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Abstract

We present an implementation of a blind source separation algorithm to remove foregrounds off millimeter surveys
made by single-channel instruments. In order to make possible such a decomposition over single-wavelength data,
we generate levels of artificial redundancy, then perform a blind decomposition, calibrate the resulting maps, and
lastly measure physical information. We simulate the reduction pipeline using mock data: atmospheric fluctuations,
extended astrophysical foregrounds, and point-like sources, but we apply the same methodology to the
Aztronomical Thermal Emission Camera/ASTE survey of the Great Observatories Origins Deep Survey–South
(GOODS-S). In both applications, our technique robustly decomposes redundant maps into their underlying
components, reducing flux bias, improving signal-to-noise ratio, and minimizing information loss. In particular,
GOODS-S is decomposed into four independent physical components: one of them is the already-known map of
point sources, two are atmospheric and systematic foregrounds, and the fourth component is an extended emission
that can be interpreted as the confusion background of faint sources.
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1. Introduction

Astronomical observations in millimeter wavelengths pro-
vide crucial information to comprehend the formation and
evolution of structures in the universe at all scales, from galaxy
clustering (Carlstrom et al. 2002) to circumstellar debris disks
(Chavez-Dagostino et al. 2016). This observational window
also led to the discovery of a whole new population of bright
dust-obscured submillimeter galaxies (SMGs), mostly unre-
solved by single-dish telescopes, but whose detection is
available within a wide range of high redshifts (Casey
et al. 2014). Moreover, cold dusty sources are brighter in
millimeter wavelength, allowing a relatively easy detectability
from ground-based observatories.

Even though millimeter astronomy already spans a few decades,
there are still some relevant challenges for ground-based
observations, concerning especially foreground removal and
calibration of data. First, water vapor and oxygen emit lines at
different microwave lengths, making Earth’s atmosphere partially
opaque to millimeter emissions, alongside the difficulty that
atmospheric fluctuations are nonstationary and often abrupt.
Second, even astrophysical foregrounds may hinder the inference
of some physical quantities. For example, bright patches of an
extended emission could be confused with SMGs or other compact
sources. Conversely, point-like objects stand as a contamination
for an extended source. Third, for single-channel instruments
multiwavelength separation is impeded, making foreground
removals quite challenging. But even with multichannel instru-
ments, in order to maximize their profit, the challenge dwells in
developing advanced decomposition algorithms.

Thus, for any ground-based millimeter-wavelength experi-
ment, it is crucial to explore new strategies to improve data
cleaning, ameliorate astrophysical component separation, and
enhance sensitivity. In this spirit, here we present a new

implementation of two well-known methodologies: principal
component analysis (PCA) and independent component
analysis (ICA). Our main goal is to propose and test a new
technique able to perform multicomponent separation in
defiance of the single-channel limitation. Second, we want to
propose and test strategies to calibrate the separated compo-
nents. Finally, we want to apply our ideas to real data in order
to probe our ability to recover previous measurements and gain
insight on the potential benefits of using our PCA–ICA
technique.
In previous studies, atmospheric cleaning has been attempted

by removing common modes along the detector array (Sayers
et al. 2010). On the other hand, ICA was used in space-based
multichannel experiments to clean the cosmic microwave
background from its astrophysical foregrounds (for a review
see Ichiki 2014). Similar algorithms have been successfully
applied to a variety of astrophysical observations, from
exoplanetary light curves (Morello 2015) to forecasts of
interferometric 21 cm cosmological signals (Zhang et al. 2016).
In context with the literature, we are reporting the first
multicomponent analysis of single-wavelength millimeter data
and for a ground-based telescope. The core of our proposal relies
on a technique to increase data redundancy, whose closest
discussion was made by Waldmann (2014). Although we focus
on the Aztronomical Thermal Emission Camera (AzTEC), a 144-
bolometer camera currently operating in a single (1.1 mm)
channel (Wilson et al. 2008) and coupled to the Large Millimeter
Telescope (Hughes et al. 2010), our approach could be extended
to other single- or even multichannel experiments.
This paper is organized as follows. In Section 2, we motivate

our methodology, introducing the theoretical basis of the PCA
and ICA algorithms. In Section 3, we describe the AzTEC
instrument, the observational data, and the numerical code used
to process the time-domain data into an astrophysical map. In
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Section 3.3, we introduce our proposal of using PCA in time
domain followed by ICA in map domain, as an extension to the
standard AzTEC pipeline. Section 4 is devoted to implement-
ing and testing our techniques with simulations. We describe
the mock data employed, the simulated reduction process, the
decomposition parameters, calibration strategies, and steps to
extract astrophysical information. In Section 5 we apply the
same tools to the Great Observatories Origins Deep Survey–
South (GOODS-S), observed with AzTEC when it was
installed on the 10 m Atacama Submillimeter Telescope
Experiment (ASTE; Scott et al. 2010, hereafter KS10), in
order to recover previous measurements and discuss them in
connection with our simulation results. Our conclusions are
summarized in Section 6.

2. PCA and ICA Algorithms

Why PCA and ICA? Our concern is that atmospheric and
astrophysical emissions are mixed along some range of scales.
It is appealing that both PCA and ICA are blind (nonpara-
metric) separation algorithms, so we do not need to rely on
physical models, but just on the statistical properties of data.
PCA computes uncorrelated projections of data, while ICA
demands the stronger condition of statistical independence.
Before going into formal details of each algorithm (for an
introductory tutorial see Stone 2004), let us intuitively discuss
their respective roles in our implementation (see also Figure 1).

PCA is used in time domain as follows: due to their intense
brightness and angular scale, atmospheric fluctuations induce
large correlations along the bolometer array. PCA computes a
vector basis where the fluctuation modes are uncorrelated; the
first few are attributed to atmospheric contamination and
removed, leaving modes dominated by astrophysical signal and
noise. PCA is very efficient, especially for point-source
recovery, but some motivations to explore more advanced
algorithms include that PCA uses only second-order statistical
moments, i.e., non-Gaussian information is unexploited. More
importantly, at least part of the astrophysical information is lost
when the subset of (bad) principal components is discarded.

Formally, ICA is an extension of PCA, but the cases of
interest and the criteria to apply each of these algorithms may
be significantly different. Provided that the underlying emis-
sions are non-Gaussian, ICA employs high-statistical moments
to find a basis of (not only uncorrelated but) statistically
independent components. Using ICA, it should be possible to
reduce information loss because every component is in
principle isolated, containing no information about others. In

general practice, ICA is fed with m�2 mixed signals to be
decomposed into n�m independent components. Unfortu-
nately, ICA bears an inherent incompatibility with single-
channel instruments: a single-channel instrument yields a
single map at a given wavelength band (m= 1), but ICA needs
at least two input maps in order to decompose them into at least
two independent components (see Sections 2.2 and 3.3 for
details). Still, we can turn this limitation around by producing
hierarchical levels of (artificial) redundancy, mimicking the
maps from a multichannel survey, which can be used as input
for ICA. Specifically, in this paper we propose to apply ICA in
map domain over a series of redundant maps produced with
PCA in time domain.
In the rest of this section we briefly overview the basics of

both algorithms, so that the reader familiar with the theoretical
aspects may jump directly to Section 3.

