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Correlations between 
black hole mass and 
galaxy properties in the 
local universe 

Average black 
hole accretion  
in star-forming 
galaxies 

Global cosmic evolution of  
star formation rate and 
black hole accretion rate 
densities Zheng+09  

Chen+13  

Häring & Rix 04  

Massive black holes and galaxies 



How do galaxies form? 

BASIC INGREDIENTS 
 

Initial conditions                                         
! primordial density fluctuations 

Background cosmology                              
! LCDM 

And lots of physics!                                                                                                               
! self-gravitating fluid dynamics, gas 
cooling, star formation, stellar feedback, 
supermassive black holes,… 
 

Cosmic Microwave Background 

Galaxy population today 



Cosmological hydrodynamic simulations 

BASIC INGREDIENTS 
 

Initial conditions                                         
! primordial density fluctuations 

Background cosmology                              
! LCDM 

And lots of physics!                                                                                                               
! self-gravitating fluid dynamics, gas 
cooling, star formation, stellar feedback, 
supermassive black holes,… 
 

Cosmic Microwave Background 

Galaxy population today 

Cosmological hydrodynamic simulations 



Cosmological hydrodynamic simulations 
Initial conditions                                           
! primordial density fluctuations 

Background cosmology                                 
! LCDM 

Dark matter dynamics 
! Collisionless Boltzmann equation 
 

Baryonic physics                                                                                                               
! Hydrodynamic forces 
! Gas cooling 
! Star formation 
! Stellar Feedback  
… 
 

Assumed to be known 

Well constrained by  
current N-body methods 

Major challenge! 

BLACK HOLE GROWTH AND FEEDBACK! 

ARAA review by 
Somerville & Davé  



Massive black holes and galaxies 
Need to suppress star formation in massive galaxies!!  
The Need for AGN Feedback!
NEED TO SUPPRESS STAR FORMATION IN MASSIVE GALAXIES

Observed

No Feedback

N
um

be
r D

en
sit

y

Mstars [M�]

Oppenheimer & Dave

#
 o

f 
ga

la
xi

es
 /

 m
as

s 
bi

n 
/ 

vo
lu

m
e 



Massive black holes and galaxies 
Need to suppress star formation in massive galaxies!!  
The Need for AGN Feedback!
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 Massive black holes and galaxies 

 
Energy release from black hole accretion 

relative to galaxy binding energy: 
 

~ 0.1 MBH c2  /  Mgalaxy �2  
 

~ 100 -1000 !! 



< 0.01 pc 

Multi-scale physics !!! 

Massive black holes and galaxies 
M

33 doesn’t have a superm
assive   

black hole but it is beautiful! 

(1)   Accretion disk physics 

(2)   Feedback processes 

(3)   Gas inflows from 
galactic scales 

10 kpc 



0.01 pc 

> 10 orders of magnitude in spatial scale! 

10 Kpc 

100 Mpc 



Need to start with accretion prescription! 
Black holes in Cosmological Hydrodynamic Simulations 

M
33 doesn’t have a superm

assive   
black hole but it is beautiful! 

Accretion rates parameterized as a function of physical 
properties at the scales resolved in the simulation 

ARAA review by 
Somerville & Davé  



M
33 doesn’t have a superm

assive   
black hole but it is beautiful! 

Generic accretion model 

Black holes in Cosmological Hydrodynamic Simulations 
Need to start with accretion prescription! 

ARAA review by 
Somerville & Davé  



Dependence on black hole mass… 

Assume same physical conditions D(t)  –  different initial black hole mass 

Subsequent Evolution of Ma and Mb ? 

Ma Mb 



Subsequent Evolution of Ma and Mb ? 

Ma Mb 

Dependence on black hole mass… 



Subsequent Evolution of Ma and Mb ? 

Ma Mb 

Dependence on black hole mass… 



Subsequent Evolution depends on power index  p 

Ma  and  Mb  converge if  p < 1 

Independent of D(t) !! Anglés-Alcázar et al. (2015) 

Dependence on black hole mass… 



Subsequent Evolution depends on power index  p 

Ma  and  Mb  diverge if  p > 1 

Independent of D(t) !! 

> 
< 

Dependence on black hole mass… 

Anglés-Alcázar et al. (2015) 



Massive black holes in simulations 

Bondi accretion + thermal feedback 

Black hole mass vs. velocity dispersion 

! Feedback self-regulation drives the BH-galaxy connection 

Springel+05, Di Matteo+05,08, and many others 



Subsequent Evolution depends on power index  p 

Ma  and  Mb  diverge if  p > 1 

Independent of D(t) !! 

