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ABSTRACT

We present new observations from Z-Spec, a broadband 185–305 GHz spectrometer, of five submillimeter bright
lensed sources selected from the Herschel-Astrophysical Terahertz Large Area Survey science demonstration phase
catalog. We construct a redshift-finding algorithm using combinations of the signal to noise of all the lines falling
in the Z-Spec bandpass to determine redshifts with high confidence, even in cases where the signal to noise in
individual lines is low. We measure the dust continuum in all sources and secure CO redshifts for four out of five
(z ∼ 1.5–3). In one source, SDP.17, we tentatively identify two independent redshifts and a water line, confirmed at
z = 2.308. Our sources have properties characteristic of dusty starburst galaxies, with magnification-corrected star
formation rates of 102−3 M� yr−1. Lower limits for the dust masses (∼ a few 108 M�) and spatial extents (∼1 kpc
equivalent radius) are derived from the continuum spectral energy distributions, corresponding to dust temperatures
between 54 and 69 K. In the local thermodynamic equilibrium (LTE) approximation, we derive relatively low CO
excitation temperatures (�100 K) and optical depths (τ � 1). Performing a non-LTE excitation analysis using
RADEX, we find that the CO lines measured by Z-Spec (from J = 4 → 3 to 10 → 9, depending on the galaxy)
localize the best solutions to either a high-temperature/low-density region or a low/temperature/high-density
region near the LTE solution, with the optical depth varying accordingly. Observations of additional CO lines,
CO(1–0) in particular, are needed to constrain the non-LTE models.

Key words: galaxies: distances and redshifts – galaxies: high-redshift – galaxies: ISM– line: identification –
submillimeter: galaxies
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1. INTRODUCTION

Galaxies detected by their thermal dust emission at
submillimeter (submm) and millimeter (mm) wavelengths (λ ≈
250–2000 μm) comprise an important population of massive
systems in the early universe that are thought to be undergo-
ing a phase of intense star formation in their evolution (Blain
et al. 2002). Dust grains within star-forming regions in these
galaxies are heated by incident optical and ultraviolet (UV) ra-
diation from young stars and thermally re-radiate this energy at
far-infrared (far-IR) to mm wavelengths, with the peak of dust
emission occurring at ∼60–200 μm in the rest frame (e.g., Dale
& Helou 2002; Hwang et al. 2010). It is estimated that about half
of all star formation in the universe is heavily obscured by dust
and therefore difficult to identify in even the deepest surveys at
optical/ultraviolet wavelengths (Puget et al. 1996).

Observations at submm/mm wavelengths sample the
Rayleigh–Jeans tail of the thermal dust spectrum, which rises
steeply with frequency ∼ν3.5 (Dunne et al. 2000). For observa-
tions at λ > 500 μm, the climb up along this steep spectrum
with increasing redshift roughly cancels the effect of cosmolog-
ical dimming with increasing distance (e.g., Blain et al. 2002),
meaning that galaxies with a fixed luminosity will have roughly
the same observed flux density at submm/mm wavelengths
for redshifts between 1 < z < 10. This allows a distance-
independent study of dust-obscured star formation and galaxy
evolution spanning the epoch of peak star formation activity in
the universe (z ∼ 2–3; e.g., Hopkins 2004).

Although attempts to predict the sources responsible for
the cosmic far-infrared background (CFIRB) have been made
long before its detection by Puget et al. (1996) (e.g., Partridge
& Peebles 1967; Low & Tucker 1968), the population of
high redshift and heavily dust-obscured galaxies (submillimeter
galaxies, SMGs) was first revealed a decade ago (Smail et al.
1997; Barger et al. 1998; Hughes et al. 1998) and is now
considered to produce most of the observed CFIRB (e.g., Devlin
et al. 2009). Several wide-area surveys at 850 μm–1.2 mm have
been carried out since then (e.g., Weiß et al. 2009b; Austermann
et al. 2010; Coppin et al. 2006; Bertoldi et al. 2007; Scott et al.
2008), mapping a total of ∼4 deg2 of sky. More recently, much
larger area surveys have been undertaken with the South Pole
Telescope (Vieira et al. 2010) at λ = 1.4–2 mm, the Balloon-
borne Large Aperture Submillimeter Telescope (Pascale et al.
2008; Devlin et al. 2009) at λ = 250–500 μm, and the Herschel
Space Observatory (Pilbratt et al. 2010) at λ = 55–670 μm.
Mapping a total area of ∼200 deg2 to date (Pascale et al. 2008;
Devlin et al. 2009; Vieira et al. 2010; Eales et al. 2010), these
surveys have uncovered a population of rare, and unusually
bright, distant galaxies. Their inferred IR luminosities and high
redshifts are consistent with a significant fraction of these
extremely bright submm/mm galaxies being gravitationally
lensed (Negrello et al. 2007), but proof requires extensive multi-
wavelength follow-up campaigns. Their observed flux densities
can be magnified by factors >10 due to lensing by intervening
foreground galaxies or clusters, as observed in similarly bright
systems (e.g., Swinbank et al. 2010; Solomon & Vanden Bout
2005). By targeting lensed objects, we can study the properties
of typical star-forming galaxies in the early universe that
would otherwise be inaccessible due to sensitivity limitations
and source confusion. The ongoing Herschel-Astrophysical
Terahertz Large Area Survey (H-ATLAS; Eales et al. 2010)
in the science demonstration phase (SDP) has already covered
14.4 deg2 out of the ∼550 deg2 planned, resulting in ∼6600

sources (Clements et al. 2010; Rigby et al. 2011) with fluxes
measured at 250, 350, and 500 μm using the Spectral and
Photometric Imaging Receiver (SPIRE; Griffin et al. 2010;
Pascale et al. 2011), and fluxes at 100 and 160 μm obtained
with the Photodetector Array Camera and Spectrometer (PACS;
Poglitsch et al. 2010; Ibar et al. 2010). Given the large areal
coverage, H-ATLAS can detect the brightest (i.e., rarest) distant
submm galaxies and is the first example where the efficient
selection of lensed galaxies at submm wavelengths has been
demonstrated (Negrello et al. 2010).

To understand the nature of these galaxies, in particular
whether they represent a previously undiscovered population
of intrinsically bright sources (e.g., Devriendt et al. 2010)
or are relatively normal starburst galaxies lensed by fore-
ground structures (e.g., Negrello et al. 2007), requires both
complementary data at other wavelengths and measurements
of their redshifts. However, measuring spectroscopic redshifts
for these sources is challenging: their positional accuracy from
submm/mm imaging is often poor due to diffraction limita-
tions at these long wavelengths, and they tend to be highly
extincted by dust, making spectroscopic measurements from
optical ground-based telescopes difficult (e.g., Chapman et al.
2005). The positional uncertainty can be overcome by finding
optical/infrared counterparts or by deep interferometric obser-
vations at radio and mm wavelengths (e.g., Dannerbauer et al.
2002). This not only requires large observing campaigns, but
can also introduce selection effects in determining the prop-
erties of the SMG population. In particular, the combination
of preselection criteria can affect the derived redshift distribu-
tion (e.g., Chapman et al. 2005; Lindner et al. 2011; Younger
et al. 2009, 2007), and the need for optical spectroscopy biases
against lensed systems for which the optical redshift will corre-
spond to the foreground galaxy. Photometric redshifts obtained
using submm bands are very useful for estimating the high-
redshift nature of the submm sources, but suffer from errors due
to the degeneracy between the dust temperature and the redshift,
which limit their precision to Δz ≈ 0.3 (Aretxaga et al. 2007;
Hughes et al. 2002). When the photometric redshift estimates in-
volve spectral energy distribution (SED) template fitting, errors
can also arise from our limited knowledge of the intrinsic SMG
SED from FIR to radio, and its evolution with redshift. Direct
spectroscopic redshift determination at submm wavelengths al-
lows us to avoid such problems and study SMGs over a wide
range of redshifts. Combined with multi-wavelength data, train-
ing sets of spectroscopic redshifts may also prove useful for
reducing these errors for application to the large photometric
data sets from ongoing and future surveys.

SMGs contain large reservoirs of molecular gas (1010−11 M�;
Tacconi et al. 2008), whose cooling is dominated by the rota-
tional lines of CO, almost equally spaced by ∼115 GHz in the
rest frame. Thus, the CO line detections at wavelengths between
1 cm and 1 mm (30–300 GHz) offer the most direct measure-
ment of their redshifts. However, with the exception of only
three other CO redshifts (Daddi et al. 2009; Weiß et al. 2009a;
Swinbank et al. 2010), prior to the Herschel surveys the CO
detections have largely been limited to SMGs whose redshifts
were already known from optical spectroscopy (e.g., Frayer et al.
1998), as a consequence of the small instantaneous bandwidth of
typical mm-wavelength receivers. This picture is rapidly chang-
ing with the advent of a new generation of instruments, such as
Z-Spec (Naylor et al. 2003), Zpectrometer (Harris et al. 2007),
and the new receivers used on interferometers such as the IRAM
Plateau de Bure Interferometer (IRAM/PdBI), the Combined
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Table 1
Summary of the Z-Spec Observations on the H-ATLAS Sources

IAU Name H-ATLAS Dates τ225GHz Integration rms Uncertaintya

SDP ID Observed (zenith) Time (hr) (mJy)

H-ATLAS J090740.0−004200 SDP.9 Apr 27–May 14 0.05–0.21 10.6 4.0
H-ATLAS J091043.1−000322 SDP.11 Apr 28–May 4 0.05–0.18 6.8 5.5
H-ATLAS J090302.9−014128 SDP.17 Mar 28–Apr 1 0.04–0.08 18.2 2.9
H-ATLAS J090311.6+003905 SDP.81 Mar 7–Mar 12 0.02–0.05 22.5 2.3
H-ATLAS J091304.9−005344 SDP.130 Mar 21–Mar 22 0.04–0.08 8.6 4.4

Notes. The columns list: (1) the IAU source identification; (2) the ID of the source in the SDP H-ATLAS catalog; (3) the range of dates for the
observations; (4) the range in τ225GHz over all observations of the source; (5) the total integration time on the source (including the time spent in the
off-source position during the nod cycle, but excluding all other overheads); and (6) the median rms uncertainty on the measured flux density.
a Varies with frequency. The channel width is frequency-dependent, with a mean of 950 km s−1.

Array for Research in Millimeter-wave Astronomy (CARMA),
and the Atacama Large Millimeter Array. Z-Spec overcomes the
mentioned limitations due to its large bandwidth, covering the
entire 1–1.5 mm atmospheric window, which allows simultane-
ous observations of multiple CO lines for galaxies at redshifts
z > 0.5. Although the potential of using the CO ladder for
redshift determination is well known (e.g., Combes et al. 1999;
Sanders et al. 1986), due to sensitivity limitations of current in-
struments, only large-area submm surveys can provide a signif-
icant number of sources bright enough for such measurements.

These spectra can be used not only for an efficient redshift
determination, but also to constrain the physical properties of the
gas and dust (e.g., mass, density, temperature) in these galaxies
(e.g., Bradford et al. 2009), by measuring the CO line strengths
and the continuum slope. The analysis of the CO properties
requires measurements of multiple CO lines, often involving
the use of multiple instruments. To date, several spectral line
energy distributions (SLEDs) for the CO molecule have been
constructed for small mixed samples of galaxies and quasars
(Papadopoulos et al. 2010; Wang et al. 2010; Bayet et al. 2009),
or individual objects. Relatively well-sampled CO SLEDs have
been constructed from the ground for some bright quasars (Weiß
et al. 2007a; Bradford et al. 2009), while complete CO SLEDs
have been measured by the Herschel Space Observatory in low-
redshift galaxies (Panuzzo et al. 2010; van der Werf et al. 2010).
Most SMGs have been observed in only one or two CO lines
(see, e.g., Harris et al. 2010; Ivison et al. 2011; Tacconi et al.
2008; Greve et al. 2005; Solomon & Vanden Bout 2005), and
their physical properties remain largely unknown. This situation
has improved in recent years, with observations of multiple
CO lines in individual SMGs (Ao et al. 2008; Carilli et al.
2010; Lestrade et al. 2010; Riechers et al. 2010; Danielson
et al. 2011; Scott et al. 2011). The best-sampled CO SLEDs
show that multiple CO components are required to explain
the full line luminosity distribution, where most of the mid-J
CO emission can generally be fit by a warm component, with
kinetic temperatures of 40–60 K and gas volume densities of
103-104 cm−3. However, solutions with kinetic temperatures of
a few × 100 K and lower densities are also allowed by the data
(Ao et al. 2008; Weiß et al. 2007a; Bayet et al. 2009), and this
region of the parameter space has been insufficiently explored.
With Z-Spec we can cover some portion of the CO SLED in a
single observation (depending on the redshift), with a common
calibration for the entire bandpass, and we can start to place
broad constraints on the parameter space. However, additional
CO line measurements, especially for the CO(1–0) line, can
prove essential in distinguishing between possible models, or
identifying a substantial amount of cold gas.

This paper describes observations of five H-ATLAS sources
undertaken with Z-Spec. Based on the CO emission detected
by Z-Spec, we successfully determined the redshifts of four
out of five targets, helping confirm that they are lensed. The
Z-Spec observations are described in Section 2, followed by
the description of the algorithm for redshift determination in
Section 3. We use the measured redshift to constrain the SED of
these galaxies, estimating the dust temperature and emissivity
index, as well as the total infrared luminosity. We perform
an analysis of the partial CO SLEDs, constructed from the
lines observed by Z-Spec, to constrain the physical conditions
of the molecular gas. The analysis of the galaxy SEDs and
CO emission lines is presented in Section 4, and a summary
of our results can be found in Section 5. Throughout the
paper we assume a standard ΛCDM cosmology, with H0 =
71 km s−1 Mpc−1, ΩM = 0.27, ΩΛ = 0.73 (Spergel et al. 2007).

2. OBSERVATIONS AND DATA REDUCTION

We selected five high-z candidates among submm-bright
galaxies with F(500 μm) > 100 mJy (Table 1) from the
H-ATLAS survey for follow-up observations with Z-Spec on
the 10 m Caltech Submillimeter Observatory (CSO). The flux
limit was chosen based on theoretical calculations (Negrello
et al. 2007), which show that high-redshift galaxies may have
observed 500 μm fluxes above the 100 mJy threshold only if
lensed by foreground objects. In the H-ATLAS SDP catalog 11
objects satisfying the flux cut have been found, out of which six
objects have been identified as contaminants (four nearby spi-
rals, one Galactic star-forming region, and one blazar; Negrello
et al. 2010), resulting in a total of five remaining lens candidates.
For convenience, throughout the paper we identify our targets
by their names used in the SDP H-ATLAS catalog (SDP.9,
SDP.11, SDP.17, SDP.81, and SDP.130). In order to distinguish
these submm-bright lens candidates from the foreground lens-
ing galaxies, it was necessary to measure their redshifts directly
at submm wavelengths and confirm that they are at higher red-
shifts than the foreground galaxies. The redshifts of the fore-
ground objects have been separately measured in the optical and
near-infrared, and found to be in the range 0.3–0.9 (Negrello
et al. 2010), much lower than the redshifts of the submm galax-
ies, thus supporting the lensing scenario. Several instruments
were involved in the submm redshift determination follow-
up: CSO/Z-Spec, GBT/Zpectrometer, and IRAM/PdBI. The
GBT/Zpectrometer results have been presented in Frayer et al.
(2011), while this paper shows the CSO/Z-Spec results.

