_\perp^2,$$

con

- $a_{\perp} = |\vec{\omega}_B \times \vec{v}| = eB \sin \alpha v / \gamma mc.$
- Escribiendo  $B_{\perp} = B \sin \alpha$ , se tiene,

$$P(t) = \frac{2e^4 B_{\perp}^2}{3m^2 c^3} \gamma^2 \beta^2 \,.$$
 (143)

### 4.5.2. Radiación sincrotrón por un electrón - potencia radiada

 Al promediar sobre ángulo sólido, suponiendo una población isotrópica de electrones en relación al campo magnético,

$$\left<\sin^2lpha^2\right>=2/3,$$

la potencia promedio queda como,

$$P(t) = \frac{2e^4}{3m^2c^3} \left\langle B_{\perp}^2 \right\rangle \gamma^2 \beta^2 = \frac{2}{3}r_e^2 c \left\langle B_{\perp}^2 \right\rangle \left(\gamma^2 - 1\right) = \frac{4}{3}\sigma_T u_B c \left(\gamma^2 - 1\right), \quad (144)$$

con  $r_e = e^2/mc^2$  el radio clásico del electrón<sup>9</sup>,  $\sigma_T = (8\pi/3)r_e^2$  la sección eficaz de Thompson,  $u_B = B^2/8\pi$  la densidad de energía del campo magnético.

► La expresión (144) es análoga a la pérdida de energía de un electrón en un campo de radiación con densidad de energía u<sub>rad</sub> (190, efecto Compton).

 $^{9}r_{e} \simeq 2.8178 \times 10^{-13} \,\mathrm{cm}, \, \sigma_{T} \simeq 6, 652 \times 10^{-25} \,\mathrm{cm}^{2}.$ 

・ロト < 団 > < 三 > < 三 > < 三 > のへの

### 4.5.2. Radiación sincrotrón por un electrón - tiempo de vida

- La emisión sincrotrón es un mecanismo eficiente de pérdida de energía.
- De (143), la escala de tiempo de pérdida de energía por radiación sincrotrón es

$$\tau \equiv \left(\frac{1}{\gamma} \frac{d\gamma}{dt}\right)^{-1} \longrightarrow \frac{3}{2} \left(\frac{m^3 c^5}{e^4 B_{\perp}^2}\right) \left(\frac{1}{\gamma}\right), \quad \text{para } \gamma \gg 1.$$
 (145)

- Por ejemplo, para electrones de 1 TeV en el campo magnético Galáctico (3  $\mu$ G), el tiempo de pérdida de energía es  $\tau \simeq 0.9 \times 10^6$  años, mucho menor que el tiempo de difusión en la Galaxia, el cual depende de  $r_{\ell}$ .
- Núcleos atómicos de alta energía tienen una masa mucho mayor, por lo que el tiempo de pérdida de energía ( $\tau \propto m^3/B^2$ ) es suficientemente grande como para permitir su difusión por la Galaxia.

4.1. Relatividad

4.2. Campos 4.3. Sistemas

4.4. Bremsstrahlung

4.5. Sincrotrón

otrón 4.6. Compton

4.7. Altas energías

#### 4.5.2. Radiación sincrotrón por un electrón



 $\vec{a} = \omega_B \hat{z} \times \vec{v} = \omega_B v \sin \alpha (-\hat{x} \sin \omega_B t_e + \hat{y} \cos \omega_B t_e).$ 

Figura 17: Línea de visión para el tratamiento de la radiación sincrotrón,  $\hat{r} = \hat{x} \sin \theta + \hat{z} \cos \theta$ , con  $\theta = \alpha + \epsilon$ , siendo  $\alpha$  la inclinación de la velocidad de la partícula en relación a la línea de campo magnético, y  $\epsilon \sim 1/\gamma$ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の 0 0

#### 4.5.2. Radiación sincrotrón por un electrón - potencia y patrón

- La distribución temporal de la emisión sincrotrón por un electrón en un campo magnético, a lo largo del eje 2, está dada por (76).
- Se considera el movimiento descrito por (141) y un observador con línea de visión,  $\hat{r} = \hat{x} \sin \theta + \hat{z} \cos \theta$ .
- $\blacktriangleright$  En el caso no relativista,  $\beta \ll 1$ , se tiene una emisión dipolar armónica,

$$rac{dP}{d\Omega}\simeq rac{e^2a^2}{4\pi c^3}\left(1-(\hat{r}\cdot\hat{a})^2
ight)=rac{e^2a^2}{4\pi c^3}\left(1-\sin^2 heta\sin^2\omega_Bt_e
ight),$$

con un término de fase,  $t_e = t - r/c$ , a primer orden.

La expresión general es

$$\frac{dP}{d\Omega} = \frac{e^2 a^2}{4\pi c^3} \left\{ \frac{(1-\beta \sin\alpha \sin\theta \cos\omega_B t_e - \beta \cos\alpha \cos\theta)^2 - \sin^2\theta \sin^2\omega_B t_e / \gamma^2}{(1-\beta \sin\alpha \sin\theta \cos\omega_B t_e - \beta \cos\alpha \cos\theta)^6} \right\}$$

4.6. Compton

#### 4.5.2. Radiación sincrotrón por un electrón - forma temporal

La emisión es máxima para una línea de visión que coincide momentáneamente con la velocidad,  $\theta = \alpha$ ,

$$\frac{dP}{d\Omega} = \frac{e^2 a^2}{4\pi c^3} \left\{ \frac{\left(1 - \beta \sin^2 \alpha \cos \omega_B t_e - \beta \cos^2 \alpha\right)^2 - \sin^2 \alpha \sin^2 \omega_B t_e / \gamma^2}{\left(1 - \beta + \beta \sin^2 \alpha \left(1 - \cos \omega_B t_e\right)\right)^6} \right\}$$

En el caso altamente relativista, alrededor de la fase de máxima emisión, y con la transformación del tiempo retardado.

$$eta\simeq 1-1/2\gamma^2,\quad \cos\omega_B t_{\rm e}\simeq 1-\omega_B^2 t_{\rm e}^2/2,\quad t_{\rm e}\simeq 2\gamma^2 t,$$

se obtiene

$$\frac{dP}{d\Omega} = \frac{e^2 a^2}{4\pi c^3} \, 16\gamma^8 \frac{(1 - (\sin\alpha\gamma\omega_B t_e)^2)^2}{(1 + (\sin\alpha\gamma\omega_B t_e)^2)^6} = \frac{e^2 a^2}{4\pi c^3} \, 16\gamma^8 \frac{(1 - (2\sin\alpha\gamma^3\omega_B t)^2)^2}{(1 + (2\sin\alpha\gamma^3\omega_B t)^2)^6}.$$

4.6. Compton

### 4.5.2. Radiación sincrotrón por un electrón



Figura 18: Ilustración del proceso sincrotrón. La emisión se confina a un haz de ancho  $1/\gamma$  barriendo la línea de visión con frecuencia  $\omega_B$  en tiempo retardado, y  $\omega_c \sim \gamma^2 \omega_B$  para el observador.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

### 4.5.2. Radiación sincrotrón por un electrón - forma temporal



Figura 20: Pulso de la emisión sincrotrón visto en función del tiempo retardado,  $t_e$ , y por el observador, t. En este ejemplo se tomó  $\beta = 0.8 \Rightarrow \gamma \simeq 1.67$ . El pulso en  $t_e$  tiene duración  $\Delta t_e \propto 1/\gamma$ , mientras que en t tiene duración  $\Delta t_e \propto 1/\gamma^3$ . Para valores grandes de  $\gamma$ , los pulsos aparecen extremadamente angostos.

