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Cosmological Principle

“The Universe 1s homogeneous and isotropic on large-scales”

As can be seen by the position of extragalactic radio-sources

Angular distribution of the
~ 31 000 brightest 6cm
radio sources in the sky

(Peebles 1993)

(From R. Bender’s notes)



Cosmological Principle

“The Universe 1s homogeneous and isotropic on large-scales”

As can be seen by Cosmic Microwave Background (CMB) radiation

Temperature fluctuations in the Cosmic Microwave Background as measured by the
COBE satellite. The amplitude of the fluctuations is only AT /T ~ 10~" and reflects
density inhomogeneities in the baryons of the same order about 370000 years after
the big bang.

(From R. Bender’s notes)



Cosmological Principle

“The Universe 1s homogeneous and isotropic on large-scales”

As can be seen by the 2-point correlation function of galaxies, which are clustered
in scales of few x h-! Mpc.

Other LSS scales: supercluster associations ~ 100 h-! Mpc
filaments

~ 100 -250 h-! Mpc
voids ~ 60 h'! Mpc

‘04

There is a characteristic scale 300 4/ Mpc << cH, ! averaged over which the
Universe can be considered homogeneous.

2dF Galaxy Redshift Survey
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Cosmological Principle

“The Universe 1s homogeneous and isotropic on large-scales”

But there are a few large-scale structures in the Universe that are posed as potential
problems of anisotripies at > 500 Mpc (comoving scale): e.g. Huge — Large Quasar
Group at 1.17 <z <1.42, composed of 73 QSOs in

a 1240 x 640 x 370 Mpc structure (Clowes et al. 2013, ‘L_‘i?j:r/x
MNRAS). However, detailed 3D calculations out of .- D
sphericity are difficult to carry out nowadays to assess
compatibility within a Gaussian primordial field
fluctuation analysis (Sheth + Diaferio 2011 MNRAS)
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The original Hubble diagram
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Hubble (1929) in Proceedings of the National Academy of Sciences,
Lemaitre had done a previous (1927) estimation of H, based on Hubble’s data



The original Hubble diagram
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FiG. 5—The velocity-distance relation, The circles reprezent mean values for clus-
ters or groups of nebulae. The dots near the origin represent individual nebulae, which,
together with the groups indicated by the bowest two crcles, were used in the first
formulation of the velocity-distance relation.

Hubble & Humason (1931) Astrophysical Journal



The value of H:
H,=72+8 km/s/Mpc (Freedman et al. 2001, ApJ)
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The origin of the Hubble “constant”

Can be deduced from an expanding homogeneous universe.

Let’s imagine a 1D Universe, on an expanding circle: P,
d(t) 1s the proper distance between two points P, P, d(t)
R(?) is the scale factor or growth

)‘ P,

¥ 1s a comoving coordinate, that defines the distance
between PP, (comoving with the expanding universe
112 g p g
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v=Hd in generalv = Hd




The Friedmann-Lemaitre-Robertson-Walker metric (1922-1936)

dr’

1—kr

2

ds* =c’dt’ —R{

+7r°(d@ +sin’ 0d¢2)J|

where (7, 6, ¢) are spherical comoving coordinates, R is the scale factor, and k1s a
constant related to the curvature.
It can be deduced purely from symmetry alone for a homogeneous universe
For a 2D universe on the surface of a sphere, the proper distance PP,
db where K=1/R?is the curvature at ¢

(dl)’ = (RdO)’ + (bd@)’ = [mj +(bd @)’

For a 3D universe

@iy =| =L | +(ba6y +bsinaigy S

For space-time, introducing a time-independent

curvature K=4/R?, and the comoving coordinate
r, such that b=Rr, the geodesic 1s given by

(dS)2 - (Cdt)z o (dl)z = (Cdt)z - Rz\‘[\/%j + (rd6’)2 + (rSil’l (9d¢)2‘ ___I_____,___‘_.-/--':""J-/-

(following Carroll & Ostlie’s “Modern Astrophysics”, Addison-Wesley)



The cosmological origin of redshift
Z=(A=Ao))/ A

rep

It can be deduced from the FLRW metric

Light travels along null geodesics ds=0. If we follow the path of light from r, to

r=0, the null geodesic follows constant (6 @), and dG=dp=0.
Hence, the RW metric = cdt _~ dr
R A1-k?