Z-Spec is a single spatial pixel grating spectrometer with 160
silicon–nitride micro-mesh bolometer detectors (i.e., channels)
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operating from 190 to 308 GHz (Naylor et al. 2003; Earle et al.
2006; Bradford et al. 2009). The frequency response of the
Z-Spec channels is approximately Gaussian, with a variable
FWHM from 720 to 1290 km s−1 over the bandpass, that is
roughly equal to the channel separation (Earle et al. 2006). The
Z-Spec beam size FWHM at the CSO has been measured to
vary from 39 to 25 arcsec across the band.

We carried out the Z-Spec observations of H-ATLAS sources
at the CSO from 2010 March 7 to May 14 under generally
good to excellent observing conditions, accumulating from 6.8
to 22.5 hr integrations on each target. The zenith opacity at
225 GHz (monitored by the CSO tau meter) was τ225 GHz = 0.06
on average, and τ225 GHz � 0.07 for 75% of the observations. A
summary of the observations, including the total integration time
on each source is given in Table 1. The Z-Spec data were taken
using the standard “chop-and-nod” mode in order to estimate
and subtract the atmospheric signal from the raw data. The
secondary mirror was chopped on- and off-source at a rate of
1.6 Hz with a chop throw of 90 arcsec while stepping through a
four-part nod cycle which position switches the primary mirror,
integrating for 20 s at each nod position. The chopping removes
atmosphere fluctuations and the nodding removes instrumental
offsets due to imperfect match between the two chopped
positions. We checked the pointing every 2–4 hr by observing
quasars and other bright targets located close in elevation to
the H-ATLAS targets, making small (typically <10 arcsec)
adjustments to the telescope pointing model in real time.

We analyze the data using customized software in the same
manner as described in Bradford et al. (2009). For each channel,
the nods are calibrated and averaged together, weighting by
the inverse variance of the detector noise. Absolute calibration
is determined by observations of Mars once per night, which
we use to build a model of the flux conversion factor (from
instrument Volts to Jy) as a function of each detector’s mean
operating (“DC”) voltage (Bradford et al. 2009). Since the DC
voltage depends on the combination of the bath temperature
and the total optical loading on the detectors, we use these
curves to determine appropriate calibration factors to apply to
each nod individually. Based on the root-mean-square (rms)
deviations of the Mars measurements from the best-fit curves,
the channel calibration uncertainties are 3%–8%, excluding
the lowest frequencies for which a clean subtraction of the
atmosphere is hindered by the pressure-broadened 183 GHz
atmospheric water line. These uncertainties are propagated
through the data reduction. The median rms uncertainties on
the final co-added spectra for the H-ATLAS galaxies are listed
in Table 1. These errors do not include the ∼5% uncertainty
on the brightness temperature of Mars (Wright 2007). The
calibrated Z-Spec spectra of the five ATLAS galaxies are shown
in Figures 1 and 2. The redshifts of these sources are determined
using a custom algorithm, tailored specifically for multiple lines
observed simultaneously in the same bandpass. This algorithm
is presented in the next section.

3. REDSHIFT DETERMINATION

3.1. Algorithm Description

The redshift determination relies on multiple CO and atomic
lines being present in the Z-Spec bandpass. Since not all these
lines are necessarily strong enough to be individually detected
at high significance, we developed a redshift-finding algorithm
that is capable of handling cases where the signal to noise in
individual lines is low, by combining the significance of all

these lines. The number of CO lines redshifted in the Z-Spec
bandpass grows from 2 at z = 0.51 (CO(3–2) and CO(4–3))
to 4 or more at z > 2 (starting at CO(5–4) through CO(8–7)).
Since under most excitation conditions present in ultraluminous
infrared galaxies (ULIRGs) and SMGs the intensity of the CO
ladder drops beyond ∼CO(7–6), it can become increasingly
difficult to measure redshifts higher than ∼3.2 in the absence of
high-excitation, warm CO gas.

For the redshift determination we use a reference line list
containing the lines expected to be strong in ULIRGs and
SMGs, namely, the CO rotational lines (up to CO(17–16)),
the [C i] 492.16 GHz line, the [N ii] 1458.8 GHz line, and the
[C ii] 1900.569 GHz line. As the width of the Z-Spec channels
varies from 720 to 1290 km s−1 over the bandpass, larger than
most observed line widths, most of the signal from one line
will be concentrated in a single channel. Therefore, in order
to determine which lines are present in the spectrum, we need
to look at the signal to noise in individual channels. The [C i]
809.342 GHz and CO(7–6) 806.651 GHz lines are blended in
the same channel and therefore degenerate for the purpose of
this procedure. Recent Herschel observations suggest that water
lines might also be bright in certain ULIRGs, like Mrk 231
(van der Werf et al. 2010), while the confirmation of the water
line in SDP.17b by IRAM/PdBI (Omont et al. 2011, this paper)
indicates that this might also be the case for some SMGs (see
Section 3.4). However, we defer using such lines in a systematic
way until more data are available on the presence of water
emission in ULIRGs and at high redshift.

The significance of the determined redshift is dependent on
which lines are present in the spectrum relative to the lines
that were expected to be observed, based on the reference list
(defined above). This is the case for SDP.17b (see Section 3.4),
where the redshift significance increases greatly if we include
the water line on our line list. However, such an extension of the
reference line list is not always justified, since the significance
of the redshift of another galaxy where the water line is not
detected may be unnecessarily diminished. Care must also be
taken in using the current line list at higher redshifts, where
the high-J CO lines are likely to have much lower significance
relative to the [N ii] and [C ii] lines. The least biased way to
introduce this constraint may be to require that [C ii] be the
brightest line in the spectrum and/or to limit the range of CO
lines searched for to lower J’s.

No a priori knowledge of the relative line strengths is
assumed, and therefore the algorithm gives equal weight to all
the lines in the reference list. Even though it is known that the
strength of the CO lines drops with increasing J for starburst
galaxies (e.g., Danielson et al. 2011), but remains relatively
constant for active galactic nucleus (AGN) dominated galaxies
and quasars (e.g., Bradford et al. 2009; van der Werf et al.
2010), it is generally impossible to know a priori the nature
of the emission in the galaxy being observed. Associating line
weights according to a model might artificially increase the
significance of some redshifts and decrease the significance of
others. Moreover, this would not prevent a non-detection in the
cases where the signal to noise does not pass our threshold
criterion (for example SDP.130, Section 3.4). We can always
use such relative line strength templates as a consistency check
for the redshift determination, rather than as an integral part of
the algorithm.

The redshift-finding algorithm uses two test statistics, E1(z)
and E2(z) (Equations (1) and (2)), constructed from combina-
tions of the detection significance in those channels in which a
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Figure 1. Z-Spec spectra of four submillimeter bright H-ATLAS galaxies. The fit to the continuum and CO lines at the measured redshift is overplotted in red, and
the positions of the strongest lines falling in the Z-Spec bandpass are indicated by the vertical blue lines. The line indicated in red in the spectrum of SDP.130 is
unidentified.

0.01

0.02

0.03

0.04

0.05

0.06

F
lu

x 
D

en
si

ty
 (

Jy
)

CO (4-3) CO (5-4)[CI] 3P1-
3P0

z = 0.939
SDP.17a

200 220 240 260 280 300
Observed Frequency (GHz)

0.01

0.02

0.03

0.04

0.05

0.06

F
lu

x 
D

en
si

ty
 (

Jy
)

CO (6-5) CO (7-6) CO (8-7) H2O
20,2-11,1

[CI] 3P2-
3P1

z = 2.308
SDP.17b
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rotational CO lines are indicated by the vertical blue lines. These lines have been subtracted from the spectrum shown in the lower panel. The red line in the lower
panel shows the fit including the lines identified at z = 2.308.

reference line would be observed by Z-Spec at redshift z. The
values of these test statistics are related to the probability that
the lines from the reference list, redshifted by a factor of (1 + z),
are present in the spectrum.

Let N (z) be the number of reference lines that would fall in
the Z-Spec bandpass at redshift z. We search a redshift range
between 0.5 and 6.0 in steps of 0.001. However, the redshift
determination and the false detection rate are not sensitive to the
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exact redshift range being searched, as long as multiple lines fall
in the bandpass and the actual redshift is included in the search.
The algorithm loops through all the z-values, redshifting all the
lines in the line list, and finding the set of N (z) Z-Spec channels
corresponding to the lines in the bandpass for each individual
redshift. The two test statistics, E1 and E2, are evaluated for each
redshift using the continuum-subtracted signal Si and the noise
σi in the set of N (z) channels determined in the previous step.
The continuum subtraction uses a fourth-degree polynomial to
better account for local smooth deviations from a power law.

The first test statistic, E1(z), is defined as the ratio of the total
signal to the noise, summed only over the Z-Spec channels that
correspond to a line in our list when redshifted to redshift z,

E1(z) =
∑

i Si√∑
i σ

2
i

, (1)

where the sum is taken from 1 to N (z), and Si and σi are the
signal and noise, respectively, for the channel corresponding to
line i.

The second test statistic, E2(z), is defined as

E2(z) = median{fij |fij = 0.5(Si/σi + Sj/σj ),

1 � i, j � N (z), i < j} ×
√

N (z), (2)

where the set contains all possible pairs of lines in the
Z-Spec bandpass at the corresponding redshift, and

√
N (z) is

a normalization factor, such that the distribution of E2(z) for a
noise spectrum approaches a standard normal (N (0, 1), see the
Appendix).

An alternate definition of E1 would be

E3(z) = 1√
N (z)

∑
i

Si

σi

. (3)

It can be shown (see the Appendix) that for any individual
redshift this estimator has a higher significance than E1 (larger
expected value), which would make it a better choice when
taken independently from E2. However, our simulations show
that we obtain a lower number of false positives when using E1
rather than E3 in combination with E2, since E1 and E2 are less
correlated than E3 and E2. The details are given in the Appendix.

All three statistics defined above are maximized when the
redshifted frequencies of the reference lines match the frequen-
cies of the channels with the highest continuum-subtracted sig-
nificance. Their distributions are well reproduced by standard
normals for all redshifts when there is no signal in the spec-
trum (consistent with noise), since in this case all Si/σi have a
standard normal distribution (see Figure 3 and the Appendix).

We consider a redshift secured when at this redshift both E1
and E2 reach their maxima, and the signal-to-noise combination
is larger than a certain threshold (defined in terms of a new
statistic E2max(z0) � 2.12; see Section 3.2). Even though the
maximum of any of the two statistics could be used for redshift
determination, the use of two statistics instead of one, as well
as a signal-to-noise cutoff, helps reduce the number of false
redshifts that can be due to random noise fluctuations in the
spectrum. For redshifts <0.5, and possibly >6.7, the presence
of only one line in the spectrum does not allow an unambiguous
redshift determination. Note that E1 (or equivalently E3) would
be a reasonable statistic for single line detections, but note that
E2 is undefined unless multiple lines are present in the Z-Spec
bandpass at a given redshift. The conditions for a secure redshift
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Figure 3. Distributions of the two test statistics derived from blank-sky spectra.
The histograms for E1 and E2 are shown as the black and dashed red histograms,
respectively. Gaussian fits corresponding to the listed standard deviations are
overplotted in black and red, respectively. In the noise simulations, as well as in
the sky spectrum, the E1 and E2 distributions will be well described by standard
normals, since all Si/σi have also a standard normal distribution.

(A color version of this figure is available in the online journal.)

determination when multiple lines are present in the spectrum,
and the significance associated with the derived redshift are
further discussed in the next section.

3.2. Noise Simulations

In order to determine the properties of our estimators and
the criteria for a redshift to be secured, we need to run noise
simulations based on the actual measured Z-Spec noise in each
channel, and construct the distributions of these estimators. In
the end, this will allow us to establish the significance of our
redshift determination.

The noise per channel is obtained from the power spectral
density (PSD) of the time series for each nod. In the Fourier
transform of the time series, the signal will be contained at
the chopper frequency, and the noise is estimated by averaging
the values of the PSD around the chopper frequency. Our
final co-added spectra contain nods from multiple observations,
weighted by the individual noise estimates. The final uncertainty
associated with the co-added spectra is calculated from the
noise in all the individual nods, following the prescription of
Zhang (2006) for weighted means. The calibration error is not
taken into account because it affects equally the signal and the
noise, leaving the significance per channel and the values of the
test statistics unchanged, which is one of the strengths of this
method.

To be able to simulate the estimator behavior in the absence
of any signal, we need to start by choosing a noise distribution.
For our simulations, we assume that the noise is Gaussian
distributed, with a standard deviation given by the measured
error in each channel. To test this assumption, we study the
noise in a 6.5 hr Z-Spec integration on blank sky, recorded on
2010 May 11 and 12. For each channel i for our blank-sky data,
we look at the quantity

Gik = Sik − Ai

σik

, (4)

where k represents the nod number, i is the channel number, Ai
is the average signal in channel i over all nods, and Sik and σik
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Figure 4. Left: distribution of p-values for the K-S test, comparing the noise distribution Gik (Equation (4)) for each channel i to the standard normal, for all 160
channels. For p-values above 0.05 we cannot reject the null at the 5% significance level. The dotted line shows the distribution of the K-S test probabilities for 160
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along the diagonal. Overplotted with a dotted line is a simulated observation, with points randomly drawn from a N (0, 1) distribution, showing a scatter similar to our
channels. The corresponding p-value is shown in black in the top left corner.

(A color version of this figure is available in the online journal.)

are the signal and the noise, respectively, for the corresponding
nod and channel. In our blank-sky data there are about 220 nods
per channel, after flagging. The distribution of Gik for a given
channel i, over all nods, should be a standard normal if our
assumptions are correct.

We first apply a Kolmogorov–Smirnov (K-S) test
(Kolmogorov 1933; Smirnov 1948), which tests the hypothe-
sis that the observed noise distribution is drawn from a standard
normal by comparing their cumulative distributions. The test
results are quantified in terms of the p-value, which is the prob-
ability that a value of the test statistic equal or greater than the
one observed would be obtained if the null hypothesis were
true. In the left panel of Figure 4, we show a histogram of the
p-values of the K-S statistic for all the channels, which demon-
strates that we cannot reject the null hypothesis that the noise
is Gaussian distributed at the 5% level for any of the channels,
since all p-values lie above this level. The plot also shows a large
spread in p-values from channel to channel. For comparison, we
run the same K-S test for 160 sets of random numbers drawn
from a N (0, 1) distribution. Each set contains the same number
of samples as the corresponding channel. The distribution of
the K-S p-values for these computer-generated normal samples
is shown by the dotted line in the left panel of Figure 4. This
simulation also shows a large spread in p-values, approximately
uniform across the range.