La emisión se da en pulsos de ancho  $\Delta t \approx 2\pi/\gamma^3 \omega_B \sin \alpha$ , repetidos con periodo  $T = 2\pi/\omega_B$ . El espectro va formalmente, en frecuencias discretas  $\omega_n = n\omega_B$ , desde  $\omega_B$  hasta  $\gamma^3 \omega_B \sin \alpha$ , con  $n = 1 \rightarrow \gamma^3$ .

くしゃ 小田 そうかん 日本 人口 そう

4.6. Compton

# 4.5.2. Radiación sincrotrón - distribución angular y espectral

► La estimación del espectro requiere la expresión (79),

$$\frac{dP(\omega)}{d\Omega} = \frac{d\mathcal{E}}{d\omega d\Omega} = \frac{e^2\omega^2}{4\pi^2 c} \left| \int_{-\infty}^{+\infty} \hat{r} \times (\hat{r} \times \vec{\beta}) e^{i\omega(t-\hat{r}\cdot\vec{r_e}(t)/c)} dt \right|^2.$$

La línea de visión es  $\hat{r} = \hat{x} \sin \theta + \hat{z} \cos \theta$ , con  $\theta = \pi/2$  para el plano xy (figura 17). El vector

$$\hat{r} \times (\hat{r} \times \vec{\beta}) = -\hat{e}_1 \beta \sin \alpha \sin \omega_B t + \hat{e}_2 \beta (\cos \alpha \sin \theta - \sin \alpha \cos \theta \cos \omega_B t),$$

define dos componentes de polarización,  $A_1$ ,  $A_2$ , en direcciones perpendiculares (por definición) a la línea de visión  $\hat{r}$ ,

$$\hat{e}_1 = \hat{y}, \qquad \hat{e}_2 = \hat{r} \times \hat{e}_1 = \hat{x} \cos \theta - \hat{z} \sin \theta.$$

► Lo que permite escribir la expresión (79) como,

$$\frac{d\mathcal{E}}{d\omega d\Omega} = \frac{e^2 \omega^2 \beta^2}{4\pi^2 c} \left( |A_1(\theta, \omega)|^2 + |A_2(\theta, \omega)|^2 \right).$$
(148)

### **4.5.2.** Radiación sincrotrón - distribución angular y espectral

▶ Para  $\alpha = \pi/2, \theta = \alpha + \Delta \theta$ , y el límite  $\{\Delta \theta, \omega_B t\} \ll 1 \ll \gamma$ , se considera  $\sin\theta \simeq 1 - \Delta\theta^2/2$ ,  $\beta \simeq 1 - 1/2\gamma^2$ ,  $\sin x/x \simeq 1 - x^2/3!$ ,

de forma que el término en la exponencial de (79) queda como,

 $i\omega (t - \hat{r} \cdot \vec{r_e}(t)/c) = t (1 - \beta \sin \theta \sin(\omega_B t)/\omega_B t) \approx i (1/2\gamma^2 + \theta^2/2 + \omega_B^2 t^2/6),$ ► De donde.

$$\begin{aligned} A_{1}(\theta,\omega) &= \int_{-\infty}^{+\infty} \sin \omega_{B}t \cdot \exp\left\{i\omega t\left(1-\beta\sin\theta\sin(\omega_{B}t)/\omega_{B}t\right)\right\} dt \\ &\approx \int_{-\infty}^{+\infty} \omega_{B}t \cdot \exp\left\{\frac{i\omega t}{2}\left(\frac{1}{\gamma^{2}}+\Delta\theta^{2}+\frac{\omega_{B}^{2}t^{2}}{3}\right)\right\} dt, \\ A_{2}(\theta,\omega) &= \cos\theta\int_{-\infty}^{+\infty} \cos\omega_{B}t \cdot \exp\left\{i\omega t\left(1-\beta\sin\theta\sin(\omega_{B}t)/\omega_{B}t\right)\right\} dt \\ &\approx \Delta\theta\int_{-\infty}^{+\infty} \exp\left\{\frac{i\omega t}{2}\left(\frac{1}{\gamma^{2}}+\Delta\theta^{2}+\frac{\omega_{B}^{2}t^{2}}{3}\right)\right\} dt. \end{aligned}$$
## **4.5.2.** Radiación sincrotrón - distribución angular y espectral

• Cambiando variables  $q = \gamma \omega_B t / (1 + \gamma^2 \Delta \theta^2)^{1/2}$ ,  $x = (\omega/3\gamma^3 \omega_B)(1 + \gamma^2 \Delta \theta^2)^{3/2}$ ,

$$egin{split} \mathcal{A}_1( heta,\omega)&pproxrac{1+\gamma^2\Delta heta^2}{\gamma^2\omega_B}\int_{-\infty}^{+\infty}q\exp\left\{irac{3}{2}x(q+q^3/3)
ight\}dq&pproxrac{1+\gamma^2\Delta heta^2}{\gamma^2\omega_B}rac{1}{\sqrt{3}}\,\mathcal{K}_{2/3}(x),\ \mathcal{A}_2( heta,\omega)&pprox\Delta hetarac{\left(1+\gamma^2\Delta heta^2
ight)^{1/2}}{\gamma\omega_B}\int_{-\infty}^{+\infty}\exp\left\{irac{3x}{2}\left(q+rac{q^3}{3}
ight)
ight\}dq&pprox\Delta hetarac{\left(1+\gamma^2\Delta heta^2
ight)^{1/2}}{\gamma\omega_B}rac{\mathcal{K}_{1/3}(x)}{\sqrt{3}}, \end{split}$$

con  $K_r$  la función modificada de Bessel de orden r.

Definiendo la frecuencia de corte.

$$\omega_c \equiv \frac{3}{2} \gamma^3 \omega_B \,, \tag{149}$$

la distribución espectral y angular de la emisión queda como,

$$\frac{d\mathcal{E}}{d\omega d\Omega} = \frac{3\,e^2}{16\pi^2 c} \gamma^2 \beta^2 \left(\frac{\omega}{\omega_c}\right)^2 \left(1 + \gamma^2 \theta^2\right)^2 \left[K_{2/3}^2(x) + \frac{\gamma^2 \theta^2}{1 + \gamma^2 \theta^2} K_{1/3}^2(x)\right], \quad (150)$$
  
con  $x = (\omega/2\omega_c)(1 + \gamma^2 \theta^2)^{3/2}.$ 

## 4.5.2. Radiación sincrotrón - distribución angular y espectral

> Integrando sobre frecuencias se obtiene la distribución angular de la emisión,

$$\frac{d\mathcal{E}}{d\Omega} = \frac{7}{16} \frac{e^2 c}{\omega_B} \frac{\gamma^5}{\left(1 + \gamma^2 \theta^2\right)^{5/2}} \left[1 + \frac{5}{7} \left(\frac{\gamma^2 \theta^2}{1 + \gamma^2 \theta^2}\right)\right].$$
(151)

La emisión consiste en un pulso de ancho  $\Delta \theta \approx 1/\gamma$  amplificado por  $\gamma^5$  (fig. 21).