> 
< 

Dependence on black hole mass… 

Anglés-Alcázar et al. (2015) 



p = 2  in Bondi prescription 

Need to break dependence on MBH for convergence !! 

Dependence on black hole mass… 

Anglés-Alcázar et al. (2015) 

Springel+05 
Di Matteo+05  
and many others 



p = 2  in Bondi prescription 

Need to break dependence on MBH for convergence !! 

Feedback loop required !! 

Dependence on black hole mass… 

Anglés-Alcázar et al. (2015) 

Springel+05 
Di Matteo+05  
and many others 



 

! Is black hole growth self-regulated by a non-linear feedback loop? 
 

! Is the observed connection between black holes and galaxies driven 
by feedback self-regulation? 

! If so, can we break the degeneracy between black hole accretion and 
feedback? 

 

 

? 

! Need to improve the accretion parameterization 

Bondi neglects angular momentum!! 



“Gas at galactic scales must loose > 99.9% of  angular momentum to 
get to the black hole accretion disk” 

Jogee 2006 

Physics of gas inflows 

 

- Galaxy interactions and internal gravitational instabilities trigger 
non-axisymmetric perturbations to the gravitational potential on 
galactic scales 

- Gravitational torques drive gas inflows to smaller scales, triggering 
further instabilities and driving gas to ever smaller scales 

 

 “Bars within Bars” 

Shlosman et al. 1989, 1990  

 

 
But transport of gas by bars is not efficient within BH radius of influence… 



Hopkins & Quataert 2010, 2011 

Analytic gravitational torque model 

 

Perturbations to the stellar component 
drive the gas into shocks that dissipate 
energy and angular momentum  

 
 

 

Gas: Face On  Edge On Stars:  Face On Edge On

Inside BH potential
dominant asymmetry
that drives gas inflow 
is not bar-like (m=2)

Instead:  eccentric/
lopsided disk (m=1), 
in both stars & gas

~ 30 pc

• Stars torquing on gas

gas 
(contours)

stars 
(color)

Gravity dominates torques from 0.1 - 10,000 pc:

 

Inside BH potential the dominant asymmetries driving gas inflows are 
eccentric/ lopsided disk (m=1), not bar-like (m=2) modes 

 
 

 



Multi-scale simulations of gas rich disks 
Hopkins & Quataert 2010,2011 

 

Gravitational torques provide 
angular momentum transport  

Bondi 
Neglects angular momentum! 

Simulations vs. analytic models 



!Gadget2 code (Springel05) extended (Oppenheimer & Davé)   
Multi-phase ISM, metal cooling, UV background, feedback (energy, mass, metals) from type Ia-II SNe, AGB stars, momentum-driven winds,…  

Anglés-Alcázar et al. (2014) 

Cosmological hydrodynamic simulations 

FACE ON 

EDGE ON 



Cosmological zoom simulations 

Central black hole accretion rate in post-processing: 

     Gravitational torque model             
Hopkins & Quataert 2010,2011 

 

•  Parameterize angular 
momentum transport 
below resolution 

•  Gas inflows down to 0.01 
pc scales as a function of  
galaxy properties 

 



Cosmological zoom simulations 

Central black hole accretion rate in post-processing: 

     Gravitational torque model                          Bondi          
Bondi 1952,… 

 

Hopkins & Quataert 2010,2011 

 



! Bondi         ! Gravitational torque          ! Eddington  

! Accretion rate if growing along MBH–Mbulge relation 
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Black hole accretion rates 

Anglés-Alcázar et al. (2013) 
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Torque

BH growth according to scaling relation Anglés-Alcázar et al. (2013) 
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Torque

BH growth according to scaling relation Anglés-Alcázar et al. (2013) 

Need 
feedback! 
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Torque

BH growth according to scaling relation Anglés-Alcázar et al. (2013) 

Need to boost 
accretion! 
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Torque

BH growth according to scaling relation Anglés-Alcázar et al. (2013) 

No feedback 
loop required? 



Torque-limited growth 

10 kpc 

< 0.01 pc 

OUTFLOWS = (1 - �) INFLOWS 
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Torque-limited growth 

" Initial BH mass consistent with          
MBH – Mbulge relation 

" Mass retention rate in the 
accretion disk: 

εm ≈ 5 % 

Anglés-Alcázar et al. (2013) 

Häring & Rix 04  
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Torque-limited growth 

Averaging over 
all galaxies 

Evolution toward scaling relations 
even for 100 M" seeds! 