The K-S statistic can be affected by a variety of factors,
pertaining both to departures from Gaussianity (shape of the
distribution), and to mismatches in the parameters of the
assumed distribution (i.e., the sample is drawn from N (μ0, σ

2
0 )

instead of N (0, 1)). If our assumption that the noise for
each channel is Gaussian distributed is correct, but we have
overestimated or underestimated σik , this can, in principle, result
in small p-values for the K-S test. A useful tool in this case is
the quantile–quantile (Q–Q) plot (Wilk & Gnanadesikan 1968),
which is more sensitive to multiple aspects of the distributions
being compared, but does not provide a quantitative measure of
these deviations.

A Q–Q plot is basically a representation of the observed
data quantiles versus the theoretical quantiles of the assumed

distribution (N (0, 1) in this case). The quantiles are defined
as regular intervals on the cumulative distribution function,
intuitively intervals of equal probability. The Q–Q plot is
demonstrated for a sample of 16 channels in the right panel
of Figure 4. If the noise is Gaussian distributed and the σik are
estimated correctly, the points on Figure 4 for each channel
will follow the diagonal. If the noise is overestimated or
underestimated, the relationship will be still linear, but with
a different slope. Figure 4 shows that this might be the case
for some of the low-frequency channels (blue), for which
the noise is known to be more variable due to both intrinsic
bolometer problems and atmospheric noise. These very low
frequency channels are in fact excluded from our redshift-
finding algorithm.

Departures from Gaussianity, which could be due to noise
correlations between channels, would stand out in the Q–Q plot
as departures from linearity. For comparison, we overplot in
Figure 4 the curve obtained for a computer-generated sample
drawn from N (0, 1) (black dotted line), which shows a similar
level of scatter around the diagonal as our channels. We conclude
that the scatter of the noise distribution around the linear
correlation in the Q–Q plot is negligible when compared to the
results from the random number generator for a standard normal,
supporting the results of the K-S test for the Gaussianity of the
channel noise.

Our simulations create multiple realizations of a pure-noise
spectrum, with the signal in each channel being a Gaussian
random variable with mean 0 and standard deviation equal to
the measured noise in that channel, N (0, σ 2

i ). Even if for some
channels the noise might be overestimated or underestimated,
its exact value is not essential, since it cancels out as part of
the signal-to-noise ratios in estimator definitions, and in the
end we are left with N (0, 1) distributions for the estimators
(see the Appendix). As discussed above, the noise per channel
from our blank-sky observation is well approximated by a
Gaussian distribution, aside from small channel-to-channel
noise correlations. In our simulations, we reproduce these
residual noise correlations between different channels using
the method of Cholesky factorization. The noise correlation
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(A color version of this figure is available in the online journal.)

matrix is constructed from all the nods contained in the blank-
sky spectrum,

Cij =
∑

k(Sik − Ai)(Sjk − Aj )√∑
k(Sik − Ai)2

∑
k(Sjk − Aj )2

, (5)

where the sums are taken over all nods. After multiplying
a randomly generated uncorrelated vector with the lower-
triangular matrix from the Cholesky decomposition, one obtains
a vector with the same correlation properties as the original sky
noise model (e.g., Kaiser & Dickman 1962).

We run separate simulations for correlated and un-correlated
noise, each with 105 realizations of noise spectra. For each
realization of the noise spectrum, we record the maximum values
of the estimators E1 and E2, and construct their joint distribution
function over all realizations. For any measured max(E1) and
max(E2) from real data, we define the associated false detection
rate (FDR) as the probability of finding a maximum value of
E1 > max(E1) and E2 > max(E2) by chance, in the absence of
real signal. We calculate this joint probability from the simulated
two-dimensional right-cumulative distribution function of the
maxima of the two estimators, as shown in Figure 8 for each
measured (max(E1), max(E2)) pair. Figure 5 shows the marginal
FDR (the two-dimensional cumulative distribution marginalized
over E2) for all the max(E1) values (solid black line), as well
as for the max(E1) values left after imposing the additional
constraints on the estimators discussed below.

As the first constraint, for each simulated spectrum we
identify all the max(E1) and max(E2) values that satisfy the
condition that both estimators reach their maxima at the same

redshift. As can be seen from the dashed line in Figure 5,
imposing this condition reduces the total FDR to about 40%
for both correlated and un-correlated noise. The decrease in
FDR is due to the fact that the locations of the maxima of E1
and E2 deviate from a perfect correlation (Pearson correlation
coefficient <0.80), with the scatter spread over all redshifts.
This shows that the combination of two test statistics is more
robust against random fluctuations than any estimator used
independently, and considerably reduces the noise floor across
the redshift range.

Requiring that the two estimators be maximized at the same
redshift we still get a rather high total FDR (at least 40%). In
order to further reduce the number of spurious redshifts obtained
from blank-sky spectra, we introduce a signal-to-noise threshold
cut. We define the quantity

E2max(z) = max{fij |fij

= 0.5(Si/σi + Sj/σj ), 1 � i, j � N (z), i < j}. (6)

This definition is very similar to E2(z), with the median
replaced by the max, and without the normalization factor.
The normalization factor is not needed here because we want
to be able to establish a threshold criterion across the entire
redshift range, independent of the number of lines N (z). Since
this is not an estimator, we are not interested in standardizing
its distribution, and moreover, its distribution will be likely
different from that of E2, as an extreme order statistic rather
than a central order statistic.

For any i and j the quantity fij = 0.5(Si/σi + Sj/σj ) is
distributed as a normal with standard deviation σav = 1/

√
2
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(since Si/σi has a standard normal distribution). We choose
the value E2max(z) = 3σav = 2.12, as our threshold. In other
words, we require that strongest pair of lines at the determined
redshift have an average signal to noise greater than 2.12. This
places approximate limits on the signal to noise per channel
and the values of the estimators for the determined redshift
of ∼2 and ∼3, respectively. If no signal is present in the
spectrum (null hypothesis), the distributions of E1(z) and E2(z)
are well approximated by standard normals for all redshifts z
(see Figure 3). As such, our noise cut also implies rejecting the
null hypothesis at the ∼99% level for the determined redshift. A
realization of the two test statistics using the blank-sky spectrum
is shown in Figure 6. In this case, the maxima of the two statistics
occur for different redshifts, the values of E2max are below our
threshold for both E1 and E2 maxima, and the values of both
estimators are below 3 for all redshifts.

The effect of imposing the E2max constraint on the FDR is
shown by the dot-dashed curve in Figure 5. The noise threshold
criterion improves the significance (1-FDR) of the lowest signal
to noise results by cutting the limiting FDR down to about
50% for un-correlated noise and to ∼75% for correlated noise.
The joint effect of both constraints is shown by the dotted
curve in Figure 5, and the corresponding two-dimensional FDR
distributions as a function of the maxima of both E1 and E2 are
plotted in Figure 8. We derive that the estimator values passing
these two tests will result in a total false detection rate lower
than 24% for uncorrelated noise and below 33% for correlated
noise.

We emphasize that these FDR values are limiting values, in
the sense that they are independent of the actual values of
max(E1) and max(E2), and only satisfy the requirement that
the estimators pass the two tests (attain maxima at the same
redshift and exceed the E2max threshold). For any actual red-
shift determination, the associated false detection rate will be
determined by the values of max(E1) and max(E2) for that par-
ticular spectrum, which are inversely correlated with the FDR,
as indicated by the vertical lines in Figure 5. For the pri-
mary redshifts determined in this paper, we find that the inte-
grated false detection rates are smaller than 2%, as described in
Section 3.4, and listed in Table 2. Note that all quoted FDRs
are by definition integrated over the whole redshift range, and
represent the probability of obtaining a false positive, at any

redshift, given the values of the estimator maxima, but the prob-
ability of obtaining the same redshift by chance is roughly a
factor of ∼5000 lower, based on the number of redshift bins
searched. This is because it is even more unlikely that the same
channels fluctuate high due to noise alone.

To summarize, a redshift z0 is accepted when the following
conditions hold:

E1(z0) = max(E1),

E2(z0) = max(E2),

E2max(z0) � 2.12, (7)

where the last condition is basically a signal-to-noise threshold
criterion, and the significance of the estimated redshift is
calculated as 1-FDR, with the FDR derived from the noise
simulations, as explained above.

At the CSO, Z-Spec can reach a measured maximum sensi-
tivity of 0.5 Jy s1/2 per channel for an atmospheric optical depth
τ225 = 0.068 (Inami et al. 2008). Combining the signal-to-noise
threshold criterion with the measured sensitivity of Z-Spec, we
estimate that a redshift can be determined in less than 1.4 hr
of integration time if the line flux densities per channel are on
the order of 15 mJy, but can require more than 12.6 hr if the
flux density is less than 5 mJy. For our galaxy sample, the mean
integrated CO line flux (Table 3) is ∼18 Jy km s−1, while the
average width of the channels is 950 km s−1. However, the flux
density per channel could be only ∼10 mJy if the line flux hap-
pens to be split between two adjacent channels. In this case,
the typical integration time for obtaining a redshift with Z-Spec
would be at least 3.5 hr. These time estimates reflect closely the
best performance of the instrument and do not include calibra-
tion overheads. The actual integration time needed to obtain a
redshift will depend strongly on the instrument sensitivity at the
time of the observations.

3.3. Redshifts for the H-ATLAS SDP Sample

The results of applying this algorithm to our galaxy sample are
shown in Figures 7 and 8. We secure the redshifts for four out of
five sources, with an FDR <10% in all cases. The redshift value
and its uncertainty (Table 2) are determined from the position
and width of the peak of the E1 test statistic (Figures 7). Due
to the finite width of the spectral channels, nearby redshifts can
have the same or similar significance, since the lines will fall on
the same channels for a narrow range of redshifts, given by our
redshift space sampling. As we go further from the real redshift,
some of the lines might still fall on the same channels, but not
all of them, so the value of E1 will drop. We fit a Gaussian to the
peak of E1(z), and define the redshift error as the upper limit for
the standard deviation of this Gaussian. This value is at least as
large as the channel width and accounts for the varying channel
widths across the bandpass.

For all the galaxies except SDP.130, the maxima of E1 and
E2 satisfy both our criteria for a secure redshift determination,
and for SDP.17 we can identify a second redshift satisfying
our criteria after subtracting the first set of lines from the
spectrum. We calculate the significance of the redshift for each
of our sources by interpolating the FDR at the observed values
of max(E1) and max(E2). Figures 5 and 8 show the derived
estimator values for each source relative to the FDR distribution,
and the significance of each redshift determination can be read
off directly from these figures. Of all redshifts that passed our
criteria, the redshift of SDP.17a (the second derived for SDP.17)
has the lowest significance, close to 90% (75% for correlated
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Figure 7. Results of running the redshift-finding algorithm for all the H-ATLAS sources in our sample. The E2 test statistic has been offset vertically by eight units, for
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redshift. The SDP.17a panel shows the determination of the second redshift from the same spectrum, after subtracting the high-redshift component. No redshift is
determined for SDP.130.

noise), while all primary redshifts have a significance of at least
∼99% (90% for correlated noise), equivalent to ∼3σ or greater
for a Gaussian distribution.

When lines are present in the spectrum, aside from the main
peak due to the true redshift, secondary peaks will arise in the E1
and E2 distributions, corresponding to redshifts where some of
the lines in the line list fall on the same channels as the observed
lines. The secondary peaks are marked by blue asterisks for each
source in Figure 7. The real redshift will have higher significance
than the redshifts corresponding to these secondary peaks, since
the largest number of lines add their contribution to the total
signal in this case.

After removing the lines corresponding to the measured
redshifts from the spectra (both redshifts for SDP.17), the
secondary peaks in the E1 and E2 distributions are reduced to
the noise level, and the maxima of E1 and E2 fail to satisfy one
or both of our criteria. The FDRs associated with these line-
subtracted spectra are plotted as stars in Figure 5, indicating the
significance of the remaining features. The stars are vertically
positioned on the false detection curve corresponding to the
criteria satisfied by max(E1) after removing the lines. The
computed FDRs and the fact that they do not satisfy both criteria
indicate that in all cases the results after line subtraction are
consistent with noise.
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Table 2
Summary of the H-ATLAS Galaxy Sample and the Parameters Derived from Fitting Their Submm SEDs

H-ATLAS μ z Significance μ LIR Td
d α μ Md,lim

e μΩd
e μ SFR

SDP ID (%) (1013 L�) (K) (109 M�) (arcsec2) (103 M�/yr)

SDP.9 . . . 1.577 ± 0.008 100 (99.97) 4.4 ± 0.5 57 ± 1 3.8 ± 0.2 2.5 0.65 6.6 ± 0.8
SDP.11 . . . 1.786 ± 0.005 99.98 (99.22) 7.8 ± 0.9 69 ± 1 5.7 ± 0.4 1.7 0.43 11.7 ± 1.3
SDP.17aa . . . 0.942 ± 0.004 87.33 (74.77) 0.4 ± 0.09 27 ± 1 2.9 ± 0.1 4.9 1.44 0.6 ± 0.1
SDP.17ba . . . 2.308 ± 0.011 99.86 (97.46) 3.9 ± 0.9 66 ± 1 2.9 ± 0.1 1.1 0.30 5.8 ± 1.5
SDP.81 18–31b 3.037 ± 0.010 98.26 (90.02) 6.4 ± 0.3 58 ± 1 3.2 ± 0.1 2.2 0.69 9.6 ± 0.4
SDP.130 5–7b 2.626 ± 0.0003c N/A 4.3 ± 0.2 55 ± 1 2.7 ± 0.3 1.6 0.47 6.5 ± 0.3

Notes. The columns list: (1) the ID of the source in the SDP H-ATLAS catalog; (2) the gravitational lensing magnification factor; (3) the measured
redshift; (4) the redshift significance, calculated as 1 − FDR, where the FDR has been defined in Section 3.2. The significance for correlated noise is
given in parenthesis; (5) the integrated IR luminosity, obtained as the average between the SED fits with the CE01 libraries and the DH02 libraries. The
factor μ is shown in front of quantities affected by gravitational lensing magnification; (6) the dust temperature, with the caveats described in the text;
(7) the index of the power-law continuum fit to Z-Spec data; (8) the dust mass; (9) the solid angle subtended by the dust emitting region; and (10) the
star formation rate.
a The total observed flux was split between the two components, using a frequency-independent scale factor.
b Values taken from Negrello et al. (2010).
c Redshift determined by GBT/Zpectrometer, followed by a more precise measurement with PdBI/IRAM (Negrello et al. 2010).
d The uncertainties for Td are likely underestimated. The values shown are formal errors from the fit, and do not include correlations between parameters,
or the inaccuracy of the assumed shape of the SED model. The values for β and ν0 are kept fixed for all sources.
e Calculated in the optically thin limit. The dust masses should be interpreted as robust lower limits for the true total dust mass in the galaxy (see the
text).

Table 3
Integrated Fluxes for the Emission Lines Identified in Each Galaxy

Line Frequency SDP.9 SDP.11 Integrated Line Flux (Jy km s−1) SDP.17b SDP.81
(GHz) SDP.17a

CO (4–3) 461.041 . . . . . . 14 ± 9 . . . . . .

CO (5–4) 576.268 25 ± 5 23 ± 8 27 ± 9b . . . . . .

CO (6–5) 691.473 33 ± 7 29 ± 10 . . . 17 ± 5 . . .