2.1. Principal Component Analysis

Let us assume that we are working with an astronomical
survey whose raw data ={ }xi i

N
1

b are a collection of Nb time
streams (e.g., the number of bolometers), each of them with
sampling size T. Thus, our time-ordered data can be
represented by a vector x, such that = ´( )x N Tdim b .
Assume also that the time streams were centered in a pre-
processing step, ¬ - á ñx x xi i i , where á ñ· denotes the expecta-
tion value.
The covariance matrix is defined by = á ñ·C x xx

T ,
= ´( )C N Ndim x b b. If it would be the case that every time

stream xi were Gaussianly distributed, then Cx would contain
all the information available, and higher-order statistical
moments would be either zero or trivially rewritten in terms
of Cx.
PCA is formally an eigenvalue problem for the covariance

matrix Cx; the goal is to find a vector basis ={ }ei i
N

1
b such that

they project the raw data x into a new set of uncorrelated
components ={ }yi i

N
1

b ,

l d
=

á ñ=
·

· ( )
y E x

y y

,

, 1

T

i j i ij

where the columns of ET are the unit eigenvectors ei, and l ={ }i i
N

1
b

are the eigenvalues of Cx. It turns out that the new covariance
matrix is diagonal, l= ({ })C diagy i , whose elements are the
variances of the projected time streams, λi=var(yi). The PCA
distinctive step is to order the projected time streams according
to an eigenvalue hierarchy   l l l N1 2 b; then, y1 is called

Figure 1. Schematic description of the data processing in this paper. For simulations, the time streams are built from an atmospheric model and mock (extended and
point-like) astrophysical data. PCA is used in time domain to generate a series of redundant maps { }Mi , and ICA is applied in map domain for multicomponent
decomposition. Later on, the independent signals { }Sj are calibrated and astrophysical information is extracted.
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the first principal component, y2 the second principal component,
and so on. When projected back to the raw data x, the principal
component y1 is evidently the major source of correlation,
contrary to yNb

, which is the source of least correlation.
The cleaning step is simply to discard Natm principal

components that are attributed to large-scale foregrounds
(typically the atmosphere). Then, the remaining components

= +{ }yi i N
N

1
b

atm
are projected back into the original space. Notice

that the cleaned data vector x′also has ¢ = ´( )x N Tdim b .

2.2. Independent Component Analysis

In signal processing analysis, the cocktail party problem is
referred to as the linear mixing of n true signals into the
recordings of m sensors, under the condition n�m (for a
comprehensive review see Hyvärinen et al. 2002; Comon &
Jutten 2010). In this subsection the notion of a sensor is meant
quite generically. For instance, a sensor may be an astronom-
ical survey measured at a given wavelength along with the
process to make an observation map; in this scheme, the mixed
and true signals live in pixel domain. Keeping this broader
notion in mind, let us denote xi as the mixed signal of the ith
sensor, for i=1, 2,L, m. The jth true signal is then denoted as
sj, for j=1, 2,L, n. The raw data are then modeled by ICA as
an instantaneous mixing of the true signals in terms of a linear
combination,

= + + + ( )x a s a s a s . 2i i i in n1 1 2 2

The mixing coefficients { }aij are real numbers that may be
interpreted as the transmission/extinction information of the
true signals through the sensing process. The model can also be
written in matrix notation,

= · ( )x A s, 3

= · ( )s W x, 4

where x is an array whose column vectors are the m mixed
signals, and A is called the mixing matrix (m× n). The goal is
to estimate the unmixing matrix W= A−1, retrieving the true
signals s. Since both W and s are simultaneously estimated, the
unmixing problem becomes too complicated for classical
methods.

ICA relies on the assumption that the true signals are
statistically independent and non-Gaussian. Two random
variables y1 and y2 are statistically independent if and only if
their joint probability distribution is equal to the product of
their marginal probability distributions,

=( ) ( ) · ( ) ( )p y y p y p y, . 51 2 1 2

Statistical independence implies uncorrelatedness, though
uncorrelatedness does not necessarily imply independence.
ICA then appeals to the central limit theorem, which says that
the sum of two non-Gaussian distributions is more Gaussian
than the initial distributions; conversely, independent signals
are maximally non-Gaussian. Thus, to solve the unmixing
problem in Equation (4), ICA estimates those coefficients wji

that maximize the non-Gaussianities of ={ }sj j
n

1.
Non-Gaussianities are measured by high-order statistical

moments. For example, the skewness measures the symmetry
of the distribution, whereas the kurtosis measures how spiky
(or flat) the distribution is. For Gaussian distributions both the

skewness and kurtosis are zero because only the first two
moments are relevant, namely, the mean and variance.
Although the simplest approach would seem to maximize
skewness or kurtosis, they are easily biased by outliers; hence,
more robust non-Gaussianity estimators should be used instead
(for a concise review see Choi 2011). Here, we focus on the
concept of negentropy.
Entropy is the basic concept in information theory, and it is

particularly interesting for measuring non-Gaussianities
(Hyvärinen & Oja 2000). Defined as

ò= -( ) ( ) ( ) ( )H y dy p y p ylog , 6

entropy is related to the degree of information contained in the
random variable y. As the variable is more unstructured and
unpredictable, its entropy is larger as well. Indeed, the
Gaussian distribution possesses the maximum entropy, i.e., it
is the most random, least structured, and least informative
distribution. In the same vein, negentropy is defined as the
deviation from the maximum entropy,

= -( ) ( ) ( ) ( )J y H y H y . 7G

Here y represents the signal of interest, and yG is a Gaussian
distribution with the same mean and variance as y. Negentropy
is always nonnegative, J(y)�0, and equals zero if the signal
y is Gaussianly distributed, J(yG)=0. Clearly, the larger the
negentropy, the more informative is the distribution, and the
more independent is the signal. Hence, negentropy is the optimal
estimator of non-Gaussianity and statistical independence.
As defined in Equation (7), measuring negentropy is

difficult, and some approximated estimators, like higher-order
cumulants, are frequently used:

= á ñ - á ñ( ) [ ( ) ( ) ] ( )J y G y G y , 8G
2

where G is a nonquadratic function that may be conveniently
chosen. In principle, any power function higher than quadratic
is a valid choice for G, but in practice, a wise choice may boost
the speed of the algorithm. For instance, G(y)=y4 is the
kurtosis-based approximation, useful when the independent
signals are flat-like distributed, but otherwise nonrobust against
outliers. Some commonly used functions are

=( ) ( ( )) ( )G y c c y1 log cosh , 91 1 1

= - -( ) ( ) ( )G y yexp 2 , 102
2

where 1�c1�2 is a constant often equal to 1. With this
negentropy approximation, an optimizing algorithm can find
the numerical values of the unmixing coefficients such that they
maximize the negentropy of the independent components
expressed in Equation (4). To this end, in this paper we use
FastICA (Hyvärinen & Oja 1997, 2000), which is a very
efficient fixed-point algorithm that has been widely used and
tested, as it is the most standard ICA algorithm.
There remain, though, two ambiguities inherent to ICA.