Häring & Rix 04  

Anglés-Alcázar et al. (2013) 
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Evolutionary tracks of >200 BHs/galaxies from early times down to z = 0 

Anglés-Alcázar et al. (2015) 

Initially over-massive 

Initially under-massive 



108 109 1010 1011

Mbulge  (MO •)

104

105

106

107

108

109

1010
M

BH
  (

M
O •)

z = 0
z = 1
z = 2
z = 4

R0 = R(200)
εm = 0.05

accretion + mergers

Torque-limited growth 

Häring & Rix 04  

Anglés-Alcázar et al. (2015) 
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Evolution of Eddington ratios 

Anglés-Alcázar et al. (2015) 
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Main sequence for black hole growth? 

Evolution of Eddington ratios 

Anglés-Alcázar et al. (2015) 



Average black hole growth proportional to star formation  

SFR – AGN connection 
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Evolution of Eddington ratios 

Anglés-Alcázar et al. (2015) 

Significant offset in Mbh/Mgal ratios at high-z may have 
implications for the evolution of Eddington ratios 

The Astrophysical Journal, 798:1 (22pp), 2015 ??? Anglés-Alcázar et al.
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Figure 9. Top: the impact of initial conditions on black hole growth. For each
host galaxy, we consider black holes with initial masses that are either a factor
of 10 above (M10; red) or below (M0.1; blue) the corresponding MBH–Mbulge
relation and compare their evolution to that of a central black hole initially
consistent with the MBH–Mbulge relation (Mscl). Red and blue solid lines show
median values for the mass ratios M10/Mscl and M0.1/Mscl, respectively, for all
host galaxies as a function of time. Initial conditions are defined at a common
redshift for all galaxies, which is taken to be z = 4, 3, 2, or 1, as indicated
by the vertical dashed lines. Bottom: evolution of accretion rates in Eddington
units resulting from the initial conditions defined in the top panel. Red and blue
solid lines correspond to median values for black holes initially over-massive
or under-massive relative to the MBH–Mbulge relation at the starting redshift.

for the observed scaling relations, this convergent behavior of
gravitational torque accretion may have significant implications
for the accretion histories of massive black holes and the
interpretation of observations.

Figure 9 provides further insight into this by comparing the
growth of central black holes with different initial masses under
the evolution of the same host galaxy. For each of the 213
simulated galaxies from our primary sample, we follow the
evolution of three black holes with an initial mass taken to be
(1) consistent with the corresponding MBH–Mbulge relation at
z = 4, Mscl, (2) a factor of 10 above, M10 ≡ 10 × Mscl,
and (3) a factor of 10 below, M0.1 ≡ 0.1 × Mscl. We then
calculate the median value of the mass ratios M10(t)/Mscl(t)
and M0.1(t)/Mscl(t) over all host galaxies as a function of time,
which are shown by the red and blue solid lines in the top panel of
Figure 9. The same process is repeated for starting redshifts z =
4, 3, 2, and 1, where all host galaxies are “seeded” at the same
redshift using black holes with initial masses as defined above.

As expected from the middle panel of Figure 4, the ini-
tial conditions for black hole growth are smoothed out by
subsequent evolution, resulting in mass ratios M10(t)/Mscl(t)
and M0.1(t)/Mscl(t) that approaches one with time. Figure 9
(top panel) allows us to infer the timescale in which torque-
limited growth erases the initial conditions and its dependence
on redshift. We find that over-massive black holes require
longer convergence timescales relative to black holes with initial
mass below the scaling relation. Furthermore, the timescale for

convergence toward the MBH–Mbulge relation significantly in-
creases with decreasing starting redshift. This is seen for initial
black holes both above and below the scaling relation.

This numerical experiment allows us to look at the effects
of initial conditions on the evolution of Eddington ratios.
The bottom panel of Figure 9 shows the evolution of the
median Eddington ratios corresponding to the populations of
black holes initially over-massive or under-massive at different
starting redshifts, as defined for the top panel. Given the
dependence of gravitational torque rates on black hole mass
(λ ∝ M

−5/6
BH ), under-massive black holes are characterized

by higher Eddington ratios relative to black holes lying on
the MBH–Mbulge relation. Increased Eddington ratios only last
for a period of time given by the convergence timescale and,
therefore, the evolution of λ is characterized by a rapid decrease
at early times followed by the usual decline at lower redshifts, as
seen in Figure 5. Similar arguments can be made for a population
of over-massive black holes at any given redshift. In this case,
Eddington ratios are strongly suppressed initially and may even
slightly increase with time if the mass decline relative to the
scaling relation supersedes the overall decline in Eddington
ratios. The net effect of having a population of over-massive
black holes relative to the MBH–Mbulge relation at any given
redshift is a weaker evolution of λ with time.