CO (7–6) 806.652 . . . 18 ± 14a . . . 11 ± 7a 12 ± 4a

CO (8–7) 921.800 . . . . . . . . . 16 ± 6 5 ± 3
CO (9–8) 1036.91 . . . . . . . . . . . . 6 ± 3
CO (10–9) 1151.99 . . . . . . . . . . . . <6.5
[C i] 3P1 →3P0 492.160 <11 . . . <6 . . . . . .

[C i] 3P2 →3P1 809.342 . . . 31 ± 14a . . . 13 ± 7a <6.5a

H2O 20,2 − 11,1 987.914 . . . . . . . . . 19 ± 7b . . .

Notes. The columns list: (1) the transition; (2) the rest-frame frequency of the transition; and (3) the integrated line flux for each galaxy (as measured,
uncorrected for dust absorption) with 68% confidence intervals. Upper limits are 3σ .
a These lines originate in the same source and are blended at the Z-Spec resolution. The error bars account for this uncertainty.
b In the spectrum of SDP.17, the water line at z = 2.308 and the CO(5–4) line at z = 0.94 are blended.

All the measured redshifts, with their error bars and associated
significance (calculated as 1 − FDR) for both correlated and
un-correlated noise, are listed in Table 2. The significance of
our redshift determinations together with the statistical redshift
determination criteria (Equation (7)) shows that in general a
redshift was already secured by Z-Spec after an integration time
much shorter than the total integration time listed in Table 1.
Future submm instruments with better sensitivity will be able
to obtain the redshifts of such galaxies even faster, and open the
possibility of large submm redshift surveys.

3.4. Comments on Individual Redshifts

The individual redshifts are presented in the order of the
observations (see Table 1).

SDP.81. The redshift for SDP.81, z = 3.037 ± 0.01, obtained
by this method on 2010 March 19, was confirmed (z = 3.042 ±
0.001) with follow-up observations with the IRAM Plateau de
Bure Interferometer on 2010 March 23 (IRAM/PdBI; Negrello

et al. 2010) and with an independent blind search on 2010
March 25 by the Zpectrometer instrument at the Green Bank
Telescope (GBT/Zpectrometer; Negrello et al. 2010; Frayer
et al. 2011). Both follow-ups were informed by a concurrent
photometric redshift estimate (2.9+0.2

−0.3). With the possible ex-
ception of the second redshift for SDP.17, this is the redshift
with the lowest significance in our sample, with an E1 peak of
3.8, due to the weakness of the CO lines beyond CO(7–6). This
is the first blind redshift obtained by Z-Spec.

SDP.130. SDP.130 has a redshift of 2.6260 ± 0.0003, mea-
sured by GBT/Zpectrometer (z = 2.625 ± 0.001; Frayer et al.
2011), and made more precise with PdBI/IRAM (Negrello et al.
2010; A. Neri et al. 2010, in preparation). So far, three CO lines
have been measured in this galaxy at this redshift, namely, the
CO(1–0) line observed with the Zpectrometer, and the CO(3–2)
and CO(5–4) lines observed with PdBI (Negrello et al. 2010),
on a tuning that was successfully guided by the submm photo-
metric redshift of z = 2.6+0.4

−0.2 (Negrello et al. 2010). However,
we do not detect any of the higher-J transitions (Ju >6) that
would fall in the Z-Spec bandpass at this redshift. The values of
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Figure 8. FDR contour plots from our simulations, as a function of E1 and E2 values. The points corresponding to the maxima of E1 and E2 for each of the
sources that pass the cuts (all except SDP.130, see Figure 7) are shown by the filled stars. The contours correspond to the dotted line in Figure 5 (satisfying both
z(max(E1)) = z(max(E2)) and E2max � 2.12 conditions). The points obtained after line subtraction do not satisfy either condition and therefore are not shown.

(A color version of this figure is available in the online journal.)

our estimators for z = 2.625 are negative, suggesting that there
is no signal left in the spectrum at this redshift after continuum
subtraction. The estimators do not pass our redshift determi-
nation criteria for any other redshift, and Figure 5 shows the
significance of the maximum E1 value obtained under these
conditions (orange star). This non-detection, which places up-
per limits on the integrated fluxes of the CO(6–5) through (9–8)
lines of <12.5 Jy km s−1, suggests a low (<50 K) gas tem-
perature in the z = 2.626 galaxy. We attempted to identify the
line at 277 GHz, marked in red in Figure 1, with the CO(3–2)
transition at z = 0.25, but that would be inconsistent with the
optical spectroscopic redshift of the lensing galaxy (0.220 ±
0.002, Negrello et al. 2010) by more than 7000 km s−1, as well
as inconsistent with the observed SED. Based on the correlation
between the CO and the total infrared luminosity, the observed
luminosity of the CO(3–2) line would correspond to a ULIRG-
class object at z = 0.25, which would dominate the SED at 250
μm. No separate 250 μm-bright object is found nearby, and the
PACS and SPIRE photometry of SDP.130 (see also Section 4.1)
is inconsistent with the two sources being blended. Similarly,
identifying this feature with the 987 GHz water line at z = 2.626
would require a velocity offset of ∼4200 km s−1, and usually
the presence of highly excited CO gas, which is not observed.
This feature remains unidentified.

SDP.17. Given the size of the Z-Spec beam (FWHM ≈ 30′′)
and the possible presence of lensing or other foreground struc-
tures in the same beam, the observed spectrum could be a com-
bination of features from multiple objects. We choose this in-
terpretation for the spectrum of SDP.17, best described by two
components at different redshifts (both listed in Table 2). The
first redshift found by our algorithm is 2.308 (SDP.17b). After
fitting the CO lines at this redshift and subtracting them from
the spectrum, we perform a second redshift determination, iden-
tifying a second component with a redshift of 0.942 (SDP.17a).
This combination explains all the features present in the
spectrum (see Figure 2), and is consistent with the interpre-
tation of the 299 GHz feature as the rest frame 987 GHz water

line at a redshift of 2.308. This water line has been seen to
be very strong in other AGN and star-forming galaxies at low
redshift, such as Mrk231 and Arp 220 (González-Alfonso et al.
2010), and it has been tentatively detected in the Cloverleaf
quasar at z = 2.56 by Bradford et al. (2009). More recently,
multiple excited water transitions have also been detected in the
quasar APM 08279+5255 at z = 3.91 (Bradford et al. 2011; Lis
et al. 2011; van der Werf et al. 2011). The redshift of SDP.17b
has subsequently been confirmed by follow-up observations
with CARMA (L. Leeuw 2010, private communication) and
IRAM/PdBI (R. Neri 2011, private communication). Recent
IRAM/PdBI observations (Omont et al. 2011) have confirmed
the water line at z = 2.3052, but did not find any other high
significance line in the bandpass, which does not exclude the
possibility of a CO(5–4) line at z > 0.944. The second redshift
(SDP.17a) has a much lower significance, but it is in agree-
ment with the photometric and spectroscopic optical redshifts
(0.77 ± 0.13 and 0.9435 ± 0.0009, respectively, Negrello et al.
2010). Alternatively, the peak now identified with the CO(5–4)
line at z = 0.94 could be arising from correlated noise fluctua-
tions with the nearby water line. To confirm the presence of CO
at z = 0.94, we are planning a follow-up of the CO(4–3) line. The
presence of multiple ULIRGs in a single line of sight is intrigu-
ing, and is an example of discoveries that can be made possible
by Z-Spec’s broad bandwidth. It also raises the possibility that
the flux-limited sample is affected by chance alignments, and
the presence of multiple sources in the beam. However, this is
likely a negligible effect for lensed sources, as the continuum
submm and mm flux will be clearly dominated by the lensed,
high-z galaxy, and not by the foreground lens (Negrello et al.
2010).

SDP.9 and SDP.11. The significance of the redshifts for
these galaxies corresponds to max(E1) values of 6.5 and 5.3,
respectively (Figures 5 and 8). The redshifts of SDP.9 and
SDP.11 have also been confirmed by the follow-up observations
with CARMA (L. Leeuw 2010, private communication) and
IRAM/PdBI (R. Neri 2011, private communication).
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4. GAS AND DUST PROPERTIES

A model including the lines and power-law continuum is fit to
each spectrum in Figures 1 and 2, allowing the line intensities,
redshift, and continuum slope to vary. The best-fit power-law
index α for each galaxy is listed in Table 2. The initial estimate
for the redshift is provided by the algorithm described above, and
the fit is constrained by the requirement that all the lines be at the
same redshift. In cases where some of the lines are blended, we
first fit only the unblended lines to obtain a more precise value for
the redshift, and then we fit all the lines simultaneously, with the
redshift kept fixed, to get the integrated line strengths, listed in
Table 3. Although the lines are not resolved, the signal from one
line can be spread among adjacent channels due to the overlap
of their frequency responses. We measure only the integrated
line strengths, taking into account the frequency response of
each Z-Spec channel, weighted according to the line width. On
average, line widths below ∼1000 km s−1 are not resolved by
Z-Spec, and we choose a value of 300 km s−1 in fitting the
integrated line strengths. This value closely matches the width
of the lines for SDP.81 and SDP.130 at PdBI (A. Neri et al. 2010,
in preparation), but is relatively low compared to the range found
by interferometric measurements of other lensed high-redshift
galaxies (Greve et al. 2005; Knudsen et al. 2009). The CO(1–0)
line widths determined by the GBT/Zpectrometer are somewhat
larger (435 ± 54 km s−1 for SDP.81 and 377 ± 62 km s−1

for SDP.130), suggesting that an additional gas component
might contribute to this line. However, the determination of
the integrated line fluxes is not sensitive to the choice of the line
width up to values of the order of the channel width. The largest
uncertainties in the integrated line strengths arise in the case of
line blending, such as the CO(7–6) and [C i] 3P2 →3P1 lines or
the overlapping lines at different redshifts in SDP.17 (blended
lines are indicated in Table 3).

4.1. Continuum Spectral Energy Distributions

The continuum data for all five galaxies are shown in
Figure 9. The measured continuum flux from Z-Spec is found
to be in good agreement with the MAMBO 1.2 mm photometry
(Negrello et al. 2010), except for SDP.9. Estimates of the total
amount of dust and star formation rates (SFRs) in each galaxy
can be obtained by fitting their far-infrared (far-IR) to submil-
limeter SED. In this fit, we include the Z-Spec data along with
the Herschel-SPIRE and Herschel-PACS photometric points,
as well as the Submillimeter Array (SMA) measurements at
880 μm for SDP.81 and SDP.130 (Negrello et al. 2010).

The far-IR rest-frame SED can be described by a modified
blackbody function, defined as

Fν =Qν(β)Bν(Td )Ωd = (1 − e−τ (ν0)(ν/ν0)β )
2hν3

c2

1

ehν/kTd − 1
Ωd

= LIR

4πd2

Qν(β)Bν(Td )∫
Qν(β)Bν(Td )dν

, (8)

where Qν = 1 − e−τ (ν0)(ν/ν0)β is the emissivity, Bν(Td) is the
Planck function, τ (ν0) = 1 is the optical depth at ν0, Ωd

represents the observed solid angle of the dust emitting region,
d is the (known) distance to the source, and h and k denote
the Planck and Boltzmann constants, respectively. The fit can
be performed with three parameters: Td, β, and a scale factor,
while keeping ν0 constant. Including ν0 as a fourth parameter
in the fit leads to a value of 1251 ± 130 GHz for SDP.9, but no
strong constraints are found for the rest of the sample, leading

us to fix the ν0 at 1300 GHz. The low value found for ν0, and the
observed flattening of the peak of the SEDs in the far-IR suggest
that the SEDs of the galaxies in our sample can be modeled
either as combinations of multiple graybodies with different
temperatures, or as a single graybody with a large optical depth
at far-IR wavelengths (Papadopoulos et al. 2010). The overall
scale of the SED can be parameterized either in terms of the
solid angle Ωd or the total infrared luminosity (LIR), defined
as the integral of the SED from 8 to 1000 μm (rest frame).
The LIR derived in this manner underestimates the true total
infrared luminosity, due to the likely presence of warmer dust
components that contribute at shorter wavelengths.

The simplest model that can reproduce the data for the entire
sample has fixed β = 2 (Priddey & McMahon 2001) and the
already-mentioned ν0 = 1300 GHz, in agreement to the value
found for SDP.9. The dust emissivity index β = 2 is also
consistent with the error bars of the Z-Spec spectra. The best-fit
models are shown in Figure 9, and the corresponding values for
Td are listed in Table 2. With dust temperatures between 54 and
69 K, the peak of the rest-frame dust SED is found in a narrow
range of wavelengths (73–92 μm) for all lensed galaxies in the
sample. It is important to bear in mind that this fitting function
for the SED is largely empirical, and the degree to which Td
and β represent physical quantities is complicated by the spatial
averaging over the entire galaxy and the degeneracy between a
distribution in dust temperature and a distribution of dust types
(represented by β). The formal errors for the fitted parameters
(Td) should not be interpreted as errors on physical quantities,
due to these caveats.

Even though such SED fits could be obtained using just the
photometric points, the addition of Z-Spec data not only strongly
constrains the continuum slope, but also breaks the degeneracy
between Td and redshift (Blain 1999), by independently deter-
mining the latter. Since Z-Spec has determined the redshift, we
are able to obtain Td from the continuum fit, which otherwise
would constrain only the quantity Td/(1+z) (e.g., Amblard et al.
2010). This degeneracy can lead to significant variations in the
derived Td if the redshift is not measured independently. The
implications of the continuum slope measured by Z-Spec for
the dust composition is left for a future work.

Using Equation (8) corrected for redshift and the derived Td,
we can estimate the observed size of the dust emitting region.
This solid angle will be affected by the lensing magnification
factor. If the dust optical depth at submm wavelengths is low,
as is often the case, Ωd will be correlated with τ , and therefore
with β (Hughes et al. 1993). However, we break this degeneracy
by fixing β. The resulting Ωd ranges between 0.30 arcsec2

for SDP.17b and 1.44 arcsec2 for SDP.17a. These values may
underestimate source sizes that are resolved in the SMA images
with a resolution of ∼0.8 arcsec at 340 GHz (Negrello et al.
2010). Using the magnification factors from Table 2, the intrinsic
size of the dust emitting region will have an equivalent radius of
0.7 kpc for SDP.81 and 1.3 kpc for SDP.130. Note however that
Ωd corresponds to the effective solid angle of the dust emitting
region, such as the total area of small clumps spread over a
larger region. In an image where these clumps are unresolved,
the total observed solid angle can appear to be larger.

Having estimated the source size, the total dust mass follows
from the relationship τ (ν) = κ(ν)Md/D

2
AΩd , where κ(ν) is the

dust absorption coefficient κ(ν) = 0.4(ν/250 GHz)β cm2 g−1

(e.g., Weiß et al. 2007a), and DA is the angular diameter distance.
The dust mass can also be estimated in the optically thin limit
(1 − e−τ 	 τ ) without the additional step of deriving Ωd ,
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Figure 9. Best-fit SED models for the five H-ATLAS galaxies in our sample. The continuous line shows the modified blackbody spectrum with ν0 = 1300 GHz
and β = 2.0, while the dotted and dashed lines show the SEDs obtained from the SED libraries of CE01 and DH02, respectively. The total infrared luminosities are
calculated as the average between the CE01 and DH02 SED template fits, to account for emission above the blackbody spectrum at higher frequencies. The parameters
for the modified blackbody fits are also listed in Table 2.

