In this article, a new type of microstrip via-free balanced-to-balanced diplexer suitable for narrow-band applications is presented. The structure of the balanced diplexer is based on two balanced bandpass filters designed for $f_1=1.1$ GHz and $f_2=1.8$ GHz and two transmission lines used to satisfy the open circuit conditions required in the diplexer’s design. This diplexer exhibits good common-mode rejection ratio better than 40 dB at the passbands. The attenuation is better than 35 dB at the rejection bands. The isolation between output ports is better than 50 dB. Simulated and experimental results are compared with good agreement. The diplexer is easy of fabrication and integrate with others planar balanced devices. © 2015 Wiley Periodicals, Inc. Microwave Opt Technol Lett 57:567–570, 2015; View this article online at wileyonlinelibrary.com. DOI 10.1002/mop.28902

Key words: diplexer; differential signals; common mode; balanced bandpass filter; common mode rejection ratio

1. INTRODUCTION

Differential signals have taken great importance due to the high tolerance to interferences and low levels of radiation compared to single-ended signal circuits. Also, new devices such as: amplifiers [1], antennas [2], mixers [3], and diplexers [4], are built using differential signal to reduce the common mode noise.

A balanced-to-balanced diplexer is a device with a differential input port and two differential output ports with two separate frequency bands. These devices are important in systems where the signal from a balanced device (e.g., a differential antenna) must be separated to feed two differential devices (e.g., differential amplifiers).

Several diplexers are found in the literature. Almost all of them have single-ended terminals [5,6], but these are not appropriate for balanced systems. Some differential diplexers are found in Refs. 7–10. In Ref. 7, a balanced-to-unbalanced diplexer is shown. However, it is not possible have a balanced device at the output ports.

Additionally, a diplexer with high selectivity and common-mode suppression is presented in Ref. 8. For this device there are two possible configurations in which full support for balanced devices at both ends (input and output) is possible.

A diplexer with full support for balanced devices is described in Ref. 9. This diplexer is based on directional bandpass filters. The prototype has a good noise attenuation in common-mode and it is easy of fabricate on microstrip technology but is not suitable for narrow-band applications.

Moreover, a narrow-band balanced-to-balanced diplexer without extra matching network is proposed in Ref. 10 but requiring via holes which are not suitable for two-dimensional fabrication [5]. The diplexer was designed for 2.45 and 3.6 GHz. It is based on two filters composed of two quarter wavelength resonators and source-load short-ended feedlines. The diplexer exhibits good CMRR, high selectivity but poor isolation between the output ports (only 33 dB).

In this article, a balanced-to-balanced planar microstrip via-free diplexer is presented. The frequencies used are 1.1 and 1.8 GHz and the passband filters are two balanced bandpass filters (BBPF) at the corresponding frequencies. The proposed diplexer presents good CMRR, high selectivity, compact size, good isolation between differential ports, and ease of integration with other planar technology because this can be built on the same substrate as other planar devices and vias holes are not required.

2. DIPLER DESIGN

The layout and the dimensions of the proposed diplexer for the Rogers RO4003C substrate, with relative permittivity $\varepsilon_r = 3.38$ and 0.81 mm dielectric thickness, are shown in Figure 1. The proposed diplexer requires two balanced bandpass filters (BBPF1 and BBPF2) with central frequencies of 1.1 and 1.8 GHz and two 50 Ω coupling transmission lines (Line 1 and
12. The area of the proposed diplexer is 0.

where obtained from six port S-parameters generated in the symmetrical line due to the circuit symmetry. Clearly, in differential mode operation, a virtual short circuit is obtained line to obtain a balanced diplexer as shown in Figure 1.

using the VNA connected to two ports of the diplexer (Port i and Port j) while the remaining ports are connected to 50 Ω loads, for example, when Port 1 and Port 2 are used for the measurements, four loads of 50 Ω are required in the remaining ports. The three differential and common mode S-parameters were obtained from six port S-parameters as is defined in Ref. 12. The area of the proposed diplexer is 0.44λg1×0.24λg2 where λg1 is the guided wavelength of 50 Ω line on the substrate at the center frequency of the lower passband. This is smaller than the circuit presented in Ref. 10 as the circuits occupy an area of 0.62λg1×0.62λg1 at their lower passband. Additionally, it is possible to obtain a good performance when both bands are separated by a large or small frequency spacing due to the performance depends on the individual characteristics of the filters. A good filter’s selectivity is required for small frequency spacing and a free spurious band is important for a large frequency spacing.