These are natural consequences of the fact that we are dealing
with a system with fewer equations than unknown variables.
Henceforth, as a post-decomposition step, the independent
components ought to be calibrated, before any physical
information may be inferred.
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The permutation ambiguity means that the order of the
independent components is basically random; this is because
Equation (2) is invariant under permutations of the mixing
matrix. The seriousness of this ambiguity depends on the
number of independent components and how distinctive they
are. If a given problem required to control the order of many
independent components, the permutation ambiguity could
become too prohibitive for an ICA application.

The scaling ambiguity is the inability to determine the
variance of each independent component. Notice that
Equation (2) remains invariant under the transformation
¬s a sj j j and ¬a a aij ij j, where aj is a real scale factor.

Then, one may choose arbitrary scales right after the
decomposition. As a convention, we will set the scale of every
sj to have standard deviation (std) equal to 1, but scale
calibrations ought to be pursued afterward.

3. The AzTEC Instrument and Pipeline

3.1. The Instrument

AzTEC (Wilson et al. 2008) is a continuum millimeter-
wavelength receiver containing 144 Si3Ni4 spiderweb mesh
bolometers. The receiver is configured to operate in the 1.1 mm
atmospheric window. The bolometers are arranged in a
hexagonal array divided into six slices or hextants, distributed
in a closed packed configuration. The footprint of the
bolometer array covers a roughly circular area of ∼8 arcmin
diameter on the sky. These time-ordered data, or time streams,
are later processed along with the telescope pointing informa-
tion to construct an image of the sky surface brightness. For a
ground-based (sub)millimeter camera, a single detector time
stream d can be described as

 = + + ( )d s N , 11

where s is the surface brightness distribution of astronomical
objects,  is the pointing matrix, is the atmosphere emission,
and N is the instrumental noise. It is important to note that the
atmosphere fluctuations are between 1 and 4 orders of
magnitude larger than the astronomical emission. Therefore,
it is necessary to calculate and remove an estimation of the
atmospheric component, in order to retrieve an image of the
brightness distribution of faint sources. This process is critical
for ground-based observations, where both the telescope
scanning pattern and the map projection code are designed to
decouple the astronomical emission from the atmospheric
foregrounds. In particular, for the data described in the sections
below, AzTEC observations were carried out with a modified
Lissajous pattern; this is a parametric curve constructed from
two sinusoidal waves in orthogonal directions. The projection
of the scan track over the sky, relative to the map center, can be
described by

d = ¢ + ¢( ) ( )A t t t5.5 sin 9 2.0 sin 9 30, 12

d = ¢ + ¢( ) ( )E t t t5.5 sin 8 2.0 sin 8 30, 13

where t is the observation elapsed time in seconds, and δA and
δE are the track offsets from the map center in azimuth and
elevation, respectively. In the following subsection we briefly
overview the standard map projection code, namely, the
reduction pipeline.

3.2. The Reduction Pipeline

A deep millimeter survey is a number of observations of a
sky patch, stored in raw data files containing the recorded time
streams, along with telescope parameters for calibrations. For
surveys made with the AzTEC camera, each observation
contains Nb time streams, corresponding to the effective
number of bolometers (i.e., the bolometers with the best
electronic responsivity). The AzTEC reduction pipeline uses
PCA to remove the atmospherical signal (hereafter the cleaning
process) and projects the cleaned time streams into a bi-
dimensional grid, delivering an astronomical image as a result.
(For a detailed description of the AzTEC pipeline, we refer the
reader to Scott et al. 2008; Wilson et al. 2008.)
Time sampling. Typically, a single observation lasts

20 minutes, but the time streams are sampled in time chunks
of 10 or 29 s. We denote with x the chunk made of Nb time
streams with length T. Every time chunk is worked out
sequentially for each observation, but the reduction code runs
in parallel for multiple observations.
Signal conditioning. All time streams are corrected for

instrumental glitches and large spikes induced by cosmic rays.
A low-pass filter is applied in order to minimize the
contamination of high frequencies.
Atmospheric removal. As explained in Section 2.1, the

principal component is the major source of correlation and is
blamed for atmospheric contamination. But also the second and
third principal components are often contaminated. The
question is how many principal components shall be discarded,
regarding a compromise between contamination removal and
information loss. Because PCA is applied to every time chunk,
the amount of information contained in each principal
component depends on the time-chunk length T: the larger T,
the more components shall be discarded.
The PCA2.5σ procedure. The AzTEC pipeline has a

semiautomated process optimized for point sources (Wilson
et al. 2008). Choosing a small time-chunk length (T= 10 s
customarily), the number of discarded components is estimated
from the eigenvalue distribution: the 2.5 std outliers are
iteratively rejected, and their corresponding eigenvectors are
discarded. Using this procedure, typically 12 principal
components are discarded per time chunk.
Mapmaking. The sky positions per bolometer are continu-

ously recorded, according to the telescope pointing calibration,
the bolometer-array geometry, and the scanning strategy. This
information is contained in an object called the pointing matrix
 . Using  , the cleaned time streams are projected into a single
grid called the co-added map.
Noise estimation. Around 100 jackknife simulations of the

cleaned time streams are projected into a single weight map W
(p) that stores the inverse noise variance per pixel p. The noise
of every co-added map depends on (1) the effective sensitivity
σeff or the rms noise, which is nearly uniform along the map,
and (2) the sample number per pixel, namely, the hitmap H(p).
Hence, the weight map W(p) can be approximated by

»( ) ( )W p w H p1 2
eff . Both the effective weight weff=1/σeff

and H(p) can be normalized such that 0<H(p)<1. This
approximation is accurate to better than 0.1% for AzTEC maps.
Then, the signal-to-noise ratio (S/N) map can be directly
obtained from the signal and weight maps.
Filtering. The AzTEC pipeline is equipped with low- and

high-pass filters. The low-pass filter is a Gaussian one with an
FWHM of the size of the telescope beam, and it is necessary for
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removing spurious high-frequency fluctuations. A Wiener filter
with a point-like kernel can be used to boost the detection of
point sources (Downes et al. 2012; Perera et al. 2013); it
enhances compact sources in detriment of extended signals.