(A color version of this figure is available in the online journal.)

by substituting τ (ν) directly in Equation (8). This is a good
approximation at 250 GHz (1.2 mm) in the middle of the Z-Spec
bandpass. Calculated in the optically thin limit, the dust mass
is a robust estimate of the lower limit for the total dust mass
in the galaxy, Md,lim. Using the optically thin approximation
and the 250 GHz flux density measured by Z-Spec, we derive
values for the magnified Md,lim of a few × 109 M�, as listed
in Table 2. If the dust is optically thick, as suggested by ν0 =
1300 GHz, the calculated Md,lim will underestimate the true dust
mass for our galaxy sample by at most 30%. The dust mass is also
inversely correlated with the assumed temperature, and will be
underestimated when using the dust temperature corresponding
to the peak of the SED. This temperature is likely too large to
represent the bulk of the dust. Assuming that the 250 GHz flux
is partially due to a dust component with a temperature as low as

20 K, and taking into account the optical depth corrections, we
estimate that the total dust mass could be larger than Md,lim by
up to a factor of ∼4. To summarize, with good approximation,
the true dust masses for these galaxies will be found in the
interval [1, 4] × Md,lim. The remaining uncertainties in Md,lim
are mostly due to uncertainties in the expression for κ(ν). Note
that the quantity Md/Ωd is proportional to τ and independent of
temperature; for a given τ , a lower limit for Md implies a lower
limit for Ωd , but this limit for Ωd will decrease with increasing τ .

A more realistic approach is to fit the photometric and
continuum points with a library of SEDs, taking into account the
transmission curve of each instrument. We apply this method to
our galaxy sample, using the SED libraries of Chary & Elbaz
(2001) (CE01), and Dale & Helou (2002) (DH02). The CE01
templates have also been used by Hwang et al. (2010) to fit both
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Table 4
Derived Starburst Properties and LTE Parameters for the H-ATLAS Galaxy Sample

H-ATLAS μ L′
CO μ L′

CO,corr μ Mgas
a tSF

a NCO
b Tex

c Ωs/Ωa τCO MCO
d

SDP ID (1010 K km s−1 pc2) (1010 K km s−1 pc2) (1011 M�) (107 yr) (1017 cm−2) (K) (10−3) (106 M�)

SDP.9 13 ± 3 16 ± 3 2.1 3.2 23 ± 4 97 ± 66 0.3 0.225 1.6 ± 0.3
SDP.11 15 ± 5 18 ± 6 2.4 2.1 47 ± 15 48 ± 8 0.3 0.929 3.2 ± 1.0
SDP.17a 4 ± 3 5 ± 3 0.7 11.1 3 ± 1 160 ± 90 1.3 0.005 6.5 ± 2.2
SDP.17b 12 ± 3 16 ± 4 2.1 3.7 22 ± 6 80 ± 17 0.3 0.114 1.5 ± 0.4
SDP.81 10 ± 3 15 ± 5 2.0 2.1 12 ± 4 62 ± 8 0.8 0.133 0.8 ± 0.3

Notes. The columns list: (1) the ID of the source in the SDP H-ATLAS catalogue; (2) the integrated brightness temperature of the lowest J CO transition measured,
times the source area; (3) same as Column 2, corrected for dust absorption (see Section 4.2); (4) the molecular gas mass; (5) the gas depletion time; (6) the CO column
density; (7) the CO excitation temperature under LTE; (8) the estimated beam filling fraction for the lowest J transition measured; (9) the optical depth for the lowest
J transition measured in that source. The parameters in the last four columns have been derived in the LTE approximation; and (10) estimated total mass of CO gas.
a The errors for these parameters depend mostly on the uncertainties in the assumed conversion factors (see Section 4.2).
b The values displayed correspond to an intrinsic source diameter of ∼2 kpc. The listed errors reflect the uncertainties in the measured integrated line fluxes. Other
errors for this parameter, aside from the LTE model assumption, depend on our knowledge of the true source size.
c The formal errors bars underestimate the uncertainty in Tex, due to model assumptions restricted to LTE. In non-LTE models, a large region of the parameter space
is allowed, and Tex becomes J-dependent (see Section 4.2.3).
d Corresponds to the assumed source radius of 1 kpc, except for SDP.17a which would have an estimated radius of 5.5 kpc at z = 0.942, estimated from the optical
image.

a low-z (z < 0.1) and a high-z (0.1 < z < 2.8) galaxy sample,
of which the highest luminosity tail seems to have properties
overlapping the SMG population. Except for the subset of high-z
galaxies with dust temperatures colder than ∼90% of the local
galaxies for a given luminosity, a subset that might be affected
by blending, the CE01 template fits provide a good estimate for
the total LIR in the high-z sample. For our lensed SMGs, we
constrain well the peak of the SED and the dust temperature,
and we are not in the regime where template mismatch can have
a big impact on the inferred LIR (see also Murphy et al. 2011).

We find that the IR luminosities derived from the modified
blackbody fitting are at most a factor of ∼2 lower than those
when we use the SED libraries, and within 20% from the
LIR obtained assuming the models of da Cunha et al. (2008),
calibrated for ULIRGs, with AV > 2 (Negrello et al. 2010).
The variations between the values of LIR obtained by different
methods reflect the systematic uncertainties in deriving this
quantity. Similar underestimates have been found by others,
and are due to the fact that the submm photometry does not
measure the warm dust component of the SED, if one is
present (e.g., Swinbank et al. 2010; Ivison et al. 2010). This
is emphasized by the poor fit of the modified blackbody curve
to the Herschel-PACS data points, and the significant flux at
shorter wavelengths predicted by the CE01 and DH02 models
(Figure 9). Any derivation of LIR is model-dependent, with
the largest differences arising from the presence of a warm dust
component in the SED libraries. In Table 2 we list the LIR values
derived from the SED template fitting method, as they represent
a more accurate description of the total infrared energy output
than the modified blackbody. The listed LIR are calculated as
the average between the values given by the best-fit CE01 and
DH02 templates. We find that the two best-fit templates give
values for the LIR within 15% of each other, both falling easily
within our quoted error bars. On average, our LIR values are
about 25% lower than those found by Negrello et al. (2010), but
these differences are difficult to judge without data shortward of
100 μm. Note that these values are rather smaller than typical IR
luminosities of classical SMGs and unbiased sources detected
by Herschel surveys.

Except for SDP.17, we attribute all the submm flux density
to the high-redshift galaxy. The foreground lenses for the other
galaxies in our sample have optical properties consistent with

being quiescent elliptical galaxies, and are therefore unlikely
to have a significant submm emission. We have attempted a
decomposition of the SDP.17 SED, using the two measured
redshifts and a wavelength-independent scaling factor for each
of the two components. The χ2-value for the SED template
fits is minimized when the observed flux density is split in
half between the two components. This factor has been taken
into account in Figure 9 and in deriving the LIR for SDP.17a
and SDP.17b, as listed in Table 2. However, the large dust
mass inferred for SDP.17a could be an indication that the SED
decomposition between SDP.17a and SDP.17b overestimates the
contribution of SDP.17a.

We estimate the SFRs for our galaxy sample using the
conversion factor SFR(M� yr−1) = 1.5 × 10−10(LIR/L�)
(Solomon & Vanden Bout 2005), similar to the Kennicutt
(1998) relation for a continuous starburst with a Salpeter initial
mass function (IMF). Since the selected galaxies are lensed by
foreground objects with magnification factors ∼10 (Negrello
et al. 2010), the intrinsic IR and CO line luminosities will be
∼10 times lower than the direct conversion from the measured
fluxes. SDP.81 and SDP.130 have magnification factors of 25
and 6, respectively, as derived from the best-fit lens model
to the high-resolution submm images available for these two
objects (Negrello et al. 2010). In Tables 2 and 4, we left
the quantities affected by gravitational lensing magnification
unmodified, for reference, but the presence of this contribution
is indicated by the letter μ in front. Based on model predictions
(Negrello et al. 2007), a typical amplification factor of 10 can be
applied to these values. Once corrected for magnification, the
infrared luminosities and corresponding SFRs are those typical
of ULIRGs.

4.2. CO Line Luminosities and Spectral Energy Distributions

The measurements of CO lines reveal important information
about the physical properties and excitation conditions of the
molecular gas, as well as the total gas budget in these galax-
ies. These parameters can be used to investigate the link be-
tween star formation and gas properties. Higher gas tempera-
tures and lower densities would result in the increase of the Jeans
mass, suggesting that star formation is biased toward high-mass
stars (e.g., Elmegreen et al. 2008; Klessen et al. 2007). An
increasing number of studies show that star formation may
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Figure 10. Spectral line energy distributions, uncorrected for gravitational lensing magnification. The Z-Spec measurements are shown connected by the black
histogram. The data point for the CO(1–0) line measured by Frayer et al. (2011) in SDP.81 falls at the bottom of the panel, and is better seen in Figure 13. The red
lines show the SLEDs predicted by the best-fit LTE model (continuous), and the LTE models corresponding to the limits of the 1σ standard confidence interval for
Tex determined from the fit (dashed). The green line shows the SLED predicted by RADEX, using the parameters corresponding to the four-dimensional maximum
likelihood solution, as listed in Table 5.

(A color version of this figure is available in the online journal.)

proceed differently in merger/starburst systems versus
quiescent/disk systems, the former being characterized by a
top-heavy IMF (Weidner et al. 2011; Habergham et al. 2010).
Such an IMF not only arises in dense starburst environments, but
also has been invoked to explain the observed number counts at
850 μm (Baugh et al. 2005). A top-heavy IMF can arise in high-
density material, shielded from far-UV radiation, but permeated
by cosmic rays or X-rays, which heat the gas efficiently and
generate cosmic-ray-dominated regions (Papadopoulos et al.
2011) or X-ray dominated regions (XDRs; Bradford et al. 2009;
Schleicher et al. 2010). The presence of a top-heavy IMF would
have important consequences for the SFR inferred from the total
LIR. However, the XDR signatures, such as highly excited CO
lines (e.g., Bradford et al. 2009), will likely indicate that the
galaxy is dominated by the presence of an AGN, but not di-
rectly probe the IMF. Since the gas properties derived from the
analysis of the CO lines are galaxy-averaged, only with multiple
CO lines we can begin to disentangle different PDR and XDR
contributions (e.g., van der Werf et al. 2010), which may help
us characterize the star formation in these galaxies. Further un-
derstanding would require spatially resolving the star-forming
regions, and probing the high-density star-forming gas with ad-
ditional molecular tracers.

In order to derive the physical characteristics of the gas in
these galaxies, including the gas temperature, density, pressure,
and CO column density, we need measurements of multiple CO
transitions, sampling the rotational ladder as fully as possible.
The SLED for the CO molecule has been constructed in a
few cases for nearby and low-redshift galaxies (e.g., Panuzzo
et al. 2010). In Figure 10 we show the partial SLEDs for

our galaxy sample, constructed from the lines detected in
the Z-Spec bandpass. This plot favors a distribution with the
brightest lines between CO(5–4) and (7–6), similar to the
distribution observed for other SMGs and starburst galaxies
(Weiß et al. 2007b; Danielson et al. 2011).

The shape of the line luminosity distribution does not reflect
only the gas kinetic temperature, but also the gas density, and
the effects of the optical depth at the line frequency (Goldsmith
& Langer 1999; Papadopoulos et al. 2010). In the optically
thin limit, the CO column density scales with the absolute
value of the line intensity, assuming that the source size and
the magnification factor are known. Under the assumption of
local thermodynamic equilibrium (LTE), all CO transitions have
the same excitation temperature, Tex, also equal to the gas
kinetic temperature Tkin, signifying that all rotational levels are
populated according to the Maxwell–Boltzmann distribution at
temperature Tex. In Section 4.2.2 we estimate these parameters
by fitting the partial SLEDs, using the relationship between
the integrated line brightness temperature, column density,
and excitation temperature, under LTE. Although this case is
limiting due to the assumption of constant Tex for all levels,
it is interesting to compare the predictions of this model to
the more general non-LTE models, given its simple physical
interpretation. In the non-LTE case, presented in Section 4.2.3,
the models involve a larger number of parameters, and are less
well constrained. We use RADEX (van der Tak et al. 2007)
to compute the brightness temperatures of the CO lines and
estimate the likelihood distribution over the parameter space.
These distributions allow us to assess if the available data are
able to distinguish between the LTE and non-LTE models.
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4.2.1. Gas Masses

A useful quantity describing the CO lines is the velocity-
integrated brightness temperature scaled by the area of the
source, L′

CO, in units of K km s−1 pc2. If the CO is thermal-
ized and the lines are optically thick, L′

CO will be the same for
all rotational transitions for which the Rayleigh–Jeans approx-
imation holds. In what follows, the brightness temperatures are
computed in the Rayleigh–Jeans limit, and the values for L′

CO
are listed in Table 4 both corrected and uncorrected for dust
absorption. Taking into account our estimate of the dust optical
depth in Section 4.1, the observed brightness temperature of the
CO lines will be related to the intrinsic brightness temperature
via the relation T obs = exp(−τd )T int, where τd = (ν/ν0)β . This
correction will tend to boost the intensities of the higher-J lines
and drive the excitation of the gas higher (see also Papadopoulos
et al. 2010). The physical parameters of the gas derived in
Sections 4.2.2 and 4.2.3 are also based on the absorption-
corrected line intensities, and the effects of this correction are
discussed as necessary.

L′
CO is traditionally derived from the CO(1–0) transition and

related to the total molecular mass via the empirical relation
Mgas = αL′

CO, where α is 4.6 M� (K km s−1 pc2)−1 for the
Galaxy (Solomon et al. 1997), and 0.8 M� (K km s−1 pc2)−1

for ULIRGs (Downes & Solomon 1998; Tacconi et al. 2008).
Following Solomon & Vanden Bout (2005), we use the latter
value for α and the L′

CO for the lowest observed CO transition to
determine the gas masses (see Table 4). This procedure assumes
that all transitions from CO(1–0) up to the lowest observed are
thermalized, which might not necessarily be the case. A recent
comparison of the CO(3–2) and (1–0) lines (Harris et al. 2010)
shows that the ratio of the brightness temperatures for these
two lines averages to 0.6 rather than 1, due to the presence
of multi-phase CO gas. Moreover, the mid-J CO transitions
do not account for the possible presence of a colder gas
component, making the Mgas derived in this manner a lower
limit for the total gas mass in the galaxy. Assuming that the
lines with Ju > 3 are thermalized, corresponding to a warmer
gas component, we apply this correction factor to the lowest
CO transition measured, and obtain the gas masses listed in
Table 4. However, for subthermal excitation the ratio between
the brightness temperatures of higher-J CO lines and CO(1–0)
could be even smaller. The value of L′

CO(1–0) for SDP.81 derived
from the CO(1–0) line intensity is 1.8 × 1010 K km s−1 pc2,
after correcting for the lensing magnification factor (Frayer et al.
2011), which results in a brightness temperature ratio between
the CO(7–6) and CO(1–0) lines of 0.33 ± 0.16. This also
indicates that our conversion factors will globally underestimate
the total gas mass.

