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Cosmological Principle
“Th U i i h d i i l l ”“The Universe is homogeneous and isotropic on large-scales”

As can be seen by the position of extragalactic radio-sources

(From R. Bender’s notes)



Cosmological Principle
“Th U i i h d i i l l ”“The Universe is homogeneous and isotropic on large-scales”

As can be seen by Cosmic Microwave Background (CMB) radiation

(From R. Bender’s notes)
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Cosmological Principle
“Th U i i h d i i l l ”“The Universe is homogeneous and isotropic on large-scales”

As can be seen by the 2-point correlation function of galaxies, which are clustered 
in scales of few x h-1 Mpcin scales of few x h 1 Mpc.
Other LSS scales: supercluster associations ~ 100 h-1 Mpc

filaments                          ~ 100 –250 h-1 Mpc
voids ~ 60 h-1 Mpcvoids                                 60 h Mpc

There is a characteristic scale  300 h-1 Mpc  l  cH0
-1 averaged over which the 

Universe can be considered homogeneous. g



Cosmological Principle
“Th U i i h d i i l l ”“The Universe is homogeneous and isotropic on large-scales”

But there are a few large-scale structures in the Universe that are posed as potential 
problems of anisotripies at ≥ 500 Mpc (comoving scale): e g Huge Large Quasarproblems of anisotripies at ≥ 500 Mpc (comoving scale): e.g. Huge – Large Quasar 
Group at 1.17 < z <1.42,  composed of 73 QSOs in 
a 1240 x 640 x 370 Mpc structure (Clowes et al. 2013, 
MNRAS) However detailed 3D calculations out ofMNRAS).  However, detailed 3D  calculations out of 
sphericity are difficult to carry out  nowadays  to assess 
compatibility within a Gaussian primordial field  
fluctuation analysis  (Sheth + Diaferio 2011 MNRAS)y ( )



The original Hubble diagram

Hubble (1929) in Proceedings of the National Academy of Sciences,
Lemaître had done a previous (1927) estimation of H0 based  on Hubble´s data



The original Hubble diagram

Hubble & Humason (1931) Astrophysical Journal



The value of H0:
H0=72±8 km/s/Mpc (Freedman et al. 2001, ApJ)



The origin of the Hubble “constant”
C b d d d f di h iCan be deduced from an expanding homogeneous universe.

Let’s imagine a 1D Universe, on an expanding circle:
d(t) is the proper distance between two points P P R(t)

P1
d(t) is the proper distance between two points P1P2 
R(t) is the scale factor or growth
 is a comoving coordinate, that defines the distance 
between P1P2 (comoving with the expanding universe)
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The Friedmann-Lemaître-Robertson-Walker metric (1922-1936)
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where (r,,) are spherical comoving coordinates, R is the scale factor, and k is a 
constant related to the curvature. 

It can be deduced purely from symmetry alone for a homogeneous universe
For a 2D universe on the surface of a sphere the proper distance P PFor a 2D universe on the surface of a sphere, the proper distance P1P2

where K=1/R2 is the curvature at t
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For space-time, introducing a time-independent 
t K k/R2 d th i di tcurvature Kk/R2, and the comoving coordinate

r, such that b=Rr, the geodesic is given by
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(following Carroll & Ostlie’s “Modern Astrophysics”, Addison-Wesley)

(ds)2  (cdt)2  (dl)2  (cdt)2  R2 dr
1 kr2
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The cosmological origin of redshift
(  )/z(rep)/rep

It can be deduced from the FLRW metric

Light travels along null geodesics ds=0 If we follow the path of light from r toLight travels along null geodesics ds=0. If we follow the path of light from r1 to 
r=0, the null geodesic follows constant (,), and d=d=0.
Hence, the RW metric  cdt

R
 

dr
1 kr2

Two consecutive crests leave at t1 and t1+∆t1 and are received at t0 and t0+∆t0





The cosmological origin of redshift
(  )/z(rep)/rep

It can be deduced from the FLRW metric

Light travels along null geodesics ds=0 If we follow the path of light from r toLight travels along null geodesics ds=0. If we follow the path of light from r1 to 
r=0, the null geodesic follows constant (,), and d=d=0.
Hence, the RW metric  cdt

R
 

dr
1 kr2 1 z  0

1


R(t0)
R(t1)

 R (1 z)1

It is not a Doppler effect, but rather a property of the expanding non-Euclidean 
space-time.

The wavelength of light shifts to the red R(t)
The energy carried by the wave decreases as the Universe expands E=hc/1/R(t)

In general, every single quantity has to be converted

You might find z~1 interpreted as recession velocity, using the relativistic Doppler 
effect form la:effect formula:

1 z  1 v /c
1 v /c



Friedmann’s Equation (1922)
8 G

Although it was deduced from Einstein’s field equations, it can also be deduced 
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from Newtonian gravity.
Consider a sphere about some arbitrary point, such that the radius is R(t).

h ihomogeneity =0
Isotropy 

From Newton’s equation of motion
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matter, radiation and vacuum energy 
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(following M. Plionis’ notes or Peacock 1999)

33  y
due to matter and radiation



Friedmann’s Acceleration Equation (1922)
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8 G
Deriving 

Conservation of energy d(c 2R3)  pd(R3)
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(following M. Plionis’ notes or Peacock 1999)



Friedmann’s Equation (1922)

(from R. Bender’s notes)



Friedmann’s Equation (1922)

(from R. Bender’s notes)



Friedmann’s Equation (1922)

(from R. Bender’s notes)



Cosmological Parameters 1

088 2222
2

22 



 


 RGHkcRcRGR 

For a flat Universe k=0 with no cosmological parameter =0
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8G
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where hH0/100 km/s/Mpc. The critical density is the density necessary to have a 
flat Universe. 

The density of the Universe is often expressed as the density parameter
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
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(following M. Plionis’ notes or Peacock 1999)



Einstein-de Sitter Universe (1932)

  0R
3

RR
Rt2/3

(R. Benders’ notes)



Equations of state
3(1 )

In general p=w<v2>

 R3(1w )

For a matter dominated universe:  R-3 , p=0, w=0 (dust approximation)

For a radiation dominated universe (photons have the E reduced by R-1):               
R-4 p=1/3 c2 w=1/3R 4, p=1/3 c2, w=1/3

For a vacuum dominated universe =constant, w=–1

Friedmann’s Equation rewritten: parameters 2Friedmann s Equation rewritten: parameters 2 
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(following M. Plionis’ notes or Peacock 1999)

 where  
c
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2 ,  k 
kc
Ro

2Ho
2 H(z)  H0E(z)

 and  k m r 1



Cosmological Parameters 3
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From a Taylor’s expansionFrom a Taylor s expansion
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For a matter dominated =0 universe the deceleration constant is another classical 
cosmological parameter.
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(following M. Plionis’ notes or Peacock 1999)



The age of the Universe

R (1 z)1 

H(z)  H0E(z)

 dt  1
H0

dz
E(z)(1 z)

(following M. Plionis’ notes)



The age of the Universe

tH1/H0 Hubble time =

3.091017 h-1 s =        
9.80109 h-1 yr 

dtL  tH
dz

(1 z)E(z)

(Hogg 1999, astro-ph/9905116)