Two consecutive crests leave at 7, and 7;,+A¢, and are received at #,and #,+Az,




J:D R(t f m f m (4)

A successive crest, leaving £; at t; + & will arrive at v = 0 at ty + dfy, but since we have constant

radial coordinates:
f‘“”’ﬂ edt f‘l r mfa‘ B /"ﬂ”’ﬂ edt 5)
f14-61y R“:‘ 1] ‘-.-”{1—15-?1'“ iy fy-diy R{t}

and rearranging the limits of integration:

iy ity bo+dtn
/ ]Jl—Hﬂl -/I"L-l‘-l'ﬁfi f.f::.

iy 4diy cdt bo4-dig ot
./r-l R(t) frﬂ Li(t)

Now if §t < t we can consider R(t) constant over the integration time and therefore 8ty /R(t;) =
dtg/R(ty) and since oty 5 is the time between successive wave crests of the emitted (detected) light, it
1s also the wavelength of the emitted (detected) light:

=

we get that:

A _ R(t)
X B

and the C'osmological redshift, z is defined as the ratio of the detected wavelength to that emitted:

Ao Ritg)
1+3_A_I_R(n} (6)




The cosmological origin of redshift

z E()” _ﬂ’rep) /. ﬂ’rep
It can be deduced from the FLRW metric

Light travels along null geodesics ds=0. If we follow the path of light from r, to
r=0, the null geodesic follows constant (6 @), and dG=dp=0.

Hence, the RW metric = ¥ _. d”z = 1rz=f R gy
R 1-kr A R@)

It 1s not a Doppler effect, but rather a property of the expanding non-Euclidean
space-time.

The wavelength of light shifts to the red AocR(7)
The energy carried by the wave decreases as the Universe expands E=hc/Aocl/R(1)

In general, every single quantity has to be converted

You might find z>~1 interpreted as recession velocity, using the relativistic Doppler

effect formula:
1+v/c

l+z=
1-v/c



Friedmann’s Equation (1922)
87zG
3

R?> - R? = —kc?

Although it was deduced from Einstein’s field equations, it can also be deduced
from Newtonian gravity.
Consider a sphere about some arbitrary point, such that the radius is R(%).

homogeneity = Vp=0
Isotropy = Vwv=3H= 3E

From Newton’s equation of motion

R=-GM/R>= RR=-GMR/R’ :%sz —G—M} =0=
1 hd 2 4 2 2 87ZG 2 2 . .
—R —gﬂG,OR =C=R e PR” =—kc” where p has contributions from

2 .y
matter, radiation and vacuum energy

8nG
3 3 P 3 - where p has only contributions

due to matter and radiation

RZ

(following M. Plionis’ notes or Peacock 1999)



Friedmann’s Acceleration Equation (1922)

R.:—?R(ph%p/cz)

Deriving R* ————= pR* = k¢’
— R:—?R(pﬁip/cz)

Conservation of energy d(pc’R’)=—pd(R’)

A7G Ac?

R=—""2R(p+3p/c*)+ where p has only contributions
3 3

due to matter and radiation

(following M. Plionis’ notes or Peacock 1999)



Friedmann’s Equation (1922)

General Relativity

The basic equations of General Relativity are Einstein’s Field Equations:

| 1
Rg_,‘ — Egg_jﬂ = B’FTGTE_,‘ + E"Lgf_;i {131}

R;;: Riccitensor (Ri; = Rij(g:j)) < space-time curvature

g;;: metric tensor « space-time distances ds* = g;;dz'dz’
R: Ricciscalar (R = g"*R;;.) «— space-time curvature

(: gravitational constant

T;:: energy—momentum tensor <« mass, energy, ...

A:  cosmological constant

The Field Equations connect the energy (and thus mass) distribution in space to its
geometrical properties (curvature).

For details see e.g. Weinberg, Gravitation and Cosmology, J. Wiley 1972, or Misner,
Thorne, & Wheeler, Gravitation, Freeman 1970.