Using the SFRs derived from the IR luminosities, the gas
reservoir probed by CO implies a gas depletion time [Mgas/SFR]
in these objects of ∼107 years, similar to other known SMGs
(Solomon & Vanden Bout 2005; Greve et al. 2005). This can
be interpreted as the starburst lifetime under the assumptions
of constant SFR and no gas inflow. Note that in the absence
of differential lensing, this estimate of the gas depletion time
is independent of lensing magnification. We currently do not
have enough data available to construct lensing models and
constrain the differential lensing for each of these sources. The
star formation efficiency can be expressed directly in terms of
LIR/L′

CO, without the need for a gas mass or an SFR conversion
factor. After accounting for the lensing magnification factor, LIR
and L′

CO for our sample follow the same relationship as other

SMGs and ULIRGs (Greve et al. 2005; Wang et al. 2010), within
the scatter.

We derive an average molecular gas-to-dust ratio for the
lensed galaxies of 127 ± 50, subject to the caveats above: the gas
mass is underestimated using the standard conversion factor, and
the dust mass is also underestimated by the single component
model fit. The mean gas-to-dust ratio does not include the
foreground SDP.17a, and is in agreement with the values found
for other SMG samples (Kovács et al. 2006; Michałowski et al.
2010; Santini et al. 2010). Similar to the gas depletion lifetime,
this ratio will be independent of magnification if we ignore
differential lensing.

4.2.2. LTE Models

The integrated line flux SνΔv (in Jy km s−1) in the observer’s
frame is related to the velocity-integrated Rayleigh–Jeans source
brightness W (J ) by (e.g., Solomon et al. 1997)

W (J ) = λ2
J,J−1,rest (1 + z)3

2kΩa

SνΔv
Ωa

Ωs

, (9)

where Ωs and Ωa are the solid angles of the source and the
antenna, respectively. W (J ) is in units of K km s−1. The last
fraction represents the inverse of the beam filling fraction. The
contribution of the gravitational lensing magnification should
cancel out in this expression, as it contributes to both Sν

and Ωs , but the true Ωs is not known. In principle, the same
approach taken for the continuum (Section 4.1) could be used
to determine the source size. However, such a fit requires a
minimum of three parameters, and will not be well constrained
by the number of CO lines in our SLEDs. In addition, the optical
depth depends directly on the column density, and cannot be
estimated independently, in the same way that the dust optical
depth was determined by the continuum slope. We assume an
intrinsic source size of ∼2 kpc, consistent with the angular
diameter of 0.′′2 of the SMG SMMJ2135-0102 at z = 2.3259
(Swinbank et al. 2010; Danielson et al. 2011) used by Negrello
et al. (2010) for the SDP H-ATLAS sources, and similar to
the size of the dust emitting region found in Section 4.1. The
corresponding beam filling fractions are listed in Table 4. As
this source solid angle now represents the intrinsic size, and not
the magnified one, we must correct the observed flux densities
by the lensing magnification factors. We use the values listed in
Table 2, when available, and assume a value of 10 in all other
cases. The case of SDP.17a is treated differently, as it is assumed
to be a foreground galaxy, not affected by gravitational lensing.
For the intrinsic size of SDP.17a, we use a value of 1.54 arcsec2,
which approximates the size of the optical image. Negrello et al.
(2010) identify two galaxies in the i-band image of SDP.17 and
fit both light distributions with the GALFIT software. As the
presence of two galaxies could indicate a possible merger, we
choose the source size of SDP.17a to be the sum of the areas of
these two galaxies.

The distribution of the velocity-integrated brightness temper-
atures for the CO lines can be constructed starting from the
CO column density and gas temperature, under the assumption
of LTE. Following Goldsmith & Langer (1999), the velocity-
integrated Rayleigh–Jeans source brightness is given by

W (J ) = NJ

hc3AJ,J−1

8πkν2

1 − e−τJ,J−1

τJ,J−1
, (10)

where τJ,J−1 is the line center optical depth, and AJ,J−1 is the
Einstein A coefficient for the transition. In LTE, the column
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density of molecules in the upper level, NJ , is related to the total
column density N, by

NJ = N

Z
gJ e−EJ /kTex, (11)

where Z is the partition function, EJ is the energy of level J,
and gJ = 2J + 1 is the degeneracy of level J. The line center
optical depth can be expressed as a function of column density,
temperature, and line width Δv as

τJ,J−1 = AJ,J−1
c3

8πν3Δv
NJ (ehν/kTex − 1). (12)

We fit Equation (10) to the measured W (J ) distribution, with
the column density and gas temperature as free parameters, and
Δv = 300 km s−1. We find that the best-fit models have relatively
low optical depths (�1) such that the choice of the line width
has only a small effect on the fitted parameters. For the lensed
galaxies, the measured CO SLEDs and the range of SLEDs
allowed by the formal 1σ interval for the gas temperature are
shown in Figure 10. Since the CO lines are found to be close
to optically thin in this model, the column density 1σ interval
would only scale these curves up and down, and not affect their
overall shape.

The SLEDs can be characterized by an overall scale and line
ratios. The scale of the observed SLEDs is mainly a result of
the CO column density and the beam filling fraction, while the
line ratios depend on the CO temperature and gas (H2) density.
The parameters in each pair are therefore largely degenerate
and anti-correlated. This degeneracy is characteristic to CO
and other molecular SLEDs, regardless of galaxy type. The
last correlation (between temperature and gas density) only
exists until LTE is reached, and the temperature becomes fixed.
By making assumptions on the beam filling fraction and gas
density, we can place limits on the remaining parameters. The
error bars on the column densities derived in this manner are
correlated with the errors in the beam filling fraction, which
are not known. Similarly, by making the assumption of LTE
for all transitions up to CO (7–6), we are constraining the gas
density to be greater than the critical density for this transition
(n[H2] � 3 × 105 cm−3). At densities n[H2] � 106 cm−3,
considerably larger than the average value observed in Galactic
molecular clouds, all observed lines should be in LTE. Values
of the gas density more typical for Galactic molecular clouds
(103–104 cm−3) correlate with higher gas temperatures, of a few
hundred degrees, in order to reproduce the observed line ratios.

The best-fit LTE CO column densities are ∼few × 1018 cm−2,
and the gas temperature ranges between 48 and 160 K, as listed
in Table 4, with the largest errors corresponding to the cases
where only two CO lines have been measured. Note that these
temperatures are derived after correcting the line fluxes for dust
extinction, and are on average larger than the temperatures that
would be obtained without correcting the line fluxes (between
41 and 115 K). However, due to the large errors in our
measurements, these differences are not significant.

Taking into account the assumed source size, we estimate total
CO masses (MCO) of a few ×106 M�, or ∼10−4 of the total gas
mass. This is consistent with the average relative abundance
of CO, and would account for the entire molecular mass.
However, since these LTE models imply very large pressures
(∼108 K cm−3), the total molecular content of the galaxy would
have to reside in dense star-forming cores, which would account
for the total CO emission. This suggests that the LTE parameters

cannot describe the overall average conditions of the gas in the
galaxy. Other regions of the parameter space are associated with
non-LTE gas excitation, explored with the RADEX modeling in
the next section.

4.2.3. Non-LTE Radiative Transfer Models of CO Line Excitation

In general, the rotational levels of the CO molecule might
not be populated according to a single temperature, and the
CO excitation temperature does not equal the gas kinetic
temperature. By dropping the LTE assumption, we allow the
excitation temperature to be a function of transition, being
determined by the level populations for each line, while the
kinetic temperature will be the global quantity describing the
thermal energy of the gas. The level populations are found by
solving the detailed balance equations including both radiative
and collisional rates, and the output intensities are calculated by
solving the radiative transfer equations. Usually, these equations
are strongly coupled, involving large spatial and frequency
grids, and further complicated by the number of molecules and
transitions involved. Simplifying assumptions are usually made
to reduce the computing time, depending on the problem at
hand.

We use RADEX to estimate the range of physical parameters
consistent with the measured line strengths when dropping
the LTE assumption. RADEX is a one-dimensional, non-LTE
radiative transfer code, that solves for the level populations
iteratively, employing the escape probability approximation for
the radiative transfer (van der Tak et al. 2007). The medium is
assumed homogeneous and isothermal, and the number, type,
and abundance of the participating molecules is selectable by the
user. The input parameters are the kinetic temperature, Tkin, the
number density of molecular hydrogen, n[H2], as the collisional
partner, and the column densities per unit line width of the
participating molecules, only CO in our case. The background
radiation field is the cosmic microwave background (CMB),
redshifted according to the redshift of each galaxy. The output
contains the predicted line excitation temperatures, optical
depths, and line intensities. The output line fluxes are scaled
by an additional factor φ, that represents fractional corrections
to the size of the emitting region and to the gravitational
lensing magnification factor. It would correspond to the area
filling fraction of the emitting region, if the size and lensing
magnification factor of the source were known precisely. A
value φ > 1 would suggest that the assumed source size was
underestimated. We compare the measured flux densities with
the line intensities output by RADEX using the same values
for source sizes, line widths, and lensing magnification factors
assumed in Section 4.2.2 for the LTE model. For the case φ = 1
and n[H2] 
 ncrit for all transitions, RADEX will recover the
LTE SLED as determined from Tex and N[CO] in Section 4.2.2,
as expected.

We run RADEX for a range of input models, parameterized
by Tkin, N[CO]/dv, n[H2] and φ, and compute the likelihood
density function for all models following the method described
in Ward et al. (2003). Weak priors are set to rule out unphysical
solutions, keeping the total molecular mass smaller than the
dynamical mass, and the length of the CO column smaller than
the physical size of the galaxy (Ward et al. 2003; Panuzzo et al.
2010). The dynamical mass cutoff is estimated choosing the
line width of 300 km s−1, and we require that the gas be self-
gravitating Sz (Kvir � 1; e.g., Scott et al. 2011; Papadopoulos
et al. 2004). We also impose a limit for the kinetic temperature at
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Figure 11. Contour plots of the (Tkin, n[H2]) two-dimensional marginal likelihood distributions, generated by an MCMC sampling of the parameter space for RADEX
models. The contours are in nσ -equivalent steps, enclosing 68.3%, 95.4%, 99.7%, and 99.99% of the probability, respectively. The dashed lines correspond to
parameters that reproduce the LTE solution, and the dotted lines indicate the parameters corresponding to the RADEX four-dimensional maximum likelihood solution.
Note that the two-dimensional marginal distributions will not necessarily have the same maximum as the four-dimensional distribution. The kinetic temperature is
limited to <3000 K, where collisional dissociation of CO becomes important. In the SDP.81 panel, the lighter contours show the probability levels for a model
including the CO(1–0) from Frayer et al. (2011). The parameters for this model are listed as model SDP.81* in Table 5.

3000 K, where collisional dissociation begins to rapidly destroy
CO, weakly dependent on the gas density.

We map the surface of the likelihood distribution and deter-
mine the location of its maximum by running a Markov chain
Monte Carlo (MCMC) algorithm, described in detail in K. S.
Scott et al. (2011, in preparation). Due to the large error bars
and small number of data points, the aforementioned priors have
only a weak effect on the final result, and mostly prevent the
MCMC from spending time exploring unphysical regions of
the parameter space. The two-dimensional marginal probabil-
ity contours obtained from the MCMC algorithm are shown in
Figures 11 and 12, with the position of the four-dimensional
maximum likelihood indicated by the dotted line. Note that
the four-dimensional probability distributions are highly non-
Gaussian, and therefore the coordinates of the maxima for the
marginalized distributions in two-dimensional do not match, in
general, the parameters corresponding to the maximum of the
four-dimensional distribution. The set of parameters that maxi-
mizes the four-dimensional likelihood for each galaxy is listed
in Table 5, and the line luminosities predicted by this model
are shown in blue in Figure 10. The 68% credible regions are
calculated as the smallest intervals containing 68% of the one-
dimensional marginal probability for each parameter, around the
value corresponding to the four-dimensional maximum likeli-
hood. In some cases, the credible regions for φ suggest that the
size of the emitting region could be larger than assumed for the

LTE models, interpreted as a larger area characterized by lower
gas density and pressure than the LTE case.

Due to the aforementioned degeneracies (see Section 4.2.2),
the product of the kinetic temperature and gas density on one
hand, and CO column density and φ on the other hand, are
better constrained than individual parameters. These products
are linearly proportional to the gas pressure and total gas mass,
respectively, quantities which are listed in Table 5.

The gas mass has also been derived in Section 4.2.1, using
two parameters: (1) the conversion factor α = 0.8 between
the gas mass and L′

CO(1–0) derived by Downes & Solomon
(1998) from a non-LTE model, and (2) the scaling between
the brightness temperatures of higher-J CO lines and that of
CO(1–0), RJ,1 = T

J,J−1
B /T

1,0
B , using the value R3,1 = 0.6

(Harris et al. 2010), which we assumed to hold for higher J’s.
For comparison, we can independently estimate both factors,
α and RJ,1, using our best-fit non-LTE models. For α we get
an average value of α = 0.46 ± 0.24 for the whole sample,
not taking into account the error bars in the best-fit parameters.
While for R3,1 we obtain an average value of R3,1 = 0.73, in
relative agreement with the more reliable value of 0.64 ± 0.1
obtained by Harris et al. (2010), for the higher-J ratios we have
R5,1 = 0.75 (SDP.11), R6,1 = 0.26 (SDP.17b), and for SDP.81
R7,1 = 0.22 and R7,1 = 0.27 for the two non-LTE models,
respectively (see Table 5). This suggests that for higher-J lines
the RJ,1 factor may be closer to a value of 0.3 for these excitation
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Figure 12. Same as Figure 11 for the (N [CO], n[H2]) two-dimensional marginal likelihood distributions.