Figure 10 shows quantitative predictions of the timescale for
convergence toward the MBH–Mbulge relation, which we define
here as the time required for a black hole with initial mass either
10 times above or below to that corresponding to the MBH–Mbulge
relation to grow to less than a factor of two difference relative
to a black hole that had an initial mass consistent with the
MBH–Mbulge relation at the starting redshift. We compute black
hole convergence probabilities as a function of time after seeding
based on the number of host galaxies for which their central
black holes did converge in a given timescale. As in Figure 9,
we take z = 4, 3, 2, and 1 as the starting redshifts. The timescales
are expressed in Gyr for the left panel and scaled by the Hubble
time corresponding to each starting redshift in the right panel.

The convergence time probability distribution for under-
massive black holes peaks at significantly shorter timescales
relative to over-massive black holes (Figure 10, left panel). For
example, the median convergence timescale for under-massive
black holes starting at z = 4 is ∼0.7 Gyr whereas for over-
massive black holes it increases up to ∼3.6 Gyr. This is not
unexpected, since the amount of mass required to balance out
the initial mass difference relative to the baseline mass from the
MBH–Mbulge relation is about 10 times higher for over-massive
black holes according to the definition adopted here. Indeed,
only ∼5% of the over-massive black holes starting at z = 1 had
enough time to converge before the end of the simulation at z =
0, while ∼86% of the under-massive black holes starting at z =
1 have converged.

Given some initial log-normal scatter, the mass-dependence
of the convergence timescales may produce a bias toward higher-
mass black holes at later times, since it takes longer for higher-
mass black holes to evolve toward the MBH–Mbulge relation
relative to lower-mass black holes. If the intrinsic scatter of
the MBH–Mbulge relation is higher at early times, this might
imply an increasing number of over-massive black holes at
higher redshifts that could be observed prior to convergence,
as some observations suggest (Treu et al. 2007; Decarli et al.
2010; Greene et al. 2010; Merloni et al. 2010; Bennert et al.
2011; Targett et al. 2012). The initial conditions as well as the
redshift dependence of the convergence timescales may thus

13

Convergence timescales 

Initially over-massive 

Initially under-massive 
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Figure 10. Probability for initially under-massive black holes (top) or initially over-massive black holes (bottom) of converging toward the MBH–Mbulge relation in
a given timescale. The convergence timescale is defined as the time required for a black hole with initial mass 10 times above or below the MBH–Mbulge relation to
grow to less than a factor of two difference relative to a black hole that had an initial mass consistent with the MBH–Mbulge relation at the starting redshift. Blue, green,
orange, and red histograms show the probability distributions for initial conditions defined at z = 4, 3, 2, and 1, respectively (as in Figure 9). Convergence timescales
are expressed in units of 1 Gyr (left) or in units of the Hubble time at each redshift (right).

have implications on the observed evolution of black hole mass
to host galaxy mass ratios.

Convergence probability distributions are indeed a strong
function of starting redshift. The median convergence timescale
and the spread of the distribution both increase with decreas-
ing redshift. For under-massive black holes, the characteristic
(median) timescale increases from ∼0.7 Gyr for z = 4 to
∼3.5 Gyr for z = 1, and the standard deviation of the distribu-
tion increases by a factor ∼2.6 with decreasing starting redshift
from z = 4 → 1. Similar trends can be seen for the distri-
butions corresponding to over-massive black holes, despite not
being appropriately characterized at the lower redshifts given
the fraction of black holes for which convergence timescales
are not well defined. Interestingly, if we express convergence
timescales in units of the Hubble time for each starting redshift,
tHubble(z), the resulting probability distributions are remarkably
similar (Figure 10, right panel). The characteristic timescale for
convergence toward the MBH–Mbulge relation is ∼0.5×tHubble and
∼1.5 × tHubble for under-massive and over-massive black holes,
respectively, regardless of the starting redshift. This suggests
that cosmological gas infall is the ultimate physical mechanism
driving the global evolution of massive black holes and galaxies.