(from R. Bender’s notes)



Friedmann’s Equation (1922)
13.3 The Friedmann Equations

The geometry of a homogeneous and isotropic universe is described by the g;; of the
Robertson—Walker metric (13.2). In order to obtain a solution for the dynamics of the
universe, the Ricci tensor needs to be calculated from the g¢;; and the field equations
have to be solved for an energy momentum tensor reflecting a homogeneous distribu-
tion of mass. For a perfect homogeneous fluid T;; takes the simple form:

o2 0 0 0
1 0D —p 0 0
c? 0 0—p O
0 0 0 —p

I;; =

with the density ¢ and the pressure p.

(from R. Bender’s notes)



Friedmann’s Equation (1922)

Inserting g:;, I;; and T;; in the field equations (13.1) yields the two Friedmann equa-
tions:

B - ECR (g + 33) gy s (13.5)
._ 3 o . B
(.. 8Go_., 1. . ¢ |
\R? = = R=a. oKaps = 13.6
| 3 L 3 R, ( )

These equations govern the dynamical evolution of the universe (i.e. the time evolu-
tion of the scale factor R(t)). The Friedmann equations connect this evolution to the
intrinsic properties (density o, pressure p, cosmological constant A, curvature radius
R.; today) of the universe.

(from R. Bender’s notes)



Cosmological Parameters 1

For a flat Universe k=0 with no cosmological parameter A=0

827G ., Ac’
_O R

3 £ 3
_3]{O2

R2

R’ =k’ = (H2 —%ijz =0

P. =1.88x10 A% gcm™

where h=H,/100 km/s/Mpc. The critical density 1s the density necessary to have a
flat Universe.

The density of the Universe is often expressed as the density parameter

0=+
p.

(following M. Plionis’ notes or Peacock 1999)



Einstein-de Sitter Universe (1932)

This is a universe with (2., = 1, Q04 = 0, i.e. the universe is Euclidean:
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B =

which can be integrated and yields:

: 81Gay\
RV?dR = ( ”3 9") dt p=pR”

Using the definition of (2,, (13.8) and considering that we assumed (2, = 1, we have
H} = (87Ggy)/3 and thus:

2

3 2/3
R = (—Hut) (p=0,A=0,0,=1)

= R OCt2/3
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(R. Benders’ notes)




Equations of state
pOCR_3(1+W)

In general p=w<v’>p
For a matter dominated universe: pocR~, p=0, w=0 (dust approximation)

For a radiation dominated universe (photons have the E reduced by R):
pocR4, p=1/3 pc?, w=1/3

For a vacuum dominated universe p=constant, w=—1

Friedmann’s Equation rewritten: parameters 2

R’ —% PR* = —kc” = (Hz —% ij2 = —kc’
2 |
R’ —%pﬁ —A;' R =k = %:HO[Qm(Hzf +Q (1+2)+Q,(1+2)7 +Q,]”
Ac® —kc?
where QA 53702, kam H(Z):HOE(Z)l

and Q,+0, +Q, +Q, =1 (following M. Plionis’ notes or Peacock 1999)



Cosmological Parameters 3

B

R2

From a Taylor’s expansion

R(t)=R, +R0(t—t0)+%ié0(t—to)2 +...
R(O)/R, =1+ H,(t - to)—%HOz(t— () + ...

For a matter dominated A=0 universe the deceleration constant 1s another classical
cosmological parameter.

R':—?R(dep/cz):qo =Q /2

(following M. Plionis’ notes or Peacock 1999)



The age of the Universe

Using H(z) = H,E(z) at the present epoch, we have R/R, = HoE(z)/(1 + z) and from

Roc(1+2)"' =  dR/R, = —dz/(1+2)? — dt = —1 dz (25)

H, E(z)(1+2)

we obtain the age of the Universe:

s ~H, f +sz (26)

For example, in an Einstein-de Sitter universe (24 = {1, = 0) we have:

2
27
ju] SHC [j }
while for a 24 > 0 model we obtain:
N 25
A — sinh ! . 28
¢ 3H{:- LY ﬁ;’t ﬂ-m] r: }

We therefore see that if 24 > 0 we have that the age of the Universe is larger than what is predicted
in an Einstein-de Sitter Universe.

(following M. Plionis’ notes)
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Figure 6 The dimenstonless lookback time £ /8y snd age £/8:. Curves cross at the redshift
at which the Universe is half its present age. The three curves are for the thoee world models,
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(Hogg 1999, astro-ph/9905116)