The detection of bright sources is performed inside the
uniformly covered area. The first step is to locate the highest-
S/N pixel and enclose the bright source within a beam-radius
area. Then, pixels closer than twice the beam size are discarded
as candidates for the next brightest source. The search
continues down to a specified limit e.g., S/N>4.

3.3. The ICA Extension to the Pipeline

Despite the fact that ICA is formally an extension of PCA,
ICA cannot be directly applied to clean the bolometer time
streams. The main obstacle is the permutation ambiguity,
explained in Section 2.2. As mentioned in the preceding
subsection, keeping control of the time-stream order is crucial
because it contains the bolometer positions on the sky, without
which the mapmaking step could not be accomplished.

For surveys made with multichannel instruments, it is
possible to generate a map per channel, containing redundant
information at different wavelengths. ICA is often used to gain
leverage from these multiwavelength signals in map domain
(e.g., Ichiki 2014). Since typically one would have only a few
channels (e.g., m= 3), the permutation ambiguity is not an
issue in map domain. Unfortunately, the number of intrinsic
signals within the maps could be typically larger than the
number of available channels, that is, n>m, then preventing a
proper decomposition. In single-channel instruments like
AzTEC the limitation is obviously worse, lacking any leverage
of multiwavelength redundancy.

With the aim to overcome the single-channel limitation, we
are proposing the generation of artificial redundancy. Speci-
fically, we generate redundant maps by applying different
thresholds in the PCA technique: map M1 is made by
discarding the first principal component, M2 by discarding
the first and second principal components, and so on, up to

-MNb 1, where Nb is the effective number of bolometers. Our
main assumption is that the components present in the map are
coupled by different mixing coefficients in the redundant maps.
We choose a relatively large time chunk (120 s) in order to
generate a smoother transition in the degree of redundant
information. Notice that PCA in time domain is basically
employed as a filter to generate hierarchical levels of
redundancy. Consequently, the redundant maps are strongly
correlated at several angular scales, and now ICA can be
applied on them.

Following Section 2.2, we model the set of redundant maps

=
-{ }Mi i

N
1

1b as a mixture of n independent components ={ }Sj j
n

1.
The ith redundant map is explicitly

= + + + ( )M a S a S a S , 14i i i in n1 1 2 2

or in matrix notation,

= · ( )M A S, 15

= · ( )S W M. 16

Here M is an array containing the Nb−1 redundant maps, A is
the (Nb−1)×n mixing matrix, W≈ AT is the unmixing
matrix, and S is an array containing the n independent maps. In
this paper we use FastICA (Hyvärinen & Oja 2000) to estimate

W and S by maximizing the negentropy of the indepen-
dent maps.
In FastICA we simply use the logcosh function as in

Equation (9). For visualization purposes, we also use the
following expression for negentropy:

=
á ñ - á ñ

á ñ
( )

∣ ( ) ( ) ∣
( )

( )J y
G y G y

G y
20 , 17N

N

which is equivalent to Equation (8) but differs by a couple of
normalization factors (the constant 20 and á ñ( )G yN ) included to
increase the contrast between negentropy values. Here, y and yN
are unit-std distributions centered at zero, y represents the pixel
values of a map, yN is the normal standard distribution, and

=( ) ( )G y ylog cosh . Notice that this expression satisfies the
negentropy properties J(y)�0 and J(yN)=0.
It is wise to restrict the pixel data to the better-sampled

region on the sky. We adopt the convention to feed ICA with
the map area where the (outermost) coverage is at least ∼30%
of the maximum, but to extract physical information only from
the 50% uniformly covered region. After a successful
decomposition, in order to tackle the permutation and scaling
ambiguities, we must calibrate the independent maps. To this
end, we implement some calibration alternatives in Section 4.3.
To end this section, a few alternatives to generate redundancy

can be mentioned from the literature. An interesting approach
could be a decomposition in a convenient wavelet space, with the
ancillary beneficial ability to calibrate the independent components
(Waldmann 2014). Another arguably possible alternative would be
to use observations taken at different time intervals as the input for
ICA (see, e.g., Funaro et al. 2003; Waldmann 2012). We do not
follow this approach because the amount of Gaussian noise in
every individual observation is much larger than the co-added
observation, thus making quite difficult the decomposition for
ICA. Besides, given that this set of time-ordered maps were not
observed simultaneously, they would break the basic assumption
of instantaneous mixing.

Figure 2. Astrophysical mock data used in our simulations: (1) a set of 30
beam-sized sources compose the point model P, and (2) a smoothly (3×beam)
varying source constitutes the extended model E. The inner 270 arcmin2

contour represents the area where the telescope coverage is at least 50% of the
maximum.
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4. Decomposition of Mock Data

In this section, we fabricate a set of atmospheric and
astrophysical signals mixed in time streams, simulate the
pipeline process to perform a decomposition, propose strategies
for calibration, and finally measure (mock) astrophysical
information, which is useful to probe our technique.

As a benchmark, we use the AzTEC GOODS-S survey, in
which a Lissajous scan was performed, the telescope beam
FWHM was approximately 30 arcsec, and the pixel size was
chosen to be 3 arcsec.

4.1. Building Simulations

The atmospheric signals are created in time domain, where
an inverse f−α

filter is used to generate atmosphere realizations

statistically similar to observations. The ith detector signal is

   = - {( ) } ( ), 18i i
1 1 2

where i is the ith power spectrum,  is the Fourier transform
of a random Gaussian sequence with the same length of time

Figure 3. Redundant maps Mi made with the AzTEC pipeline, removing i principal components, respectively. Notice that atmospheric and extended foregrounds are
progressively removed. Point sources persist in all redundant maps with decreasing brightness; the last (not shown) redundant maps contain nearly Gaussian noise.
Contours as in Figure 2.

Figure 4. Statistical moments of (inner 270 arcmin2 area) redundant maps.
Negentropy is computed with Equation (17), and ρ(E) stands for pixel
correlation with the extended model E.