3. SIMULATED AND EXPERIMENTAL RESULTS

Measured S-parameters in differential and common modes were obtained using a two port vector network analyzer (VNA). To obtain the six ports S matrix it was necessary to take several sets of two ports measurements and then the complete matrix was built. The element Sij of the S-parameter matrix is obtained using the VNA connected to two ports of the diplexer (Port i and Port j), while the remaining ports are connected to 50 Ω loads, for example, when Port 1 and Port 2 are used for the measurements, four loads of 50 Ω are required in the remaining ports. The three differential and common mode S-parameters were obtained from six port S-parameters as is defined in Ref. 12. The area of the proposed diplexer is 0.44λg1×0.24λg2 where λg1 is the guided wavelength of 50 Ω line on the substrate at the central frequency of the lower passband. This is smaller than the circuit presented in Ref. 10 as the circuits occupy an area of 0.62λg1×0.62λg1 at their lower passband. Additionally, it is possible to obtain a good performance when both bands are separated by a large or small frequency spacing due to the performance depends on the individual characteristics of the filters. A good filter’s selectivity is required for small frequency spacing and a free spurious band is important for a large frequency spacing.

3.1. Differential Mode Response

In this section, the comparisons between simulations and measurements are shown. In Figure 2, simulated and measured return losses are shown. The return losses are better than 10 dB for the

Figure 1 Schematic of the proposed diplexer, G1 = 0.84 mm, G2 = 1.57 mm, G3 = 1.65 mm, G4 = 1.52 mm, G5 = 1.33 mm, G6 = 1.44 mm, L1 = 5.4mm, L2 = 2.97 mm, L3 = 8.6 mm, L4 = 9.6 mm, L5 = 4.8 mm, L6 = 6.6 mm, W1 = 0.45 mm, W2 = 1.8 mm, L2 = 1.8 mm, L3 = 1.72 mm, L4 = 10.78 mm, L5 = 11.53 mm, L6 = 1.15 mm, L7 = 6.25 mm, L8 = 6.5 mm. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com]

Figure 2 Simulated and measured differential S11.

Figure 3 Simulated and measured differential mode: (a) S21 and (b) S31.
first passband and about 20 dB for the second band. This is explained as the second filter was optimized more efficiently. In Figure 3, S21dd and S31dd are shown. In Figure 3(a), the measured central frequency in the first BBPF is 1.079 GHz and the fractional bandwidth is 11.22%. In Figure 3(b), the second BBPF has a measured central frequency of 1.843 GHz and the fractional bandwidth is 10.96%. Also, the insertion loss is close to 2.3 and 1.85 dB for the BBPF1 (S21dd) and BBPF2 (S31dd), respectively.

Also, in Figure 3, it can be seen that the insertion losses under differential mode operation are better that 40 dB up to 4.7f1 between Port 1 and Port 2 and better that 39 dB up to 2.6f2 between Port 1 and Port 3, respectively. Which is better than the ones reported in the literature. In Ref. 10, the insertion losses are better than 40 dB up to only 2.5f1 and close to only 27 dB in the rejection band between Port 1 and Port 3, we can say that the proposed diplexer exhibits better attenuation out of band than the other one in Ref. 10. Also, the isolation between Port 2 and Port 3 is shown in Figure 4. The passband isolation is better than 50 dB.

3.2. Common-Mode Rejection Ratio
The parameter used to determine the ability to suppress the common-mode noise is the CMRR, which is defined as follows [13]

$$\text{CMRR}_{1} = -20 \log \frac{|S_{11dd}|}{|S_{11cc}|} \quad (1)$$

When CMRR approaches to infinity the diplexer is near to ideal case and the common-mode suppression is high. In this case, the CMRR is better than 50 dB in the first band and better than 40 dB in the second band (Fig. 5). All characteristics are summarized in Table 1.