- Al integrar sobre ángulo sólido se obtiene el espectro emitido en función de  $\omega/\omega_c$ ,

$$P(\omega) = \frac{d\mathcal{E}}{d\omega} = \frac{\sqrt{3} e^3 B \sin \alpha}{2\pi mc^2} F\left(\frac{\omega}{\omega_c}\right) \quad \text{con} \quad F(x) \equiv x \int_x^\infty \mathcal{K}_{5/3}(y) \, dy \,. \tag{152}$$

► El espectro se separa en componentes perpendicular y paralela,  $P = P_{\perp} + P_{\parallel}$ , donde

$$\left\{ \begin{array}{c} P_{\perp}(\omega) \\ P_{\parallel}(\omega) \end{array} \right\} = \frac{\sqrt{3} e^{3} B \sin \alpha}{4\pi mc^{2}} \left\{ \begin{array}{c} F(\omega/\omega_{c}) + G(\omega/\omega_{c}) \\ F(\omega/\omega_{c}) - G(\omega/\omega_{c}) \end{array} \right\} .$$
(153)

 $F(x), G(x) \equiv x K_{2/3}(x)$  son las funciones de emisión sincrotrón (Westfold 1959).

・ロット (日) (日) (日)

### 4.5.2. Radiación sincrotrón por un electrón



Figura 21: Izquierda: distribución angular de la emisión sincrotrón, limitada a un cono de apertura  $\Delta\theta \sim 1/\gamma$ . Derecha: la distribución espectral está dada por las funciones  $F(\omega/\omega_c)$ -línea sólida- y  $G(\omega/\omega_c)$ -línea punteada- con la frecuencia de corte  $\omega_c = (3/2)\gamma^2(EB_{\perp}/mc)$ .

900

- 3

# 4.5.2. Radiación sincrotrón - función sincrotrón

La función

$$F(x) = x \int_x^\infty K_{5/3}(y) \, dy \, ,$$

mostrada en la figura (21), tiene comportamientos asintóticos,

$$\begin{split} F(x) &\approx \quad \frac{4\pi}{\sqrt{3} \, \Gamma(1/3)} \left(\frac{x}{2}\right)^{1/3} \quad \text{para} \quad x \ll 1 \\ F(x) &\approx \quad (\pi/2)^{1/2} \, e^{-x} x^{1/2} \qquad \text{para} \quad x \gg 1 \, . \end{split}$$

El grado de polarización de la radiación es

$$\Pi(\omega) = \frac{P_{\perp}(\omega) - P_{\parallel}(\omega)}{P_{\perp}(\omega) + P_{\parallel}(\omega)} = \frac{G(\omega/\omega_c)}{F(\omega/\omega_c)}.$$
(157)

> El caso general considera la inclinación con el campo magnético, resultando en

$$\omega_c = 3\gamma^3 \omega_B \sin \alpha/2$$

(*Rybicki* §6; *Jackson* §14)

### 4.5.3. Radiación sincrotrón de una población de electrones

► El espectro de un electrón,  $P_e(\omega)$ , se emplea para determinar la emisión total de una región. Las poblaciones de electrones son frecuentemente no térmicas y se describen con leyes de potencias en energías, o de valores de  $\gamma$ ,

$$N(E) dE \propto E^{-p} \quad \Rightarrow \quad N(\gamma) d\gamma = C \gamma^{-p} d\gamma, \qquad (158)$$

con p típicamente en el rango (2,3).

El espectro está dado por:

$$P(\omega) = C \int_{\gamma_1}^{\gamma_2} P_e(\omega) \gamma^{-p} \, d\gamma \propto \omega^{-(p-1)/2} \int_{x_1}^{x_2} F(x) \, x^{(p-3)/2} \, dx \,, \qquad (159)$$

donde  $x = \omega / \gamma^2 \omega_\ell$ .

• Para un rango espectral amplio,  $\gamma_1 \ll \gamma_2$ ,

$$P(\omega) \propto \omega^{-s} = \omega^{-(p-1)/2} \,. \tag{160}$$

### 4.5.3. Radiación sincrotrón de una población de electrones

▶ En el límite  $x_1 \rightarrow 0, x_2 \rightarrow \infty$  la integración de (152) da,

$$P(\omega) = \frac{\sqrt{3} C}{2\pi(p+1)} \Gamma\left(\frac{p}{4} + \frac{19}{12}\right) \Gamma\left(\frac{p}{4} - \frac{1}{12}\right) \left(\frac{e^2\omega_\ell}{c}\right) \left(\frac{\omega}{3\omega_\ell}\right)^{-(p-1)/2}, \quad (161)$$

recordando  $\omega_{\ell} = eB \sin \alpha / mc$ .

- ► El índice espectral s de la radiación se relaciona con el de la distribución de electrones, p a través de s = (p − 1)/2.
- La polarización resultante es,

$$\Pi = \frac{p+1}{p+7/3} \,. \tag{162}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

### 4.5.4. Función fuente y auto-absorción

- ► A un proceso de emisión le corresponde el proceso recíproco de absorción.
- ► En equilibrio termodinámico, coeficientes de absorción y emisión se relacionan mediante la ley de Kirchhoff,  $j_{\nu} = \alpha_{\nu} B_{\nu}(T)$ , con  $B_{\nu}$  la función de Planck.
- ► Sincrotrón no ocurre normalmente en equilibrio. La relación entre emisión y absorción es mediante la función fuente,  $S_{\nu} = j_{\nu}/\alpha_{\nu}$ .
- La definición estadística de la función fuente para transiciones entre estados 1 → 2 con poblaciones n<sub>1</sub> = n(E<sub>1</sub>), n<sub>2</sub> = n(E<sub>2</sub>), pesos estadísticos g<sub>1</sub> = g(E<sub>1</sub>), g<sub>2</sub> = (E<sub>2</sub>),

$$S_{\nu} = \frac{2h\nu^3/c^2}{n_1g_2/n_2g_1 - 1},\tag{163}$$

Para electrones relativistas descritos por una ley de potencias n(E) ∝ E<sup>-p</sup> se tiene g(E) ∝ E<sup>2</sup>, de donde,

$$S_{\nu} = rac{2h \nu^3/c^2}{(E_1/E_2)^{-p+2}-1} = rac{2h \nu^3/c^2}{((E+h 
u)/E)^{p-2}-1} \simeq rac{2h 
u^3/c^2}{(p-2)(h 
u/E)}\,,$$

donde  $h\nu \ll E$ , siendo E la energía de un electrón que emite a una frecuencia  $\nu$ .