Figure 5. Reference M0 map, computed with the PCA2.5σ procedure, described
in Section 3.2. Sources with S/N>4 are counted as detections and circled
with solid white lines. The 30 initial mock point sources are numbered and
circled with dotted yellow lines. Notice that not all the initial/detected point
sources are coincident; some detections correspond to bright patches of the
extended model E.
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streams, and  -1 is the inverse Fourier transform operator. To
preserve the statistics of the correlation matrix, we use a single
-realization for all the detectors. We include the effect of an
elevation gradient and a differential airmass change in the line
of sight,

p e= -t t ( ) ( )F F e sec 2 , 19i i0 0

where εi is the elevation track, τ is the opacity, and F0;
80 mJy beam−1 and τ0;0.06 are typical flux and opacity
normalization factors at 1.1 mm, respectively.4 The noise levels
resulting from our simulations are usually smaller than real data
by a factor d  –n 1.25 1.75S (possibly because real atmo-
spherical data may contain additional patterns, though we
expect them to be less dominant). Thus, we propagate this
factor as d¬ -W n WS S

2
S, allowing us to make a proper

comparison between simulation and real S/N.
The mock astrophysical data, as shown in Figure 2, are a

group of 30 point sources labeled as P, embedded in an
extended source labeled as E. P resembles, for example, a
population of SMGs, while E represents an extragalactic
extended emission. The point sources are randomly located
Gaussian distributions, spaced out at least 5 times the beam
size, with fluxes between 4.5 and 8 mJy beam−1. For E we use
a facsimile of 30 Doradus in the Large Magellanic Cloud
(Seale et al. 2014), adapted for our interests: smoothed with a
90 arcsec Gaussian kernel, centered at the mean, and with a
maximum flux of 10 mJy beam−1.

Finally, we map the mock astrophysical data back to time
domain, using the GOODS-S scanning strategy and pointing
information. To reduce computation time, we take advantage of
the Lissajous scan continuity, applying a custom bi-linear

interpolation algorithm to efficiently convert pixel information
into mock time streams.

4.2. Reduction and Decomposition of Mock Data

A total of Nb= 106 redundant maps are produced with the
AzTEC pipeline, and a few of them are shown in Figure 3; it is
interesting to see their statistical moments because they reflect
their mixing degree. We adopt the 270 arcmin2 (50% of
uniform coverage) map area to measure information and to
perform our analyses. In Figure 4 we plot the std, skewness,
and our approximation to negentropy. Due to the dominant
brightness of atmospheric emission, the std is high for the first
map and falls off to zero at the last map. The most mixed map
is M1; correspondingly, its negentropy and skewness are close
to zero. We also computed a set of maps with the atmospheric
model only, which helped us to confirm M1�i�5 as the most
atmospheric-contaminated maps. However, atmospheric and
extended emissions are progressively removed from redundant
maps, increasing negentropy until a maximum around M60; we
assert that M60 is the least mixed map. Afterward, only point-
like sources are left, but they become gradually fainter, until the
last maps are dominated by nearly Gaussian noise; likewise,
negentropy and skewness fall off close to zero at M106.
We also perform the customary PCA2.5σ procedure for point

sources, as explained in Section 3.2. The resulting map M0 can
be used as a reference to appreciate the leverage of our PCA–
ICA technique, compared to the simplest PCA approach in time
domain. M0 is shown in Figure 5, and its statistical moments
are listed in Table 1. Indeed, we do not see bright atmospheric
residuals in M0, like those evident in  { }M i1 5 . Still, we see
important residuals from the astrophysical extended model, all
mixed with the point sources. As we mentioned, these
astrophysical residuals can be harmful because they bias
measurements intended for compact sources.
We use the following set of FastICA parameters. We choose

to work with n=4 independent components; this number is
data dependent, but a good choice of n must yield physically
meaningful and robust solutions. We test a large number of
random initialization matrices and check that the solution
preserves small negentropy dispersion. We use the FastICA
parallel algorithm and the tolerance parameter tol= 10−12

(Hyvärinen & Oja 2000).
The decomposition results are both the mixing matrix shown

in Figure 6 and the independent components shown in Figure 7.
By visual inspection, S1 can be easily identified with the point
model P and S2 with the extended model E. S3 is made of
smooth bright fluctuations, so we identify it as an atmospheric
foreground. S4 looks less familiar because it contains
symmetric stripes; actually, this pattern can be identified as
an effect due to the Lissajous scanning strategy.
In order to gain an intuitive insight about the usefulness of

redundancy, we also perform ICA over a highly redundant set
of maps. We produce another set of redundant maps denoted by
{ }N ;i they contain the same mock atmosphere and E, but not P.
We then perform an ICA decomposition of the 2(Nb−1)
redundant maps { }Mi and { }Ni , and the results are remarkable:
as seen in Figure 8, the point sources are almost perfectly
isolated. The flux distribution is delta-like with a heavy positive
tail due to the point-source signal; hence, detections would
have extremely high S/N. Of course, this degree of redundancy
is unrealistic, but at least from a qualitative point of view, this

Table 1
Statistical Properties per Simulation Map

Map Std (mJy) Skewness Negentropy ρ(P) ρ(E)

M0 2.18 0.27 0.54 0.47 0.48
S1 1.51 1.26 2.15 0.70 0.12
S2 2.61 0.05 0.10 0.08 0.71

Note. Statistical moments quantified within a 270 arcmin2 area. Negentropy is
computed with Equation (17), ρ(P) stands for the pixel correlation with the
point model, and ρ(E) stands for the correlation with the extended model.

Figure 6. Mixing matrix coefficients from Equation (14). The jth component Sj
in Figure 7 is coupled to the redundant maps { }Mi by the mixing
coefficients = { }A aj ij .

4 1 Jy = 10−26 W m−2 Hz−1.
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idealization helps us to gain intuition about what we may
expect from a decomposition of redundant maps.

4.3. Calibration of Independent Components

Because of the ICA ambiguities, the independent compo-
nents need some calibrations before being ready to extract
physical information. Below we discuss some calibration
strategies.

The permutation ambiguity could be even trivially solved by
eye as we just did in the previous subsection, but when the ICA
decomposition is part of a pipeline, we need an autonomous
algorithm to identify physical components on the fly. As can
be seen in Figure 6, we find heuristically that the sum of
the P-mixing coefficients is always the largest, followed by the
E-mixing coefficients, the atmospheric foregrounds, and the
scanning pattern. This effect is related to the typical angular
scales of the objects contained in each independent component.