Table 5
Parameters Used for the RADEX Models Shown in Figures 10 and 13

RADEX Tkin log(NCO) log(n[H2]) φ log(P) log(Mgas) L′
CO,total

d

Model (K) (1018 cm−2) (cm−3) (K cm−3) (M�) (1010 K km s−1 pc2)

SDP.9a 99. 18.79 7.63 0.44 9.6 8.96 12.3
68% credible regionb 90.-1083. 18.78–20.96 5.39–7.97 0.03–0.63 7.44–10.39 8.81–9.88 5.5–37.3

SDP.11 24. 19.60 7.35 1.7 8.7 10.37 15.5
68% credible region 24–612 18.62–20.40 4.20–7.93 0.11–1.58 6.63–9.93 9.19–10.37 0.9–32.0

SDP.17b 2833. 19.73 2.31 0.91 5.76 10.24 24.4
68% credible region 154–2884 18.44–20.22 2.31–6.38 0.07–0.95 5.76–8.69 8.97–10.24 1.9–38.6

SDP.81 375. 20.09 2.88 0.26 5.46 10.04 10.7
68% credible region 89–1416 18.92–20.91 2.88–6.13 0.01–0.29 5.45–8.28 8.57–10.04 0.2–31.2
SDP.81*c 453. 20.07 2.98 0.18 5.63 9.85 9.0
68% credible region 40–477 19.66–20.35 2.90–4.43 0.17–0.74 5.37–6.00 9.70–10.18 3.4–18.2

Notes. The columns list: (1) the model notation; (2) the kinetic temperature Tkin (under LTE, Tkin = Tex); (3) the CO column density; (4) the density of H2; (5) φ is an
overall scaling factor, that would correspond to the area filling fraction if the intrinsic source size and gravitational lensing magnification factor were known exactly.
This enters as the fourth unknown parameter in the maximum likelihood estimation; (6) the gas pressure; (7) the total gas mass in the beam; and (8) the LIR/L′

CO,total
as a measure of the star formation efficiency predicted by each model, where L′

CO is summed over all CO transitions in the model.
a These parameters correspond to the four-dimensional maximum likelihood solution from an MCMC exploration of the parameter space with 105 iterations for each
galaxy. Additional measured CO transitions would help rule out solutions with extreme temperatures and densities.
b This represents the smallest interval enclosing 68% of the marginal probability for each parameter.
c This second model for SDP.81 includes the CO(1–0) measurement from Frayer et al. (2011).
d When derived from the integrated brightness temperature, a source radius of 1 kpc is assumed.

conditions. By comparison to the models of Narayanan et al.
(2009), values of 0.3 are marginally allowed, on the high end
of the range. We emphasize that these estimates are strongly
model-dependent, and only direct measurements of the CO(1–0)
lines would make it possible to both constrain the models and

validate these values. It is becoming apparent that since most
of our knowledge about local dust-enshrouded galaxies comes
from the study of low-J CO lines, while at high redshift the
high-J CO lines are more readily accessible, we need to be able
to measure both in order to make a direct comparison of the
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Figure 13. W (J ) as a function of transition for four of the galaxies in our sample. For clarity, the points corresponding to the same transition in different galaxies have
been slightly offset left and right from the position of the exact upper J level. The triangle point represents the intensity of the CO(1–0) line for SDP.81 measured
by Frayer et al. (2011). The W (J ) distributions predicted by the LTE and non-LTE models are shown with a dashed and continuous line, respectively. These lines
emphasize the constraints on the allowed parameter space that can be gained by having measurements of both higher and lower-J transitions. While the Z-Spec data
cannot clearly favor one of the models, the non-LTE model is superior when including the CO(1–0) line for SDP.81.

excitation conditions and gas properties. Important progress in
this direction, by measuring the high-J lines in local galaxies,
has been made with Herschel in recent years (e.g., Panuzzo et al.
2010; Rangwala et al. 2011).

The region of the parameter space that is most consistent
with the observed line strengths is enclosed by the likelihood
contours in Figures 11 and 12. The likelihood space roughly
splits into high-density/low-temperature and low-density/high-
temperature solutions. One additional complication to the inter-
pretation arises from the high-dust optical depths, which lead
to the suppression of CO lines with increasing frequency, and
will cause an underestimate of the excitation temperature if un-
accounted for (e.g., Papadopoulos et al. 2010). As mentioned in
Section 4.2.2, we attempt to account for this effect by correcting
the CO line strengths for dust absorption using the dust optical
depths estimated in Section 4.1. However, the likelihood distri-
bution is relatively shallow over the whole region, reflecting the
insufficient amount of information in our data, and the likelihood
contours are only marginally affected by this correction.

To emphasize the insight gained by including additional lines
in the fit, we add to the SLED of SDP.81 the CO(1–0) integrated
flux from Frayer et al. (2011). A likelihood analysis for the new
set of lines results in the best-fit parameters listed in Table 5 as
model SDP.81*. The one-dimensional marginalized likelihoods
for this case are shown by the light gray contours in Figures 11
and 12. The tightening of the likelihood contours is substantial
with just one line added to the data, and the LTE region of the
parameter space becomes less favored. However, the limitation
of this model is that it assumes a single gas component, while
most of the emission in the CO(1–0) line could be originating
from cold molecular gas.

The constraints on the parameter space for the non-LTE mod-
els are weak, as expected given the limited sampling of the SLED
and the large error bars, and cannot well distinguish between
the LTE and non-LTE scenarios. The brightness temperatures
predicted by both the LTE and non-LTE models are shown in

Figure 13, emphasizing the large deviations between the predic-
tions of the two models, especially for lower-J transitions. The
measured data points have been scaled by the lensing magnifi-
cation factors listed in Table 2 when available, and by a factor
of 10 in all other cases. This figure shows that the constraints
on the model parameters can be tightened by measurements of
lower-J transitions, especially the CO(1–0) line. Even if most
of the CO(1–0) emission comes from a colder gas component,
using this value as an upper limit will help rule out some regions
of the parameter space, as in our example for SDP.81.

The properties of the LTE and non-LTE models could be
compared by calculating the total CO luminosity, summed over
all transitions in the model, which is correlated to the SFR and
efficiency. Since the brightness temperature of the CO(1–0) line
tends to be lower in the LTE models, translating into a lower
total gas mass, the star formation efficiency, quantified by the
LIR/L′

CO ratio, will be higher in this case. As the temperature
of the gas increases, more of the rotational CO lines become
optically thick and high-J transitions start to dominate the gas
cooling. Since the dominant cooling CO line is temperature-
dependent, the total CO luminosity will be in general a better
proxy for the total cooling rate than the luminosity of a particular
transition. Bayet et al. (2009) also find a strong correlation
between the total L′

CO and LIR, using a mixed sample of nearby
and high-redshift galaxies. If this relationship holds, we find
that both LTE and non-LTE models are overpredicting the
measured LIR, with a larger discrepancy in the non-LTE case.
However, in both cases the total L′

CO integrated over all lines
is still consistent within the scatter with the Bayet et al. (2009)
correlation, and therefore we cannot rule out either scenario
based on this comparison.

Distinguishing between the different regions in parameter
space will clarify the state of the ISM in these galaxies, and thus
their star formation histories. Specifically, hot/low-density gas
may signal the action of a feedback process on star formation,
increasing the Jeans mass. Other studies of high-redshift SMGs
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find a warm CO component with n[H2] around 104 cm−3 and
temperatures between ∼40 and 60 K (Riechers et al. 2010;
Carilli et al. 2010; Danielson et al. 2011), a region marginally
allowed by our contours. However, a direct comparison with
results obtained from SLEDs extending down to CO(2–1)
becomes less warranted in view of increasing evidence (e.g.,
Panuzzo et al. 2010; Bradford et al. 2009) that the mid- and
high-J CO lines are originating in some cases from a hot gas
component. This high-temperature/low-density solution has not
been fully investigated, but recent studies show that other CO
SLEDs can be consistent with it (K. S. Scott et al. 2011, in
preparation; Panuzzo et al. 2010; Weiß et al. 2007a; Ao et al.
2008; Bayet et al. 2009). The CO SLED in M82 is fit by a
low-mass (∼10% of the total) CO component with a kinetic
temperature of almost 600 K (Panuzzo et al. 2010), while
solutions with Tkin of a few × 100 K are found by K. S. Scott
et al. (2011, in preparation) and Bayet et al. (2009), and can be
allowed by the large(-scale) velocity gradient models for IRAS
F10212+4724 (Ao et al. 2008) and APM 08279+5255 (Weiß
et al. 2007a). Similarly, the Herschel-SPIRE spectrum of Arp
220 shows that the mid-J CO luminosity is dominated by a gas
component with T ∼1350 K, which represents only ∼10% of
the total CO mass (Rangwala et al. 2011). Such temperatures
suggest energy input from outflows or AGN activity. The
presence of an AGN component in SDP.17b is supported by
the relatively flat SLED from CO(6–5) to CO(8–7), similar to
the Cloverleaf quasar or Mrk231 (Bradford et al. 2009; van der
Werf et al. 2010), and the emission line of water, also observed in
galaxies with an AGN component, such as Mrk231 (González-
Alfonso et al. 2010).

5. CONCLUSIONS

Far-IR/submm-wave surveys are revealing submm-bright
galaxies from the first half of the history of the universe
by the tens of thousands, but their detailed study requires
spectroscopic redshift measurements. We have studied a sample
of the brightest sources and have demonstrated a new redshift-
measurement technique with our broadband mm-wave grating
spectrometer, Z-Spec. Z-Spec measures multiple rotational
transitions of carbon monoxide, a major coolant of molecular
gas in galaxies, and thus is not dependent on optical counterparts
which are often absent or hard to identify, as is the case for
these galaxies. We find redshifts ranging roughly between 1
and 3, reaching back to an era when the universe was 15%
of its present age. Their fluxes are proven to be amplified
by gravitational lensing (Negrello et al. 2010), making them
ideal targets for spectroscopic follow-ups. From the observed
CO line luminosities and integrated LIR, typical conversion
factors reveal that these galaxies each house roughly 1010 M�
of molecular gas, and have SFRs between 102 and 103 M� yr−1,
after correcting for lensing magnification. Regardless of the
magnification details, we are clearly witnessing a rare episode
of rapid star formation in these galaxies, since the timescale over
which the observed luminosity can be generated by converting
the inferred mass of gas into stars is only a few tens of millions
of years (depending on the details of the star formation and
the accretion of more gas), which is a small fraction of the
universe’s age even at this early epoch. We estimate that the
dust masses in our sample of lensed galaxies are around a few
× 108 M�, and the wavelengths corresponding to the peaks
of their dust SEDs fall within a narrow range, between 73 and
92 μm in the rest frame. For this initial set of lensed submm

galaxies both the dust properties derived from the IR SED,
and the physical conditions of the molecular gas probed by the
CO lines, are broadly comparable to those in known SMGs
(Greve et al. 2005; Solomon & Vanden Bout 2005; Casey et al.
2011), with excitation temperatures in the 30–120 K range, and
L′

CO/LIR between 1 and 3 × 10−3 K km s−1 pc2 L−1
� , as

measured from the mid-J CO lines.
The partial SLEDs for the CO molecule constructed from the

lines observed by Z-Spec cannot distinguish between different
models of CO excitation. The simplest assumption is that of
LTE, under which we can derive the gas column density and
excitation temperature. We find that the relative line strengths
can be reproduced by relatively low excitation temperatures
(<100 K), and optical depths (<1). In the non-LTE case, other
parts of the parameter space are allowed, including higher
optical depths, while measurements of the lower rotational
transitions are essential in confirming such models.

By being able to characterize galaxies that can be inaccessible
at other wavelengths, the combination of large-area submm
surveys and spectroscopic follow-ups of the CO emission lines
will lead to substantial progress in our understanding of high-
redshift galaxies and their evolution. These results suggest
the possibility of a rapid growth in our understanding of
high-redshift star formation in highly dust-obscured galaxies,
independent of identifying optical or radio counterparts, but
enabled by strong gravitational lensing magnification.
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APPENDIX

Our redshift determination is based on defining the probability
of false positives (or the FDR) in the absence of signal,
and choosing the combination of estimators that produces the
lowest FDR, and therefore the largest significance. In order
to justify these choices and definitions, as well as the

√
N

normalization factor for E2, we will characterize and compare
the distributions of the estimators, given that the signal Si in each
channel is a normal random variable. This is the assumption of
our simulations, which lead to the definition of the redshift
significance. We verify that the distributions of the estimators
are constant over the redshift range considered (0.5–6).
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A.1. Gaussianity

All three distributions, denoted f (E1(z)), f (E2(z)), and
f (E3(z)), respectively, are Gaussian. This can be easily verified
for f (E1) and f (E3), since by definition they are constructed
as linear combinations of normal random variables. E2 on the
other hand, is defined, up to the normalization constant, as a
sample median, which is a central order statistics. Numerous
results (see Shorack 1973; Ruymgaart & Van Zuijlen 1977;
Mason & Shorack 1992, and references therein) show that order
statistics, as well as the linear combinations of order statistics,
of i.i.d. (independent and identically distributed) and non-i.i.d.
variables are asymptotically normal. These conditions apply for
the sample sizes n ∼ 106 of our simulations, and therefore
f (E2) will also be well described by a Gaussian distribution.

A.2. Expected Values

The expected values of the estimators should be 0 at all red-
shifts for noise spectra, and should be largest at the correct
redshift when lines are present in the spectrum. Taken indepen-
dently or jointly, the values of these estimators determine the
significance of the identified redshift.

Let N (z) denote the number of CO lines falling in the
Z-Spec bandpass at redshift z. In the noise simulations, for each
channel i, 1 � i � N (z), the signal values Si are drawn from a
normal distribution, with mean 0, and standard deviation equal
to the noise value, σi . Therefore, all Si/σi will be distributed as
N (0, 1).

It’s easy to see that all our estimators have an expected value
of 0 in the absence of signal. In this case, E1 and E3 are just
linear combinations of i.i.d. normal variables with mean 0. For
simplicity, let us denote Si/σi = xi , where the xi’s are i.i.d.
N (0, 1), and re-write the definition of E2 as

E2(z) =
√

N (z) × median(A), (A1)

where A denotes the set

A = {fij |fij = 0.5(xi + xj ), 1 � i, j � N (z), i < j}. (A2)

The set A has M elements, with M = N (N − 1)/2, and each
element fij = 0.5(xi +xj ) will be a N (0, 1/2) random variable.
Since the expected value of the sample median is equal to the
median of the underlying distribution, N (0, 1/2), which is also
0 (for a Gaussian, the median is equal to the mean), the noise
distribution of E2 is also a Gaussian with mean 0.

If lines are present, let us assume that all Si (i.e., all channels
containing a line) have the same mean S0, and therefore are
distributed as N (S0, σ

2
i ). This is a simplifying assumption,

which leads to a straightforward comparison of the estimators. In
this case, we can also write the signal as Si = S0 +δSi , where δSi

areN (0, σ 2
i ). In this case however, the Si/σi ratios will no longer

be identically distributed, each having a normal distribution with
a different mean, N (S0/σi, 1). From the definitions given in
Section 3.1, we have for the expected values of the estimators:

E(E1(z)) = NS0√∑
i σ

2
i

=
√

NS0√
〈σ 2〉

, (A3)

and

E(E3(z)) = S0√
N

∑
i

1

σi

=
√

NS0〈 1

σ
〉, (A4)

where 〈
1

σ

〉
= 1

N

∑
i

1

σi

,

〈σ 2〉 = 1

N

∑
i

σ 2
i . (A5)

Note that the expected values of the estimators are calculated
over all simulations, while the average of the σi’s is taken
over the set of N (z) lines observed at redshift z. Applying the
Cauchy–Schwarz inequality (〈ab〉2 � 〈a2〉〈b2〉), we have that
〈σ 2〉 � 〈σ 〉2 and

√
〈σ 2〉 � 〈σ 〉, and also 1 � 〈σ 〉〈1/σ 〉 so that

1/〈σ 〉 � 〈1/σ 〉. This translates into

E(E1(z)) =
√

NS0√
〈σ 2〉

�
√

NS0

〈σ 〉 �
√

NS0〈 1

σ
〉 = E(E3(z)).

(A6)
This proves that E3 has a larger expected value than E1, and
will lead to a higher significance result than E1, when used
independently.