## 4.5.4. Función fuente y auto-absorción

> Dado que la mayor parte de la emisión ocurre cerca de la frecuencia de corte,

$$2\pi
u \simeq \omega_c = rac{3}{2}\gamma^2\omega_\ell = rac{3}{2}\left(E/mc^2
ight)^2\left(eB/mc
ight) \quad \Rightarrow \quad E \simeq mc^2\left(
u/
u_\ell
ight)^{1/2}$$

con  $\omega_\ell = 2\pi \nu_\ell = eB/mc$  la frecuencia de Larmor.

La función fuente queda dada por,

$$S_{\nu} \simeq rac{m \, 
u^{5/2}}{
u_{\ell}^{1/2} (p/2 - 1)} \propto 
u^{5/2} \, B^{-1/2},$$
 (164)

- ► Dado  $j_{\nu} \propto \nu^{-(p-1)/2}$ , el coeficiente de absorción es  $\alpha_{\nu} = j_{\nu}/S_{\nu} \propto \nu^{-(p+4)/2}$ .
- La absorción predomina a frecuencias bajas. Se puede definir cierta  $u_m$  tal que,
- si  $u \ll 
  u_m$  el medio es ópticamente grueso:  $I_
  u o S_
  u \propto 
  u^{5/2}$ ;
- si  $\nu \gg 
  u_m$  el medio es ópticamente delgado:  $I_
  u o j_
  u \propto 
  u^{-(p-1)/2}$ ;

$$-$$
 en general:  $\mathit{I}_{
u}pprox \mathit{S}_{
u}\left(1-e^{- au_{
u}}
ight)$  .

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 ● のへぐ

4.7. Altas energías

4.1. Relatividad

4.2. Campos 4.3. Sistemas

4.4. Bremsstrahlung

4.5. Sincrotrón

4.6. Compton

4.7. Altas energías

# 4.5.4. Función fuente y auto-absorción

- El valor v<sub>m</sub> contiene información sobre la región emisora.
- El flujo de una esfera ópticamente gruesa de radio R está dado por

 $F_{\nu}=S_{\nu}\,\pi\theta^2,$ 

con  $\theta = R/r$  el tamaño angular.

- Mediciones interferométricas, muchas veces en radio, permiten medir θ, así como ν<sub>m</sub> y F<sub>m</sub>.
- Empleando (164) se puede deducir el campo magnético.



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

▲□▶ ▲□▶ ★ □▶ ★ □▶ = 三 の へ ()

# 4.6. Efecto Compton

- 4.6.1. Dispersión de Thomson.
- 4.6.2. Efecto Compton electrón en reposo
- 4.6.3. El efecto Compton caso general, centro de momento.
- 4.6.4. Efecto Compton inverso.
- 4.6.5. Campos de radiación.

# 4.6.1. Dispersión de Thomson

- La dispersión de Thomson, o dispersión electrónica, se refiere a la dispersión de una onda plana electromagnética por un electrón libre.
- ► La dispersión de Thomson describe el caso no relativista ( $v \ll c$ ), despreciando la acción del campo magnético, de orden  $\sim v/c$ .
- > La onda afecta el movimiento del electrón de acuerdo a la fuerza de Lorentz,

$$ec{F} = -e\left(ec{E}+rac{ec{v}}{c} imesec{B}
ight) pprox -eec{E}\,.$$

> Para una onda monocromática, el movimiento del electrón,  $\vec{r_e}(t)$ , está descrito por

$$\ddot{mr_e} \simeq -e\,\hat{\varepsilon}E\,e^{i(kz-\omega t)},$$
 (165)

para  $ec{k}=k\hat{z}$ , con  $\hat{arepsilon}\perpec{k}$  el vector de polarización del campo eléctrico.

Si se restringe el movimiento al plano xy, el término  $e^{ikz}$  representa una fase.

## 4.6.1. Dispersión de Thomson

> La potencia y el patrón de emisión se estiman bajo la aproximación dipolar

$$\frac{dP(t)}{d\Omega} = \frac{|\hat{r} \times (\hat{r} \times \ddot{\vec{d}})|^2}{4\pi c^3} = \frac{|\vec{\vec{d}}|^2}{4\pi c^3} \left\{ 1 - (\hat{r} \cdot \hat{\varepsilon})^2 \right\} , \qquad (166)$$

con  $\vec{d} = -e\vec{r_e}$  el momento dipolar del electrón  $\Rightarrow \ddot{\vec{d}} = -\hat{\varepsilon} e\vec{r_e}$ .

La potencia media por unidad de ángulo sólido queda como

$$\left\langle \frac{dP(t)}{d\Omega} \right\rangle = \frac{c|E|^2}{8\pi} \left( \frac{e^2}{mc^2} \right)^2 \left( 1 - |\hat{r} \cdot \hat{\varepsilon}|^2 \right).$$
(167)

► Podemos cuantificar el efecto de dispersión mediante la comparación entre el flujo de energía de la onda plana incidente y la emisión dipolar resultante, a través de la sección eficaz,  $d\sigma/d\Omega$ , en su forma diferencial:

$$\frac{dP}{d\Omega} = \langle S \rangle \ \frac{d\sigma}{d\Omega} \quad \Rightarrow \quad \frac{d\sigma}{d\Omega} = \frac{1}{2} \left(\frac{e^2}{mc^2}\right)^2 \left(1 - |\hat{r} \cdot \hat{\varepsilon}|^2\right) \ . \tag{168}$$

# 4.6.1. Dispersión de Thomson

- ▶ Para un observador  $\hat{r} = \hat{z}\cos\theta + \hat{x}\sin\theta$ , polarización lineal  $\hat{\varepsilon} = \hat{x}\cos\phi + \hat{y}\sin\phi$ , se obtiene un patrón dipolar,  $\propto \sin^2\phi + \cos^2\phi\cos^2\theta$ .
- Una onda con polarización circular,  $\hat{\varepsilon} = (\hat{x} \pm i\hat{y})/\sqrt{2}$ , resulta en un patrón dipolar,

$$\frac{d\sigma}{d\Omega} = \frac{1}{2} \left(\frac{e^2}{mc^2}\right)^2 (1 + \cos^2\theta).$$
(169)

- Radiación no polarizada tiene un patrón dipolar, al integrar el caso lineal sobre  $\phi$ .
- > La integración sobre ángulo sólido resulta en la sección eficaz de Thomson,

$$\sigma_T = \frac{8\pi}{3} \left(\frac{e^2}{mc^2}\right)^2 = \frac{8\pi}{3} r_e^2 \,, \tag{170}$$

con  $r_e=e^2/mc^2=2.8178\times 10^{-13}\,{\rm cm},$  el radio clásico del electrón.

- ► La luz dispersada tiene la misma frecuencia que la incidente.
- La descripción del efecto Compton introduce un cambio en frecuencia.