We can use this hierarchy for blind identification of
components. Our main target is the point-source component
because of the scale calibration described below. (An
alternative criterion to handle the permutation ambiguity can
be found in Waldmann 2012.)
The scaling ambiguity may be split into sign and absolute-

scale ambiguities. To solve the sign ambiguity, we demand that
å >=

- a 0i
N

ij1
1b , for each j=1, .., 4. The intuitive reasoning is

that the mixing coefficients aij represent the degree of Sj mixing
into every individual Mi, and the average mixing should be
positive. The absolute-scale ambiguity could be approached
with the std criterion: every independent component is scaled
with the std of the most akin redundant map. With “most akin,”
we mean the Mi whose pixel correlation with Sj is maximum.
This inaccurate criterion might be useful only for visualization
purposes, with the atmospheric foregrounds, for instance.
We also propose a scale calibration using external artificial

information. We refer to a witness as a mock source similar to

Figure 7. Independent components decomposed from redundant maps as in Equation (14) and calibrated as explained in Section 4.3. S1 is interpreted as the point-like
component of the astrophysical model. The white solid circles enclose S/N>4 detections, and the yellow dotted circles locate the original mock point sources; all but
two detections are coincident with the point model. S2 is interpreted as the extended component of the astrophysical model. The component S3 is interpreted as an
atmospheric foreground. The stripes featured in map S4 are interpreted as effects of the Lissajous scan. Contours as in Figure 2.
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the physical signal of interest. It is inserted into the redundant
maps and retrieved after an ICA decomposition. By definition,
a witness must fulfill two conditions: (i) it does not alter the
statistical properties of actual data, and (ii) it is always
recovered in the ICA map under calibration. These conditions

warrant that except for the scale, the decomposition preserves
the witness information.
For the point-source component, a witness can be a two-

dimensional Gaussian with beam-sized symmetrical widths.
First, we insert one witness into the redundant maps, creating a
new set of slightly perturbed ¢{ }Mi maps. The witness is wisely
located in regions where the flux distribution is locally uniform
and at least 3.5 beams away from any (mock) astrophysical
point source. We check that the general statistical properties
of the redundant maps are not modified by the insertion of
a witness. After ¢{ }Mi are ICA-decomposed, the witness is
always found in S1. We set to unit the scale of S1 inside the

Figure 8. Point (uncalibrated) component decomposed from arbitrarily highly
redundant maps (the sets Mi and Ni explained in the text).

Figure 9. Flux distribution within the inner 270 arcmin2 region of the
following maps: the extended model E in Figure 2, the reference map M0 of
Figure 5, and the independent components S1 and S2 in Figure 7.

Figure 10. Detection rate (S/N) of point sources as a function of flux. Sources
with S/N>4 are counted as detections: 10 (2) detections on M0 (S1) do not
match the point model.

Figure 11. Point-source flux residuals: the model flux minus the measured flux
in the M0 and S1 maps.

Figure 12. Completeness of M0 and S1 maps.

Figure 13. S/N comparison between point sources detected on M0 or S1.
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270 arcmin2 area. We fix the sign ambiguity and make a bi-
variate fit to the witness in S1. The scale factor is found by the
ratio of the actual witness flux to the resulting fitted flux. The
process is randomly repeated to generate a statistical distribu-
tion, whose mean is the calibration scale a1, and its std is added
in quadrature as a systematic error. Using about 10,000
witnesses, we find a1=1.44±0.06, and the calibrated std is
listed in Table 1. Then, the companion weight map W1 can be
computed according to our discussion in Section 3.2.
For the extended component S2, it is not obvious what kind

of artificial signal meets the conditions to be used as a witness.
Hence, a pixel-by-pixel fit to a subset of redundant maps Mi

seems a better approach for calibration. We should consider the
pixel correlation with S2 and discard the most atmospheric-
contaminated maps to choose that subset. For this simulation,
we actually know the underlying (mock) astrophysical
component, and hence we can fit S2 directly to E in order to
help us choose the subset of maps for the fit, according to their
degree of pixel correlation with S2. Following this approach,
we choose M4<i<7, whose correlations with S2 are large
(0.75). The fit is performed simultaneously for the four

Figure 14. Statistical moments of GOODS-S redundant maps, analogous to
Figure 4.

Figure 15. GOODS-S reference map M0 computed with the PCA2.5σ
procedure, described in Section 3.2. Sources with S/N>4 are counted as
detections and circled with solid white lines. External contours as in Figure 2.

Figure 16. Mixing matrix coefficients of the GOODS-S redundant maps,
decomposed with Equation (14).

Table 2
Statistical Properties of GOODS-S Maps

Map Std (mJy) Skewness Negentropy

M0 1.03 0.84 1.07
S1 1.07 0.77 1.18
S2 1.04 −0.67 0.64

Note. Statistical moments quantified within the 270 arcmin2 GOODS-S field.
Negentropy is computed with Equation (17).

Figure 17. Flux distribution within the inner 270 arcmin2 region of the
GOODS-S field, for the following maps: the M0 reference map computed with
the PCA2.5σ procedure, the MKS10 map computed with PCA2.5σ and Wiener
filtering (Scott et al. 2010), and the independent components S1 and S2
decomposed with our PCA–ICA technique. Black error bars represent the
expectation from our simulations of the confusion background (details in text).

Figure 18. S/N comparison between point sources detected in the GOODS-S
field maps S1 or M0.
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independent components. We use the outer 380 arcmin2 area
for calibration (the same as for the ICA decomposition). The
resulting scale factor from this calibration is a2=2.78±0.46,
and the corresponding std is reported in Table 1.

For comparison, from the same fit, the scale factor for S1 is
found to be 1.48±0.42. Hence, the calibration scales obtained
from the witness and fitting approaches are consistent within
the error bars.

4.4. Inference of Astrophysical Information

After the redundant maps are decomposed and the corresp-
onding calibrations are performed, we can analyze the M0, S1,
and S2 maps in more detail. The statistical properties of these
maps can be read from Table 1 and seen on their flux
distribution in Figure 9.

The point-source measurements are improved after our
decomposition. In Table 1, all the statistical properties of S1 are
improved compared to M0. Negentropy, in particular, indicates
that S1 contains more information than M0; as a consequence, we
should expect an S/N boost in S1 compared to M0. Furthermore,
M0 evidently contains extended emission residuals, so we could
expect more biased flux measurements in M0. We also read in

Table 1 that M0 is equally correlated to the punctual P and
extended E models, whereas S1 is mostly correlated with P. From
the histograms in Figure 9, we see that the flux distribution of M0

is relatively flat, resembling the distribution of the extended model
E. Conversely, the S1 is sharply peaked at its mean, with a hard
positive tail corresponding to the signal of point sources, as
expected from our discussion in Section 4.2.
The extended source is fairly isolated after decomposition.