The expected value of E2 depends not just on some average
of the noise values in all the channels where the lines fall,
like E1 and E3, but on the distribution of these noise values.
Depending on whether M is odd or even, either 2, 3, or 4
channels will determine the value of median(A), and, depending
on the noise distribution over the Z-Spec channels, the average
noise in this subset of channels could be either larger or smaller
than the average noise of all the channels containing lines.
Due to this distribution of noise among the used channels,
which is dependent on z, E(E2) is not consistently larger or
smaller than E(E3) for any value of z, but we can set a limit
for |E(E3) − E(E2)|, independent of the values of Si and σi , and
therefore independent of z.

By Chebyshev’s inequality, the distance between the mean
and the median is always less than, or equal to the standard
deviation, |mean(A) − median(A)| � σA. On the other hand,√

N (z)mean(A) is equal to E3:

√
N

1

M

∑
ij

0.5(xi + xj ) =
√

N
2

2N (N − 1)
(N − 1)

∑
i

xi

= 1√
N

∑
i

Si

σi

, (A7)

since each xi will appear N − 1 times in the sum. The
equality holds for any distribution of the signal to noise. As
a consequence, the standard deviation of the sample mean for√

N (z)A will also be equal to the standard deviation of E3.
Intuitively, the normalization factor used for E2,

√
N (z), allows

us to apply Chebyshev’s inequality in this way.
For the standard deviation of A we have

σ 2
A = 1

2(N + 1)

∑
i

(xi − x̄)2 = N − 1

2(N + 1)
s2(xi)

= N − 1

2(N + 1)
S2

0s2(1/σi), (A8)

where s(xi) denotes the sample standard deviation, and x̄
denotes the sample mean. Combining Equations (A7) and (A8),
we obtain the constraint

(E3(z) − E2(z))2 � N (N − 1)

2(N + 1)
S2

0s2(1/σi), (A9)
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Figure 14. Comparison of the FDR’s as a function of the pair of estimators selected. The long-dash line shows the FDR for a single estimator, E1. The notation Ek
corresponds to E1 for the (E1, E2) and (E1, E3) pairs, respectively, E2 for the (E2, E3) pair. On the upper right corner, we list the values of the Pearson correlation
coefficient for the same pairs of estimators. Note that the derived FDR decreases as the correlation between estimators decreases. The (E1, E2) pair has the lowest
correlation and also leads to the lowest FDR.

which shows that, since the sample A has a lower standard
deviation than the original set {Si/σi} ((N − 1)/2(N + 1) < 1),
the median of A will be closer than the median of {Si/σi} to the
average value of Si/σi . Therefore, E2 could be a better estimator
than E3 for the case in which only a few of the N (z) channels
are noisier than average (i.e., few outliers).

The choice of any single estimator would be motivated by
these individual properties. However, in the attempt to reduce the
false detection rate even further, we combine these estimators in
pairs, by requiring that their maxima occur at the same redshift.
Figure 14 shows the combined FDR obtained for each of the
three pairs of estimators, as a function of the estimator value (E1
for the (E1, E2) and (E1, E3) pairs, and E2 for the (E2, E3) pair).
The FDR of a single estimator is also plotted with a long-dashed
line, showing that for the same values of the estimator maxima,
the FDR is lower in the combined case than in an individual
case. The values of the Pearson correlation coefficients between
these estimators, listed in the upper right corner, show that a
lower correlation is associated with a lower FDR, since in this
case the maxima are less likely to occur at the same redshift. The
(E1, E2) pair is the one with the lowest correlation and FDR,
and is the one used further in our algorithm.

A.3. Variance

The last step in characterizing the properties of our estimators
is deriving their variance. We will show that E1 and E3 have a
variance equal to 1, while the normalization factor for E2 also
brings is variance within a few percent of this value.

Regardless of the expected value of the signal per channel,
S0, Var(E3(z)) = Var(E1(z)) = 1, since

E
(
E2

1(z)
) = 1 +

NS2
0

〈σ 2〉 ,

E
(
E2

3(z)
) = 1 + NS2

0

〈
1

σ

〉2

, (A10)

and Var(X) = E(X2) − E(X)2, where E(X) is given by
Equations (A3) and (A4) for the two estimators, respectively.
For the noise distribution, the variance of E3(z) also follows

immediately from the fact that the variance of the sample mean
of N i.i.d. N (μ0, σ

2
0 ) random variables is Var(X̄) = σ 2

0 /N :

Var(E3) = 1

N
V ar

(∑
i

Si

σi

)
= NVar

(
1

N

∑
i

Si

σi

)
= 1.

(A11)
It is trivial to see that for N = 2, the variance of E2 is also
1, since in this case E2 = E3. For larger values of N, the
presence of correlations among the elements of A introduces
important complications in deriving an analytic form. In fact, the
covariance between any (fij, fik) = (0.5(xi + xj ), 0.5(xi + xk))
pair is 1/4, and each fij = (xi +xj )/2 is correlated with 2N −4
other variables. Therefore, the covariance matrix of A will have
1/2 on the diagonal, N (N − 1)(N − 2) elements equal to 1/4,
and the rest will be 0’s.

Up to the normalization factor, E2 is defined as the median of
the set A, which is the central order statistic when M = N (N −
1)/2 is odd, and a linear combination of order statistics when M
is even (the average of the two values in the middle). Analytic
expressions for the moments of order statistics have been derived
for the case of i.i.d. normal random variables (David & Nagaraja
2003; Tong 1990), and generalized in a simple form only for the
case of non-i.i.d. exchangeable normal random variables (Owen
& Steck 1962; Tong 1990). Exchangeable random variables
are equicorrelated: the correlation matrix has all off-diagonal
elements equal. However, the variables contained in the set A
are non-i.i.d., and are not equicorrelated, except in the case
when N = 3. For noise simulations, the fij’s are drawn from the
same distribution, but are correlated (ni.i.d), while if lines are
present, the fij’s will also have different means, becoming also
non-identically distributed (ni.ni.d.). No analytic expressions
for the moments exist for this case, and only a few general
relations between the order statistics of such non-i.i.d. variables
have been established (Balakrishnan et al. 1992; Tong 1990).
We can show, however, that the variance of the median of A
can be approximated analytically, and justify the choice of the
normalization factor for E2.

For a sample of i.i.d. normal random variables, it is
well known (Cramer 1946) that the sample median has an
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asymptotically normal distribution, with variance

Variid(X̃M ) → 1

4f (X̃)2M
= πσ 2

0

2M
, (A12)

where X̃M denotes the sample median, f (X̃) is the value of
the distribution function at the position of the median, and
M is the sample size. For a normal distribution N (μ0, σ

2
0 ),

f (X̃) = 1/
√

2πσ 2
0 . Except for this asymptotic case, there are

no analytic forms for the moments of the sample median for the
normal distribution, and the integrations have to be performed
numerically. The value of Variid(X̃M ) has been tabulated in the
literature (Teichroew 1956; Tietjen et al. 1977). We use the
approximation

Variid(X̃M ) ≈ 42mm!4

(2m + 1)!22πf (X̃)2
= 42mm!4

(2m + 1)!2
, (A13)

based on the coefficient multiplying the exponential part of
the distribution function, with m defined as M = 2m + 1.
Empirically, this expression offers a better approximation for
small m’s, than the one derived from the exponent of the
exponential (given in Equation (A12)). The last equality in
Equation (A13) follows for an N (0, 1) distribution.

For a sample of non-i.i.d. equicorrelated random variables,
with the same mean μ0, same variance σ 2

0 , and same covariance
C0, Owen & Steck (1962) showed that the variance of the median
can be written as

Varniid(X̃M ) ≈ C0 +
(
σ 2

0 − C0
)
Variid(X̃M ), (A14)

where Variid(X̃M ) is the variance for the sample median of
M i.i.d. random variables distributed as N (0, 1). This relation
provides an exact solution for the variance of E2 in the case
N = M = 3. Since the elements of A are N (0, 1/2), and
the covariance for any correlated pair is CA = 1/4, from
Equation (A14) follows that

VarA(X̃M=3) = 1

4
+

(
1

2
− 1

4

)
variid(X̃M ) ≈ 0.361 ≈ 1.08/N,

(A15)
where we used Equation (A13) as an approximation for
small M.

While an exact solution to the problem of non-equicorrelated
variables is in principle possible (Rawlings 1976; Hill 1976), it
involves a large number of integrations that ultimately have
to be performed numerically. A similar situation arises in
the study of genetic inheritance, and has led several authors
(Meuwissen 1991; Phocas & Colleau 1995) to develop approxi-
mate solutions, by assuming that all the variables are equicorre-
lated, with a correlation coefficient equal to their average corre-
lation, and further refining this approximation using polynomial
fits to Monte Carlo simulations.

Following Phocas & Colleau (1995), we can define an average
covariance Ceff , and assume that the sample A will behave as
an equicorrelated sample with the new “effective” correlation.
By definition, the variance of the sample mean is

Var(X̄) = 1

M2

∑
i

Var(Xi) +
2

M2

∑
i,j>i

Cov(Xi,Xj ). (A16)

We define the average covariance, Ceff , as the value that summed
over all pairs produces the same total covariance. Since the
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Figure 15. Upper panel: variance of the median of set A, calculated using
the approximation in Equation (A18), with the correction for small N (solid
line), and obtained by simulations (diamonds). For comparison, the dashed line
shows the 1/N curve. Lower panel: the standard deviation of E2, obtained by
normalizing median(A) by the

√
N factor. The solid line and the diamonds

represent the analytic approximation, and the simulations, respectively, while
the dotted lines are plotted to guide the eye. Note that the simulated points are
in fact more linear than the semi-analytic formula, supporting an uniform

√
N

normalization factor, and the deviations from unity are only a few percent.

covariance sum has M(M − 1)/2 terms, we have

Var(X̄) = Mσ 2
0

M2
+

2

M2

(
M(M − 1)

2
Ceff

)
= σ 2

0

M
+

M − 1

M
Ceff,

(A17)

In order to derive Ceff , let us remember that, since the mean
of sample A is equal to E3/

√
N (by Equation (A7)), it will

also have the same variance as E3/
√

N , namely, 1/N . By
equating Equation (A17) with 1/N , and taking into account
that σ 2

0 = 1/2, after some algebra we obtain Ceff = 1/(N + 1).
Substituting Ceff for C0 in Equation (A14), the expression for
the variance of the median for the sample A becomes

VarA(X̃M ) ≈ 1

N + 1
+

N − 1

2(N + 1)
Variid(X̃M )

= 1

N + 1
+

N − 1

2(N + 1)

π

(N + 1)(N − 2)
, (A18)

where the last equality holds for large N’s and can be approx-
imated as 1/N + 0.57/N2, and therefore has an overall 1/N

behavior. For small N’s, we calculate the values of VarA(X̃M )
numerically, replacing Variid(X̃M ) by Equation (A13). In this
case, VarA(X̃M ) = 1/N + O(1/Nk), where O(1/Nk) has
values less than 0.03. Thus, by semi-analytic arguments,
VarA(X̃M ) ≈ 1/N .
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Even without additional polynomial corrections, the expres-
sion in Equation (A18) reproduces the actual variance within
a few percent. We have checked this result by numerical sim-
ulations, obtained by drawing N (z) numbers from a N (0, 1)
distribution (corresponding to the Si/σi variables for the noise
spectrum), constructing the setA, and taking its median. The ex-
pected value and variance of VarA(X̃M ) for each N (z) have been
calculated from 106 such samples. The upper panel Figure 15
shows the analytic approximation with a solid line, and the sim-
ulated points as diamonds. The 1/N dependence is overplotted
with a dashed line. For the analytic curve we have used the
expression in Equation (A13) for N < 15 and Equation (A18)
for larger N’s. The bottom panel of the same figure shows a
better comparison, obtained by multiplying the same curve and
the points by N (z) and taking the square root. In this case, the
values plotted represent the standard deviation of E2. From this
figure it is apparent that, while our analytic approximation re-
produces the behavior of Var(E2) within a few percent, based
on the numerical simulations Var(E2) is in fact even more lin-
ear than the approximation suggests, which further justifies the
choice of the

√
N as the normalization constant for E2. Even if

the simulations do not asymptote exactly to 1, the difference is
a constant multiplication factor, showing that there is no addi-
tional N dependence.
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Negrello, M., Perrotta, F., González-Nuevo, J., et al. 2007, MNRAS, 377,

1557
Omont, A., Neri, R., Cox, P., et al. 2011, A&A, 530, L3
Owen, D. B., & Steck, G. P. 1962, Ann. Math. Stat., 33, 1286
Panuzzo, P., Rangwala, N., Rykala, A., et al. 2010, A&A, 518, L37
Papadopoulos, P. P., Thi, W., Miniati, F., & Viti, S. 2011, MNRAS, 414, 1705
Papadopoulos, P. P., Thi, W., & Viti, S. 2004, MNRAS, 351, 147
Papadopoulos, P. P., van der Werf, P., Isaak, K., & Xilouris, E. M. 2010, ApJ,

715, 775
Partridge, R. B., & Peebles, P. J. E. 1967, ApJ, 147, 868
Pascale, E., Ade, P. A. R., Bock, J. J., et al. 2008, ApJ, 681, 400
Pascale, E., Auld, R., Dariush, A., et al. 2011, MNRAS, 415, 911
Phocas, F., & Colleau, J. J. 1995, Genetics Selection Evol., 27, 551
Pilbratt, G. L., Riedinger, J. R., Passvogel, T., et al. 2010, A&A, 518, L1
Poglitsch, A., Waelkens, C., Geis, N., et al. 2010, A&A, 518, L2
Priddey, R. S., & McMahon, R. G. 2001, MNRAS, 324, L17
Puget, J., Abergel, A., Bernard, J., et al. 1996, A&A, 308, L5
Rangwala, N., Maloney, P. R., Glenn, J., et al. 2011, ApJ, 743, 94
Rawlings, J. O. 1976, Biometrics, 32, 875
Riechers, D. A., Capak, P. L., Carilli, C. L., et al. 2010, ApJ, 720, L131
Rigby, E. E., Maddox, S. J., Dunne, L., et al. 2011, MNRAS, 415, 2336
Ruymgaart, F. H., & Van Zuijlen, M. C. A. 1977, Indagationes Mathematicae

(Proceedings), 80, 432
Sanders, D. B., Scoville, N. Z., Young, J. S., et al. 1986, ApJ, 305, L45
Santini, P., Maiolino, R., Magnelli, B., et al. 2010, A&A, 518, L154
Schleicher, D. R. G., Spaans, M., & Klessen, R. S. 2010, A&A, 513, A7
Scott, K. S., Austermann, J. E., Perera, T. A., et al. 2008, MNRAS, 385,

2225
Scott, K. S., Lupu, R. E., Aguirre, J. E., et al. 2011, ApJ, 733, 29
Shorack, G. R. 1973, Ann. Stat., 1, 146
Smail, I., Ivison, R. J., & Blain, A. W. 1997, ApJ, 490, L5
Smirnov, N. 1948, Ann. Math. Stat., 19, 279
Solomon, P. M., Downes, D., Radford, S. J. E., & Barrett, J. W. 1997, ApJ, 478,

144
Solomon, P. M., & Vanden Bout, P. A. 2005, ARA&A, 43, 677
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