4.6. Compton

## 4.6.2. Efecto Compton - electrón en reposo; dispersión electrónica

► El efecto Compton describe la dispersión de un electrón y un fotón,  $\gamma e \rightarrow \gamma e$ , como una colisión elástica  $\Rightarrow$  intercambio de energía y momento,

$$p_{e(i)} + p_{\gamma(i)} = p_{e(f)} + p_{\gamma(f)}.$$
(171)

- La dispersión electrónica ("electron scattering") corresponde al caso de energía inicial del electrón despreciable.
- Para un electrón inicialmente en reposo,

$$\left(\begin{array}{c}mc\\0\end{array}\right)+\left(\begin{array}{c}\hbar\omega_0/c\\\hat{k}_0\,\hbar\omega_0/c\end{array}\right)=\left(\begin{array}{c}\gamma mc\\\gamma m\vec{\beta}c\end{array}\right)+\left(\begin{array}{c}\hbar\omega_1/c\\\hat{k}_1\,\hbar\omega_1/c\end{array}\right),$$

se obtiene la fórmula de Compton, relacionando energías inicial y final del fotón,

$$\hbar\omega_1 = \frac{\hbar\omega_0}{1 + (\hbar\omega_0/mc^2)\left(1 - \hat{k}_0 \cdot \hat{k}_1\right)}.$$
(172)

## 4.6.2. Efecto Compton - electrón en reposo: dispersión electrónica

Expresado en términos de la longitud de onda,

$$\lambda_1 = \lambda_0 + \lambda_c (1 - \cos \theta). \tag{173}$$

El ángulo de dispersión está dado por  $\cos \theta = \hat{k}_0 \cdot \hat{k}_1$ , siendo  $\lambda_c = h/mc$  la longitud de onda de Compton<sup>10</sup>.

- ▶  $\omega_1 \leq \omega_0 \Rightarrow$  el fotón cede energía al electrón, inicialmente en reposo.
- La dispersión electrónica es particularmente importante en interiores estelares y plasmas calientes densos en general.

## 4.6.2. Efecto Compton - sección eficaz diferencial

 El resultado de la interacción (172) depende del ángulo θ, dado de manera probabilística por la sección eficaz de Klein-Nishina,

$$\frac{d\sigma}{d\Omega}(\omega_0,\theta) = \frac{r_e^2}{2} \left(\frac{\omega_1}{\omega_0}\right)^2 \left[\frac{\omega_0}{\omega_1} + \frac{\omega_1}{\omega_0} - \sin^2\theta\right],\tag{174}$$

con  $\omega_1/\omega_0$  dado por (172).

- ▶ Para  $\omega_1/\omega_0 \simeq 1$  se recobra la sección eficaz de Thomson,  $\propto (1 + \cos^2 \theta)$ .
- ► Al substituir (172) en (174), se puede expresar  $d\sigma/d\Omega$  en función de  $\cos\theta$  y  $x = \hbar\omega_0/mc^2$ ,

$$\frac{d\sigma}{d\Omega} = \frac{r_e^2}{2} \left[ \frac{1}{1 + x(1 - \cos\theta)} + \frac{1}{(1 + x(1 - \cos\theta))^3} - \frac{\sin^2\theta}{(1 + x(1 - \cos\theta))^2} \right].$$
(175)

► El comportamiento de  $d\sigma/d\Omega(\theta)$  se ilustra en la figura 22. Al aumentar  $\omega_0$ , se pasa de un comportamiento dipolar a dispersiones con  $\theta$  pequeñas.

・ロト ・ 西 ト ・ ヨ ト ・ ヨ ・ つへぐ

## 4.6.2. Efecto Compton - sección eficaz total

► La expresión (175) es integrable analíticamente, resultando en la sección eficaz total, en términos de  $x = \hbar \omega_0 / mc^2$ ,

$$\sigma = \frac{3}{4}\sigma_{T} \left[ \frac{1+x}{x^{3}} \left\{ \frac{2x(1+x)}{1+2x} - \ln(1+2x) \right\} + \frac{1}{2x} \ln(1+2x) - \frac{1+3x}{(1+2x)^{2}} \right].$$
(176)

• En el régimen no relativista,  $x \ll 1$ ,

$$\sigma \approx \sigma_T \left( 1 - 2x + \frac{26}{5}x^2 + \dots \right) \,. \tag{177}$$

 En el regimen altamente relativista, x ≫ 1, la sección eficaz decrece con la energía,

$$\sigma \approx \sigma_T \frac{3}{8x} \left( \frac{1}{2} + \ln 2x \right) \,. \tag{178}$$

(ロ) (国) (E) (E) (E) (O)(C)

### 4.6.2. Efecto Compton - sección eficaz



Figura 22: *Izquierda:* sección diferencial de Klein-Nishina para electrones en reposo (marco de referencia del electrón). El fotón original va de izquierda a derecha ( $\hat{k}_0 = \hat{z} \Rightarrow \theta = 0$ ). Los valores de  $x = \hbar\omega_0/mc^2$  están indicados. El máximo de  $d\sigma/d\Omega$  corresponde a  $2r_e^2$ . Derecha: sección eficaz total.

# 4.6.3. Efecto Compton - caso general

- Los electrones son ubicuos en entornos astrofísicos y sus interacciones con fotones son frecuentes.
- La interacción electrón fotón se describe con la conservación de energía y momento,

$$\boldsymbol{p}_{0}^{\alpha} = \begin{pmatrix} \hbar\omega_{0}/c + \gamma_{0}mc\\ \hbar\omega_{0}\hat{k}_{0}/c + \gamma_{0}\vec{\beta}_{0}mc \end{pmatrix} = \boldsymbol{p}_{1}^{\alpha} = \begin{pmatrix} \hbar\omega_{1}/c + \gamma_{1}mc\\ \hbar\omega_{1}\hat{k}_{1}/c + \gamma_{1}\vec{\beta}_{1}mc \end{pmatrix}, \quad (179)$$

con los sub-índices 0,1 antes y después de la interacción, respectivamente.

► La interacción tiene invariante:

$$p_{\alpha}p^{\alpha} = -m^{2}c^{2} - 2\gamma\hbar\omega m\left(1 - \hat{k}\cdot\vec{\beta}\right).$$
(180)

• Simplificamos la notación<sup>11</sup> con  $\omega \longrightarrow \hbar \omega$ ,  $\gamma \longrightarrow \gamma mc^2$ , para re-escribir (179),

$$\begin{pmatrix} \omega_0 + \gamma_0 \\ \omega_0 \hat{k}_0 + \gamma_0 \vec{\beta}_0 \end{pmatrix} = \begin{pmatrix} \omega_1 + \gamma_1 \\ \omega_1 \hat{k}_1 + \gamma_1 \vec{\beta}_1 \end{pmatrix}.$$
 (181)

<sup>11</sup>equivalente a  $\hbar/mc^2 = 1$ .