4. CONCLUSION
A miniaturized via-free balanced-to-balanced diplexer for 1.1 and 1.8 GHz has been presented. The structure exhibits high common mode suppression in the bands of interest (CMRR > 45 dB). The isolation between output ports is greater than 50 dB. A good attenuation in rejection bands for the differential mode is reached (> 35 dB). This diplexer exhibits a size reduction without requiring vias holes. Additionally, it is possible to obtain a good performance when both bands are separated by large or small frequency spacing. The diplexer is easy to fabricate and integrate with other planar balanced devices. Good agreement between the simulations and measurements has been achieved.

REFERENCES

<table>
<thead>
<tr>
<th>f (GHz)</th>
<th>BW (%)</th>
<th>CMRR (dB)</th>
<th>DM Isolation (dB)</th>
<th>DM Attenuation (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[10]</td>
<td>2.45, 3.6</td>
<td>6, 3</td>
<td>>40</td>
<td>>33</td>
</tr>
<tr>
<td>This</td>
<td>1, 1.8</td>
<td>11.22, 10.96</td>
<td>>45</td>
<td>>50</td>
</tr>
</tbody>
</table>
ABSTRACT: In this letter, a compact ultrawideband (UWB) antenna using Sierpinski fractal geometry is presented and its characteristics are investigated. The miniaturization and wideband phenomena are attained due to introduction of Sierpinski fractal geometry in the UWB antenna design. The proposed antenna has a compact dimension of 25 × 16 mm². It exhibits nearly omnidirectional radiation pattern, good return loss with good time domain response in terms of fidelity factor (>0.86) over the entire UWB frequency range. The presented prototype is fabricated and it demonstrates good measured characteristics with the simulated ones. © 2015 Wiley Periodicals, Inc. Microwave Opt Technol Lett 57:570–574, 2015; View this article online at wileyonlinelibrary.com. DOI 10.1002/mop.28901

Key words: ultrawideband antenna; fractal geometry; Sierpinski; fidelity factor; time-domain analysis

1. INTRODUCTION

The demand for ultrawideband (UWB) technology system is increased due to its potential applications in indoor communication. The UWB technology requires high data transmission capacity at very low power, large bandwidth, omnidirectional radiation pattern, and high gain in short range communications [1]. However, design of a compact wideband antenna which meets the above requirements is a challenging task. These problems can be resolved by applying Sierpinski fractal geometry in UWB antenna design. The application of fractal geometry in antenna design provides the desired miniaturization and wideband bandwidth because of its self-similarity and space filling properties [2–4]. The space filling properties with multiple iterations helps to increase the effective electrical path length of the antenna [4]. The fractal geometries such as hexagonal shaped [3], Sierpinski snowflake [4], Sierpinski triangle [3, 4], and some other fractal geometry [5, 6] are used to design UWB antenna. All the above fractal antennas show repetition of a small part of the geometry in a self-similar manner, which leads to improvement in antenna characteristics [4]. The discontinuities and bends in the fractal geometry change the current path, which leads to enhance the radiation characteristics [7]. Hence, in this article, we present a promising compact octagonal-shaped fractal UWB antenna using Sierpinski fractal geometry to exploit the wideband and improved radiation property of fractal geometry. The Sierpinski fractal geometry is combined with the octagonal-shaped geometry to increase the effective electrical path length in a smaller area due to its space filling properties. These modifications in the geometry excite additional resonances, which enhances the bandwidth. The optimized antenna has a compact dimension of 25 × 16 mm². To provide more insight into the behavior of the antenna, time domain analysis is also carried out. The proposed antenna is fabricated, and the experimental results are also discussed.

2. ANTENNA DESIGN

Figure 1 shows the geometry of the proposed UWB antenna on a rectangular FR4 epoxy substrate (W × L) having a dielectric constant of εr = 4.4, loss tangent tan δ = 0.023, and thickness (h) of 1.6 mm. The proposed antenna is simulated and optimized using Ansoft HFSS v.13. The rectangular substrate dimensions show wideband operability and good radiation characteristics [8]. Hence, the rectangular dimension is preferred as