The S2 flux distribution in Figure 9 is much more spread out
than S1; actually, it resembles the flux distribution of E more
closely than M0. Because S2 is mostly correlated with the
extended model E but negligibly correlated to the point model
P (Table 1), we can assert that the astrophysical information
contained in S2 is not contaminated by the point sources.
Now we can detect point sources as described in Section 3.2. In

M0, we detect 35 bright sources with S/N>4, from which 10 do
not match any mock point sources, and 5 of the 30 mock point
sources are not detected inM0. On the other hand, in S1 we detect
32 bright sources with S/N>4, from which only 2 sources (with
S/N5) do not match P. Inside 270 arcmin2, the level of noise
is not abruptly varying, so that one would expect that the S/N
depends primarily on the flux of the point source. In Figure 10 we
plot the detection rate as a function of point-source flux. The
sources detected in S1 seem to follow the expected trend, while in
M0 some bright sources (>5mJy) are found with very low S/N.
These anomalies in M0 can be attributed to the evident extended
emission residuals in Figure 5.
We also check the point-source flux recovery. Indeed, flux

biases are not unexpected after the reduction process; for
example, the Gaussian filter could smear fluxes in the map.
Usually, these biases are negligible for blank fields (see next
section), but in the presence of an extended source like in our
mock data, the bias can be a problem to deal with. In Figure 11,
we show the residuals between initial and measured fluxes for
M0 and S1 respectively. The error bars are computed as usual
(e.g., for the residual R=(F1−F2)/F1, the error is
s s s= +( ) ( )F F F FR 2 1 1 1

2
2 2

2 ). For the P known point
fluxes, we use the effective sensitivity σeff≈0.58 mJy, taken
from the weight map W1 (see Section 3.2). In M0 we measure a
significant rms of 0.31 mJy, again attributed to the remains of
the extended emission. Contrarily, S1 residuals are much less
scattered, with an rms deviation of 0.19 mJy, a behavior closer
to the expectation from a blank field. (Notice that these values
account for statistical errors only.) Moreover, our S1-scale
calibration gets reassured; any (positive or negative) tendency
would hint at a fail in calibration. Satisfyingly, the points are
roughly symmetrically distributed around zero, hence indicat-
ing an accurate S1-scale calibration.
The detection rate in Figure 10 is representative only of the

particular set of point sources in our mock data. A deeper
characterization of S1 and M0 requires a larger sample of point
sources and is known as the completeness of the map. To compute
it, we insert one additional point source, excluding the locations of
the 30 initial point sources and surrounding (beam-radius) areas.
The artificial source is said to be recovered if it is found with S/
N>4 around a circle of half-beam radius. For each equidistant
flux step, we insert 10,000 point sources (one at a time) at random
locations. We estimate the error bars assuming a binomial
distribution. The results for M0 and S1 are shown in Figure 12.
Finally, as expected from Table 1, the point sources in S1 are

detected with higher S/N than inM0 (see Figure 13). Only false
point-source detections show higher S/N in M0.

Figure 19. GOODS-S MKS10 map (Scott et al. 2010). Besides the PCA2.5σ
procedure, an optimized Wiener filter was used to enhance point sources.
Sources with S/N>4 are counted as detections and circled with solid white
lines. Contours as in Figure 2.

Figure 20. GOODS-S completeness of M0, MKS10, and S1 maps.

11

The Astrophysical Journal Supplement Series, 235:12 (15pp), 2018 March Rodríguez-Montoya et al.



5. Decomposition of Real Data

Our next step is to apply our techniques to a set of real data
with the aim of checking the recovering of previous results. For
that, we revisit the AzTEC/ASTE GOODS-S survey, which is
considered to be a blank field. For that reason, this survey has
been extensively studied and used as a trial data set for
extensions to the AzTEC pipeline (Scott et al. 2010, 2012;
Downes et al. 2012; Yun et al. 2012). Although astrophysical
foregrounds are not expected, these observations were certainly
contaminated by bright atmospheric foregrounds. Hence, the
AzTEC/ASTE GOODS-S survey is ideal for our purposes,
mainly to test our calibration strategies on point-like sources.
Besides, our previous simulations were purposely designed to
be very similar to the AzTEC/ASTE GOODS-S survey, which
consists of 74 observations, each one containing Nb= 106
effective bolometer time streams. Then, we can apply the same
methodology as in Section 4.

The AzTEC/ASTE GOODS-S observations reported a 1σ
depth of about 0.48–0.73mJy beam−1, which is below the
estimated confusion background limit of 2 mJy beam−1 (Scott
et al. 2010). The confusion background is the sea of faint
unresolved sources in the sky, creating an extended emission that
can potentially bias detections below the confusion background
limit (Hogg 2001). Unfortunately, this uncertainty cannot be
reduced by increasing the observation time; however, as the
confusion background should be non-Gaussianly distributed,
then, an ICA decomposition is not precluded a priori.

Following the same methodology, we compute the redun-
dant maps { }Mi for GOODS-S. We show their statistical
moments in Figure 14, as well as a few representative
redundant maps in Figure 21. Notice the mixture of small

and large structures in every map. Next, we compute the
reference M0 map as shown in Figure 15, using the PCA2.5σ
procedure (see Section 3.2).5

We proceed with the same decomposition parameters used
previously. We show the mixing matrix in Figure 16 and the
independent components in Figure 22. As we discussed with
simulations, the independent components can be identified
either by eye or from the behavior of the mixing coefficients. S1
is a point-source component, whose mixing coefficients extend
along all the redundant maps. S2 is an extended emission
suspected for an astrophysical origin, whose mixing coeffi-
cients survive to half the redundant maps. The negative peak in
A2 is an effect due to the positive/negative borders between the
M2 and M14 redundant maps. S3 is made of smooth bright
fluctuations, while A3 survives only for the first dozen maps, so
it can be identified as an atmospheric foreground. Finally,
because of its symmetric stripes, S4 can be identified at least
partially with a systematic effect due to the Lissajous scan.
Given that A4 mixes only M1<i<3, we can assert that the
Lissajous systematic harms mostly the largest angular scales.
We continue with calibration (see Section 4.3 for details). S1

is scaled as a1S1, with a1=1.22±0.05 found employing the
witness-based calibration; its companion weight map W1 is
computed as before, with the scale uncertainty added in
quadrature as a systematic error. For S2, we proceed with a
pixel-by-pixel fit to M5<i<9, which are the most correlated with
S2, finding a2=1.57±0.41. (For comparison, from the same
fit, the S1 scale is found to be a1=1.22±0.45.) We finally

Figure 21. Redundant maps of the GOODS-S field made with the AzTEC pipeline, removing i principal components, respectively.

5 The redundant and M0 maps of the AzTEC/ASTE GOODS-S observations
are available for visualization or further image processing in the .tar.gz
package.
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scale S3 and S4 also with the pixel-by-pixel fit to their most akin
redundant maps, M2,3 and M1, respectively.

The statistical properties ofM0, S1, and S2 (within 270 arcmin2)
are listed in Table 2, and their flux distribution can be observed in
Figure 17. In this case, the improvement of the statistical
properties of S1 compared toM0 can only be noticed in the degree
of negentropy. Yet, the improvement is significant enough to
boost the S/N of point sources, as shown in Figure 18. InM0, we
count 25 bright sources with S/N>4. In S1, we count 32 bright
sources with S/N>4. We cannot check for bias as we did with
mock data, but we can compare the fluxes measured inM0 and S1
(see Figure 23).