4.6. Compton

## 4.6.3. Efecto Compton - caso general

> Al eliminar  $\gamma_1, \gamma_1 \vec{\beta_1}$ , obtenemos la expresión general para la interacción Compton,

$$\omega_{1} = \frac{\gamma_{0}\omega_{0}\left(1 - \vec{\beta}_{0} \cdot \hat{k}_{0}\right)}{\gamma_{0}\left(1 - \vec{\beta}_{0} \cdot \hat{k}_{1}\right) + \omega_{0}\left(1 - \hat{k}_{0} \cdot \hat{k}_{1}\right)}.$$
(182)

#### Casos particulares:

- un electrón en reposo:  $\beta_0 = 0, \gamma_0 = 1$ , recuperamos la expresión (172).
- $\hat{k}_1 = \hat{k}_0$  entonces  $\omega_1 = \omega_0$ , y no hay dispersión.
- electrones no relativistas, como en la dispersión del fondo de microondas (CMB) por electrones en equilibrio térmico a muy alta temperatura en cúmulos de galaxias, en el denominado efecto Sunyaev-Zeldovich.

4.1. Relatividad 4.2. Campos 4.3. Sistemas 4.4. Bremsstrahlung 4.5. Sincrotrón 4.6. Compton 4.7. Altas energías

### **4.6.3. Efecto Compton** - centro de momento

 La interacción Compton se describe frecuentemente en el centro de momento. La transformación al CM es,

$$\vec{\beta}_t = \vec{p}c/E = \frac{\omega_0 \hat{k}_0 + \gamma_0 \vec{\beta}_0}{\omega_0 + \gamma_0} \quad \Rightarrow \quad \gamma_t = \frac{\omega_0 + \gamma_0}{\sqrt{1 + 2\gamma_0 \omega_0 (1 - \hat{k}_0 \cdot \vec{\beta}_0)}}.$$
 (183)

Por construcción, al transformar obtenemos,

$$p^{\alpha'} = \begin{pmatrix} \omega'_0 + \gamma'_0 \\ 0 \end{pmatrix} = \begin{pmatrix} \omega'_1 + \gamma'_1 \\ 0 \end{pmatrix}, \qquad (184)$$

 $\operatorname{con} \sqrt{-p_{\alpha'}p^{\alpha'}} = \omega_0' + \gamma_0' = \sqrt{1 + 2\gamma_0\omega_0}(1 - \hat{k}_0 \cdot \vec{\beta}_0) = \omega_1' + \gamma_1'.$ 

Momento total nulo y conservación de energía implican,

$$\gamma'\vec{\beta}' + \omega'\hat{k}' = 0 \quad \Rightarrow \quad \gamma' = \sqrt{1 + \omega'^2} \quad \Rightarrow \quad \omega'_1 = \omega'_0, \ \gamma'_1 = \gamma'_0.$$
 (185)

 La interacción no modifica las energías del fotón y electrón en el centro de momento, siempre relacionadas mediante (185). 4.1. Relatividad

### 4.6.3. Efecto Compton - centro de momento

> La interacción en el CM corresponde a una rotación del vector de propagación,

 $\hat{k}_0' 
ightarrow \hat{k}_1',$ 

descrita por la sección eficaz diferencial de Klein-Nishina, ahora referida al CM  $(d\Omega \rightarrow d\Omega')$ .

- $\omega \ll 1 \Rightarrow \text{dipolar}; \ \omega \gg 1 \Rightarrow d\sigma/d\Omega$  aumenta hacia  $\cos \theta = -1 \Leftrightarrow \hat{k}'_1 = -\hat{k}'_0.$
- La sección eficaz total es invariante y dada por (176), notando que,

$$-p_{lpha'}p^{lpha'} = 1 + 2\gamma_0\omega_0(1-\hat{k}_0\cdotec{eta_0}) = 2x+1\,,$$

donde  $x = \gamma_0 \omega_0 (1 - \hat{k}_0 \cdot \vec{\beta}_0).$ 

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = -の��

4.2. Campos 4.3. Sistemas

4.4. Bremsstrahlung

4.5. Sincrotrón

n 4.6. Compton

4.7. Altas energías

### 4.6.3. Efecto Compton - centro de momento



Figura 23: Sección diferencial de Klein-Nishina en el centro de momento. Los contornos, de externo a interno, son para  $\omega = 0.0, 0.1, 0.3, 1.0, 3.0, 10.0$ . El contorno más interno muestra la tendencia al "rebote" cos  $\theta = -1$  en altas energías, así como la disminución de  $\sigma$ . El contorno más externo corresponde a la dispersión de Thomson.

# 4.6.4. Efecto Compton inverso

- El efecto Compton inverso describe la transferencia de energía de electrones altamente relativistas a fotones de menor energía, γ<sub>0</sub> ≫ máx(1,ω<sub>0</sub>).
- Para γ<sub>0</sub> ≫ ω<sub>0</sub>, el fotón dispersado se propaga en dirección muy cercana a la original del electrón. Al aproximar k̂<sub>1</sub> ≃ β̂<sub>0</sub> en (182), se obtiene,

$$\omega_{1} = \frac{\gamma_{0}\omega_{0}\left(1 - \vec{\beta}_{0} \cdot \hat{k}_{0}\right)}{\gamma_{0}\left(1 - \beta_{0}\right) + \omega_{0}\left(1 - \hat{k}_{0} \cdot \hat{\beta}_{0}\right)} \simeq \frac{2\gamma_{0}^{2}\omega_{0}\left(1 - \beta_{0}\cos\theta_{0}\right)}{1 + 2\gamma_{0}\omega_{0}\left(1 - \cos\theta_{0}\right)}.$$
 (188)

Se distinguen dos casos:

- 1.  $\gamma_0\omega_0 (1 \cos\theta_0) \ll 1 \Rightarrow \omega_1 \simeq 2\gamma_0^2\omega_0 (1 \beta_0\cos\theta_0)$ ; el fotón adquiere una energía del orden  $2\gamma^2\omega_0$ , acotada a  $\omega_1 \lesssim 4\gamma^2\omega_0$ .
- 2.  $\gamma_0\omega_0 (1 \cos\theta_0) \gg 1 \Rightarrow \omega_1 \simeq \gamma_0$ : el fotón adquiere prácticamente toda la energía del electrón. En este régimen la sección eficaz disminuye y se da la supresión de Klein-Nishina.

## 4.6.4. Efecto Compton inverso

- La expresión (188) describe el espectro de fotones obtenido de la colisión entre electrones y fotones mono-energéticos, al considerar cos θ₀ ∈ {−1, +1}.
- ▶ El efecto Compton inverso es el proceso electromagnético que produce los fotones de más alta energía ( $\gtrsim 100 \, {\rm TeV}$ ).
- La producción de rayos gamma de energía aún mayor puede ocurrir en colisiones entre hadrones.

### 4.6.5. Efecto Compton - campos de radiación

- La transferencia de energía a fotones de un campo de radiación resulta en un proceso de pérdida de energía para electrones relativistas.
- > En cada interacción el electrón pierde la misma energía que ganó el fotón\*,

$$\Delta(\gamma mc^2) \simeq -h\nu \left\{ \gamma^2 (1 - \beta \cos \theta) - 1 \right\}, \qquad (189)$$

conforme con (188) para  $\gamma\omega\ll 1$ , con la notación  $\gamma\rightarrow\gamma mc^2,\,\omega\rightarrow h
u$ .

