Friedmann’s Equation (1922)
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Although 1t was deduced from Einstein’s field equations, it can also be deduced

from Newtonian gravity.

Consider a sphere about some arbitrary point, such that the radius 1s R(?).

homogeneity = Vp=0
Isotropy = Vv =3H-= 3E

From Newton’s equation of motion
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matter, radiation and vacuum energy

where p has only contributions
due to matter and radiation

(following M. Plionis’ notes or Peacock 1999)



Friedmann’s Acceleration Equation (1922)

R= ‘?R(f” 3p/c?)

Deriving R® - 86 R> = —kc’ ) 472G
3 = R=-—"R(p+ 3plc?)

Conservation of energy d(pc’R’) = -pd(R’)

_4nG R(p+3plc?)+ Ac” where p has only contributions
due to matter and radiation

R =

(following M. Plionis’ notes or Peacock 1999)



Friedmann’s Equation (1922)

General Relativity

The basic equations of General Relativity are Einstein’s Field Equations:
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Ricci tensor (1;; = R:;(g:;)) < space-time curvature

metric tensor — space-time distances ds* = g;,dz'dz’
Ricci scalar (R = g'"*R;;.) — space-time curvature

gravitational constant

energy-—momentum tensor <« mass, energy, ...

cosmological constant

The Field Equations connect the energy (and thus mass) distribution in space to its
geometrical properties (curvature).

For details see e.g. Weinberg, Gravitation and Cosmology, J. Wiley 1972, or Misner,
Thorne, & Wheeler, Gravitation, Freeman 1970.

(from R. Bender’s notes)



Friedmann’s Equation (1922)
13.3 The Friedmann Equations

The geometry of a homogeneous and isotropic universe is described by the g;; of the
Robertson—Walker metric (13.2). In order to obtain a solution for the dynamics of the
universe, the Ricci tensor needs to be calculated from the g;; and the field equations
have to be solved for an energy momentum tensor reflecting a homogeneous distribu-
tion of mass. For a perfect homogeneous fluid T}; takes the simple form:

occ 0 0 O

| =l 0O —p 0 O
L c* 0 0-p O
0 0 0 —p

with the density ¢ and the pressure p.

(from R. Bender’s notes)



Friedmann’s Equation (1922)

Inserting g:;, £2;; and T}, in the field equations (13.1) yields the two Friedmann equa-
tions:
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These equations govern the dynamical evolution of the universe (i.e. the time evolu-
tion of the scale factor R(¢)). The Friedmann equations connect this evolution to the
intrinsic properties (density o, pressure p, cosmological constant A, curvature radius
R., today) of the universe.

(from R. Bender’s notes)



Cosmological Parameters 1

For a flat Universe £=0 with no cosmological parameter A=0

o2 876G 87G o _ Ac® e :>(H2 8nG p)R2 _0
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o, = Z;IOG =1.88x10™°h* gcm™

where 7=H /100 km/s/Mpc. The critical density is the density necessary to have a
flat Universe.

The density of the Universe 1s often expressed as the density parameter

a_ P
P.

(following M. Plionis’ notes or Peacock 1999)



Einstein-de Sitter Universe (1932)

This is a universe with €2, = 1, Q24 = 0, i.e. the universe is Euclidean:
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which can be integrated and yields:

p= poR_3

1/2
RV dR — (87’?3"-) dt
Using the definition of 2, (13.8) and considering that we assumed (2, = 1, we have
HE = (87Ggy)/3 and thus:
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(R. Benders’ notes)




Equations of state

p o R—3(l+w)

In general p=w<v*>p
For a matter dominated universe: p«R~, p=0, w=0 (dust approximation)

For a radiation dominated universe (photons have the E reduced by R-/):
pxR* p=1/3 pc?, w=1/3

For a vacuum dominated universe p=constant, w=—1

Friedmann’s Equation rewritten: parameters 2

R? _EthTG,oR2 = —kc? = (H2 —SETG/O)RZ =—kc*/R*
, .
BT oR - B R ke = = H[0,(+ 9 2,040 + Q1+ 9740, ]
Ac’ —kc®
where Q 53702, Q, Eﬁ H(z)=H,E(z)

and Q, +Q, +Q +Q, =1 (following M. Plionis’ notes or Peacock 1999)



Cosmological Parameters 3

_ RR
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From a Tavlor’s expansion
y

R(t)=R,+ R, (t—1,)+ %Ro(t —1,) +...
R()/R, =1+ H,(t-1,) —%OHOZ(t — 1)+ ...

For a matter dominated A=0 universe the deceleration constant is another classical

cosmological parameter.

R= —4%GR(p+ 3plc’)=q,=Q, /2

(following M. Plionis’ notes or Peacock 1999)



The age of the Universe

Using H(z) = H E(z) at the present epoch, we have R/R. = HyE(2)/(1 + z) and from
-1 dz

Rx(l+2)'=  dR/R,= —dz/(1+2)? — df = (25)
H, E(z)(1+7)
we obtain the age of the Universe:
1 / = dz

o = (26)
H, J, (1+ 2)E(2) '

For example, in an FEinstein-de Sitter universe ({2, = 1, = 0) we have:
2 A
= 27
3H, (27)

while for a Q24 > 0 model we obtain:

. (
f;,}:i y sinh=l [ i (28)
S B oS V

We therefore see that if Q4 > 0 we have that the age of the Universe is larger than what is predicted
in an Einstein-de Sitter Universe.

(following M. Plionis’ notes)



The age of the Universe
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Figure 6: The dimenstonless lookback time £ /¢y and age ¢/ts. Curves cross at the redshift
e} / -

at which the Universe is half its present age. The three curves are for the three world models,
(23, 824) = (1,0), solid; {0.05, 0}, dotted; and (0.2, 0.8}, dashed.

(Hogg 1999, astro-ph/9905116)