To enrich our discussion, we test the ability of our technique
to reproduce previously reported results from the same
GOODS-S survey. In KS10, the authors also applied the

PCA2.5σ procedure (with a different code), but the main
difference is that they applied a Wiener filter with a specialized
point-like kernel as a prior. The assumptions taken in that
approach and ours are conceptually different and not mutually
exclusive; thus, a direct comparison must be moderately
assessed. The KS10 map is shown in Figure 19, in which
there are 35 bright sources with S/N>4.
In Figure 23 we also compare the flux measured on S1 and

MKS10. For S/N>5, most of the fluxes are consistent; only
below S/N∼5 are there some noncoincident detections.
These differences arise most likely as a result of the combined
effect of persistent foreground residuals after the PCA2.5σ
procedure and their subsequent enhancement by the Wiener
filter at unresolved scales. This flux comparison is interesting
for the purpose of probing the recovery of high-S/N detections

Figure 22. Independent components decomposed from GOODS-S redundant maps and calibrated as explained in Section 4.3. S1 is a point-like component of the
GOODS-S field. White circles enclose 32 bright sources found with S/N>4. S2 is an extended component, suspected of astrophysical nature, possibly the confusion
background. S3 and S4 are interpreted as atmospheric foregrounds, and the effect of the Lissajous scanning pattern.
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using our PCA–ICA approach, but lack of coincidences at low
S/N should not be overstated.

As we mentioned, S2 is suspected to have an astrophysical
origin, and an intuitive prospect is the confusion background. To
explore this possibility, we simulate the fainter dusty star-forming
galaxy population, following the number counts measured by
Fujimoto et al. (2016), which includes the deep ALMA census of
faint sources (0.02mJy) at 1.2mm and the bright-end AzTEC
1.1mm counts of Scott et al. (2012). Sources are randomly
distributed in space within the simulated maps (i.e., no clustering).
As every realistic observation contains some degree of instru-
mental noise, we also add and convolve a 1.1 mJy white noise to
our simulations, in order to approximately match the negative flux
tail of S2. We generate 200 random realizations of these confusion
maps. Using the weight map W1, we subtract bright sources (S/
N>3.5) and quantify the average flux distribution. As seen in
Figure 17, S2 is consistent with the flux distribution expected from

our simulated confusion background and reflects the 2mJy
confusion limit. This interpretation of S2 could help to explain the
detection differences of S1 compared to M0 or MKS10, especially
for point sources below the confusion limit (see Figure 23).
We also compute in Figure 20 the completeness for M0,

MKS10, and S1. As expected from simulation results, the
completeness of S1 is better compared to M0. Given that MKS10
comes from a process that suppresses extended objects in favor
of point ones, we would have expected a much larger
completeness for MKS10 compared to S1; however, the results
are comparable.

6. Conclusions

In this paper we are presenting a PCA–ICA algorithm capable of
separating atmospheric fluctuations, extended astrophysical fore-
grounds, and point-like sources from single-wavelength millimeter

Figure 23. GOODS-S flux measurements. Top panel: bright sources detected in S1 and M0. Bottom panel: bright sources detected in S1 and MKS10. Square labels
indicate the detection number on each map. Dark-color labels indicate detections with S/N>5; light-color labels indicate detections between 4<S/N<5. The
confusion limit for this survey is 2 mJy (Scott et al. 2010). The flux residuals between each pair of maps are also shown.
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surveys. In order to probe the consistency of our results, we have
tested our methodologies on both mock and real data.

We confirm that our PCA generation of redundant maps allows
a successful application of an ICA decomposition, in defiance of
the single-channel limitation. We find a good agreement between
simulation inputs and the resulting independent components,
along with a good degree of isolation (see Table 1).

We have proposed and tested different strategies to calibrate
independent components, getting rid of the permutation and scale
ambiguities, inherent to ICA. We find that our approach can be
useful to remove both atmospheric and astrophysical foregrounds,
minimizing information loss. Consequently, our decomposition
can help prevent bias in flux measurements and boost the S/N.

We also applied our techniques to the AzTEC/ASTE survey
of the GOODS-S field. We find that a PCA–ICA decomposi-
tion S1 is preferred over the simplest PCA2.5σ procedure M0, as
expected from the analogous result in simulations. We confirm
agreement with S/N>5 detected sources in KS10, showing
consistency to recover previously reported measurements. An
unexpected finding of this work was the measurement of a
feeble extended emission on the GOODS-S field (S2 in
Figure 22), which, according to simulations, is consistent with
the flux distribution of the faintest SMGs’ confusion back-
ground. We conclude that our PCA–ICA implementation is a
viable and promising approach to separate atmospheric and
astrophysical (extended and compact) sources.

One route to extend our work is to improve redundancy with
algorithms other than PCA in time domain. One can also try
different decomposition algorithms, possibly more powerful than
the simplest version of FastICA. Besides, it should be possible to
adapt our technique to multiwavelength data, increasing
redundancy and decomposing signals in each channel, before a
multiwavelength analysis. The complementary maps decom-
posed by ICA are interesting by themselves. Certainly, further
investigations of this kind of technique not only can improve
atmospheric and instrumental models but also make new
astrophysical emissions available. The GOODS-S S2 component
is just an interesting example: our astrophysical simulations
indicate consistency with the confusion background, yet in
future analyses we shall confirm this result through exhaustive
simulations of every systematic effect possibly sourcing S2. If
confirmed, the characterization of the confusion background is
of utmost importance in millimeter astronomy and cosmology,
allowing us to study the clustering properties of SMGs and the
distribution of matter in the universe.

We finally stress that this kind of analysis is particularly
interesting at the advent of the next generation of continuum
cameras, for example, MUSCAT,6 TolTEC,7 SCUBA-2 (Hol-
land et al. 2013), NIKA2 (Calvo et al. 2016). Both MUSCAT
and TolTEC are currently in construction and appointed to
work on the Large Millimeter Telescope (Hughes et al. 2010).
Indeed, this paper is our first step toward the ultimate goal
of developing an efficient multicomponent decomposition
pipeline for both instruments. MUSCAT is a single-channel

large-format camera, comprising ;1200 detectors at the
1.1 mm wavelength band. MUSCAT will record 10 times
more time streams than AzTEC. We will be able to generate
many more levels of redundancy, along broader ranges of
angular scales; thus, the application of our PCA–ICA
algorithms will be very similar to this paper, but much more
promising in quality of the decomposition. TolTEC will
include 6300 detectors distributed in three channels, at 1.1,
1.4, and 2.1 mm, each of them sensitive to linear polarization.
Thus, each single TolTEC observation will result in nine maps,
which can be further decomposed by our PCA (or alternative)
technique to generate higher levels of redundancy. Altogether,
TolTEC surveys and our PCA–ICA technique bring out
exciting expectations about the final data quality and possible
new astrophysical fields to be uncovered.
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