▶ El electrón ve un flujo de fotones  $n_{\nu}c(1-\beta\cos\theta)$ , resultando en,

$$-\frac{dE}{dt} = \int_{-1}^{+1} h\nu \left\{ \gamma^2 (1 - \beta \cos \theta) - 1 \right\} \sigma_T n_\nu c \left( 1 - \beta \cos \theta \right) d\nu \frac{d \cos \theta}{2},$$
  
$$= \frac{4}{3} \sigma_T u_{rad} c \left( \gamma^2 - 1 \right), \tag{190}$$

con  $u_{rad} = \langle h\nu \rangle$  la densidad de energía del campo de radiación. Esta expresión es análoga a la pérdida de energía por radiación sincrotrón (144).

 Poblaciones de electrones relativistas pierden energía tanto por sincrotrón como por Compton, de acuerdo a la densidad de energía de cada campo.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

4.6. Compton

## 4.6.5. Efecto Compton - campos de radiación

- La interacción con un campo de radiación puede ser con electrones relativistas o térmicos.
- La combinación de emisión sincrotrón con Compton inverso da lugar a los escenarios SSC (Self Synchrotron Compton).

▲□▶ ▲□▶ ★ □▶ ★ □▶ = 三 の へ ()

## 4.7. Procesos fotón - electrón a altas energías

- 4.7.1. Interacciones, canales, diagramas.
- 4.7.2. El canal de Compton.
- 4.7.3. Producción de pares.
- 4.7.4. Aniquilación electrón-positrón; positronio.
- 4.7.5. Interacciones de un vértice.

## 4.7.1. Interacciones, canales, diagramas - interacciones

 La descripción de interacciones entre pares de partículas, como el efecto Compton, se basa en la conservación de energía y momento, que para,

$$1+2 \longrightarrow 3+4\,, \tag{191}$$

podemos escribir como

$$q_1 + q_2 + q_3 + q_4 = 0, \qquad (192)$$

donde  $q_j$  representa  $\pm$  el cuadrivector de energía-momento de la j-ésima partícula. (192) puede describir (191) o, intercambiando signos,

(I):  $1 + 2 \rightarrow 3 + 4$ , (II):  $1 + \bar{3} \rightarrow \bar{2} + 4$ , (III):  $1 + \bar{4} \rightarrow 3 + \bar{2}$ , (193)

donde  $\overline{j}$  representa la anti-partícula de j.

En una descripción más general, las interacciones (193), y sus inversas, representan los canales de un mismo proceso genérico.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

### 4.7.1. Interacciones, canales, diagramas - interacciones

> Así, los tres canales de interacción entre dos electrones y dos fotones son:

$$\begin{cases} (I) \quad \gamma + e^- \longrightarrow \gamma + e^- \implies \text{ efecto Compton,} \\ (II) \quad \gamma + \gamma \longrightarrow e^+ + e^- \implies \text{ producción de pares,} \\ (III) \quad e^+ + e^- \longrightarrow \gamma + \gamma \implies \text{ aniquilacion de pares.} \end{cases}$$
(194)

> La interacción entre electrones tiene los canales,

$$e^-e^- 
ightarrow e^-e^-, \quad e^+e^- 
ightarrow e^+e^-, \quad e^+e^+ 
ightarrow e^+e^+.$$

La interacción entre electrones y muones,

$$e^-\mu^- 
ightarrow e^-\mu^-, \quad e^+e^- 
ightarrow \mu^+\mu^-, \quad \mu^+\mu^- 
ightarrow e^+e^-.$$

► La descripcion física de estos procesos emplea *diagramas de Feynman*, construidos conectando secuencialmente la interacción de base, de acuerdo a algunas reglas.

4.1. Relatividad 4.2. Campos 4.3. Sistemas 4.4. Bremsstrahlung 4.5. Sincrotrón 4.6. Compton 4.7. Altas energías

### 4.7.1. Interacciones, canales, diagramas - diagrama base



Figura 24: Proceso electrodinámico básico: la absorción de un fotón (línea ondulada) por un electrón (flecha). Al rotar el diagrama se describe la creación de un par  $e^+e^-$  por un fotón, con la convención de que una flecha en reversa representa una anti-partícula; o la aniquilación de un par  $e^+e^-$  en un fotón. Los diagramas base no conservan simultáneamente energía y momento.

- La interacción mostrada en el diagrama básico representa la emisión o absorción de un fotón (línea ondulada) por un electrón (flecha de izquierda a derecha).
- El diagrama base no representa una interacción real, al no conservar energía y momento simultáneamente.
- Para un electrón con velocidad  $\vec{\beta}c$  se debería cumplir

$$-oldsymbol{
ho}_lpha oldsymbol{p}^lpha = (\gamma+\omega)^2 - (\gammaeceta+\omega\hat k)^2 = \gamma + 2\gamma\omega(1-eceta\cdot\hat k) = 1,$$

lo cual solo es posible si  $\gamma=1, \omega=\mathbf{0}$   $\Rightarrow$  no hay emisión.

### 4.7.1. Interacciones, canales, diagramas - diagramas de Feynman

- El diagrama (24) es la base de la representación de las interacciones al combinarse en distintas configuraciones.
- Aún cuando los vértices no cumplan la conservación de energía y momento, las combinaciones de diagramas sí lo hacen.
- La figura (25) muestra los diagramas correspondientes a las interacciones entre electrons y fotones. Las partículas involucradas en la interacción se encuentran en los extremos; las partículas entre vértices son "virtuales".
- Los diagramas de Feynman se emplean en el cálculo de secciones eficaces, relacionando las correspondientes a los distintos canales de una interacción genérica. Sus valores son típicamente del mismo orden (~ r<sub>e</sub><sup>2</sup>) y su cálculo se hace de manera análoga de acuerdo al formalismo de la electrodinámica cuántica.

(Griffiths; Berestetskii)

4.1. Relatividad

4.5. Sincrotrón

# 4.7.2. El canal de Compton



Figura 25: El canal de Compton incluye el efecto Compton ( $\gamma e \rightarrow \gamma e$ ), la producción de pares electrón-positrón ( $\gamma \gamma \rightarrow ee$ ) y su aniquilación ( $ee \rightarrow \gamma \gamma$ ). A la izquierda dos diagramas representan la dispersión Compton; en el centro la producción de un par por dos fotones; y a la derecha la aniquilación una partícula con su anti-partícula para producir dos fotones.

# 4.7.3. Producción de pares - cinemática

- ► La producción de un par electrón-positrón por dos fotones,  $\gamma\gamma \rightarrow e^+e^-$ , corresponde al diagrama central mostrado en la figura (25).
- Empleando unidades con  $\hbar = mc^2 = 1$ , la conservación energía-momento es

$$\left(\begin{array}{c}\omega_0+\omega_1\\\omega_0\hat{k}_0+\omega_1\hat{k}_1\end{array}\right)=\left(\begin{array}{c}\gamma_0+\gamma_1\\\gamma_0\vec{\beta}_0+\gamma_1\vec{\beta}_1\end{array}\right),$$

con invariante

$$-p_{\alpha}p^{\alpha} = 2\omega_{0}\omega_{1}(1-\hat{k}_{0}\cdot\hat{k}_{1}) = 2+2\gamma_{0}\gamma_{1}(1-\vec{\beta}_{0}\cdot\vec{\beta}_{1}).$$
(195)

- La relación (195) da lugar a la condición umbral  $\omega_0\omega_1>1$ , o,

$$\hbar\omega_0 \,\hbar\omega_1 > \left(mc^2\right)^2 \approx 0.25 \times 10^{12} \,\mathrm{eV}^2.$$
 (196)

> El proceso se pude describir en el centro de momento, con el invariante dado por,

$$-\boldsymbol{p}_{\alpha}\boldsymbol{p}^{\alpha} = -4\omega^2 = -4\gamma^2, \tag{197}$$

donde los fotones y electrones de energía  $\omega = \gamma$  se propagan direcciones opuestas.

## 4.7.3. Producción de pares - sección eficaz



Figura 26: Sección eficaz diferencial (*izquierda*) y total (*derecha*) para la producción de pares  $\gamma\gamma \rightarrow e^+e^-$ , referenciada al CM. La sección eficaz diferencial mantiene comportamiento bipolar, elongándose a medida que  $\omega$  aumenta. La sección eficaz total se muestra aquí en función de  $\beta$ , la velocidad del par en el CM.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

# 4.7.4. Aniquilación electrón-positrón - proceso, sección eficaz

La aniquilación de pares, e<sup>+</sup>e<sup>-</sup> → γγ, tiene misma relación de invariancia que la producción de pares (195). Los dos procesos están estrechamente ligrados de manera que,

$$\sigma_{ee \to \gamma\gamma} = \left(\frac{2}{\beta^2}\right) \, \sigma_{\gamma\gamma \to ee},$$

con un factor de dos debido a que electrón y positrón son distinguibles mientras que los fotones no lo son.



Figura 27: Sección eficaz para la aniquilación de pares  $e^+e^- \rightarrow \gamma\gamma$ , en términos de la velocidad  $\beta$  de los electrones en el centro de momento. La sección eficaz diverge para electrones lentos,  $\beta \rightarrow 0$ .

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 めんぐ
## 4.7.4. Aniquilación electrón-positrón - positronio

- ► La sección eficaz de aniquilación diverge a baja energía,  $\sigma \rightarrow \pi r_e^2 / \beta$  (fig. 27), favoreciendo la aniquilación de pares relativamente lentos.
- ▶ Se ha observado una línea delgada de aniquilación, a  $mc^2 \simeq 0.511 \, {\rm MeV}$ , en el centro Galáctico originalmente con *CGRO*-OSSE en los 1990s.
- La presencia de e<sup>-</sup>e<sup>+</sup> lentos propicia la formación de un sistema ligado análogo al hidrógeno, denominado positronio.
- ► Dependiendo de la configuración, el positronio decae en dos o tres fotones, dando lugar a una línea  $(e^+e^- \rightarrow \gamma\gamma)$  o un continuo  $(e^+e^- \rightarrow \gamma\gamma\gamma)$ .
- ► La detección del *continuo de positronio*, junto con la línea de aniquilación, evidencia la presencia de e<sup>+</sup>e<sup>-</sup> lentos en el centro Galáctico.

4.6. Compton

## 4.7.5. Interacciones de un vértice - en campos magnéticos

La interacciones de un vértice,

$$e^- 
ightarrow \gamma e^-, \quad \gamma 
ightarrow e^- e^+, \quad e^+ e^- 
ightarrow \gamma,$$

no conservan energía-momento, pero ocurren en presencia de campos que absorban energía o momento. Las secciones eficaces son de orden  $\alpha r_e^2$ .

- ► La emisión sincrotrón corresponde con la interacción  $e^- \rightarrow \gamma e^-$  en un campo magnético. Se escribe también como  $e^-B \rightarrow \gamma e^-B$ .
- ► Otro canal de esta interacción es la producción de pares en un campo magnético,  $\gamma B \rightarrow e^- e^+ B$ , de umbral

$$E_1\left(\alpha B^2\lambda_c^3\right)\gtrsim (mc^2)^2 \quad \Rightarrow \quad x\equiv \left(rac{E_1}{mc^2}
ight)\left(rac{B}{B_c}
ight)\gtrsim 1.$$

donde  $B_c \equiv m^2 c^3/e\hbar \simeq 4 \times 10^{13} \, {\rm Gauss}$  es el campo magnético crítico.

▶ Una interacción de tres vértices en  $B \sim B_c$  es "photon splitting",  $\gamma B \rightarrow \gamma \gamma B$ .

4.6. Compton

## 4.7.5. Interacciones de un vértice - campo electrostático

Bremsstrahlung puede representarse como

$$e^- Z \to \gamma e^- Z$$
,

con Z indicando el campo electrostático.

► La producción de pares  $e^{\pm}$  en la vecindad de un núcleo cargado,  $\gamma Z \rightarrow e^{-}e^{+}Z$ , viene dada en términos del parámetro de impacto y la carga del núcleo,

$$\frac{Ze^2}{b} \sim mc^2 \Rightarrow \sigma \sim \alpha b^2 \sim \alpha Z^2 r_e^2.$$

- El cálculo de la sección eficaz de producción de pares da

$$\sigma = \frac{28}{9} \alpha \ Z^2 r_e^2 \left\{ \ln \left( \frac{2\hbar\omega}{mc^2} \right) - \frac{109}{42} \right\} \quad \text{para} \quad \hbar\omega/mc^2 \gg 1 \,.$$

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ● ●

4.1. Relatividad

4.6. Compton

## 4.7.5. Interacciones de un vértice - cascadas electromagnéticas

- ► Un fotón de alta energía en un campo magnético, electrostático o de radiación puede producir un par, γ → e<sup>+</sup>e<sup>-</sup>. Estos a su vez pueden interaccionar con el mismo campo, e<sup>±</sup> → γe<sup>±</sup>, y producir más fotones de alta energía.
- Si los procesos tienen condiciones adecuadas para continuar, ocurre una cascada electromagnética.
- Estas cascadas ocurren en la atmósfera y pueden ser detectadas directamente con arreglos de detectores de partículas o por la radiación Cherenkov emitida por los electrones de alta energía en el aire.
- La radiación Cherenkov se produce si v > c/n, siendo *n* el índice de refracción del medio: es anisotrópica, restringida a un cono de apertura cos  $\psi \approx 1/\beta n \rightarrow 1/n$ .
- Cascadas electromagnéticas también ocurren en escenarios astrofísicos como la vecindad de hoyos negros supermasivos o de estrellas de neutrones.