What is making black holes converge toward a similar mass
regardless of the initial conditions? Let us consider a generic
model in which the accretion rate depends on the black hole
mass with some power index p, ṀBH = D(t) × M

p
BH, where

D(t) contains all the explicit dependencies on the host galaxy
properties. Let us now consider the growth of two seed black
holes with masses Ma(t) and Mb(t) evolving at the center of an
identical host galaxy. The evolution of their mass ratio is simply
given by:

d

dt

(
Ma

Mb

)
= D(t)

M
p
a

Mb

[

1 −
(

Ma

Mb

)1−p
]

, (8)

where we have used Ṁa = D(t) M
p
a , Ṁb = D(t) M

p
b , and

the fact the both black holes evolve under the same physical
conditions D(t). Therefore, if p < 1, as is the case for
the gravitational torque model (Equation (2)), the mass ratio

mab ≡ Ma/Mb will tend to approach one regardless of the
initial conditions:

1. dmab/dt < 0, if mab > 1
2. dmab/dt > 0, if mab < 1.
Note that the exact opposite result applies to accretion models

with p > 1, including the popular Bondi–Hoyle–Littleton
parametrization (p = 2; Hoyle & Lyttleton 1939; Bondi & Hoyle
1944; Bondi 1952) and direct free-fall accretion (p = 2; Hobbs
et al. 2012). Other examples of accretion parametrizations with
p < 1 include the local viscous accretion rate (Debuhr et al.
2011) and the radiation drag model (Okamoto et al. 2008),
neither of which have an explicit dependence on black hole
mass (p = 0).

The power index p determines whether the initial conditions
for black hole growth, i.e., the initial black hole mass, tend to
be erased (p < 1) or accentuated (p > 1) with subsequent
evolution. The timescale for which black holes with different
masses converge toward a similar value depends on the initial
mass ratio and the physical conditions D(t) in the host galaxy.
Thus, the spread of the probability distributions in Figure 10
reflect the diversity of accretion histories for our sample of
host galaxies. Note, however, that p < 1 alone does not imply
convergence toward the MBH–Mbulge relation specifically; the
slope and normalization is a non-trivial consequence of the
physics included in the black hole accretion parametrization.

Equation (8) implies that fine tuning of initial conditions may
be required if the main physical mechanism responsible for
black hole growth satisfies p > 1, since slightly different initial
conditions could result in rather different black hole masses at
later times. Black hole accretion rates are defined to be positive
and, therefore, any valid accretion parametrization must satisfy
D(t) > 0 at all times. Thus, the only way to make a black hole
model with p > 1 less sensitive to the initial conditions is by
introducing some additional dependence on black hole mass that
cannot be absorbed into the power law dependence. In practise,
this is accomplished by having D(t) depend on the accretion
rate itself, ṀBH = D(t, ṀBH) × M

p
BH, which is usually justified

in self-regulated models by assuming that feedback from the
accretion process has a direct effect on the accretion flow itself.
This simple argument shows why a nonlinear feedback loop is

14



Torque-limited growth of BHs in Galaxies 

1.  Black holes and galaxies evolve on average toward the observed scaling 
relations, regardless of  the initial conditions, and with no need for mass 
averaging through mergers or additional self-regulation processes.  

2.  Cosmological gas infall and transport of  angular momentum in the galaxy by 
gravitational instabilities drive the observed connection between black holes 
and galaxies.  Common gas supply modulated by gravitational torques!          
(Escala). 

3.  SFR~BHAR correlation when averaging over galaxy evolution time scales 
(Rosario, Mullaney, LaMassa, Diamond-Stanic, Juneau, Daddi, Delvecchio, 
Ruschel Dutra, …).  AGN Main Sequence? 

4.  Outflows powered by the accretion disk may have a strong impact on the host 
galaxy (Harrison, Veilleux, Kewley, Rupke,…):  key role in this model by 
providing significant mass loss but no need for strong interaction with the 
inflowing gas to regulate black holes in a non-linear feedback loop.   

 



Torque-limited growth of BHs in Galaxies 

Figure 5: Why is that we do not see a break in the MBH–Mbulge relation in Figure 1, i.e. for simulations with

constant winds and black hole feedback?. With velocity v = 1000 km s�1 and total momentum flux p = 20Lbol/c, the
e↵ective mass loading of accretion-driven outflows is comparable to that of the constant winds (⌘ = 2). Thus, perhaps the
break in the MBH–Mbulge relation produced by the constant winds is not as evident in Figure 1 because it is washed out
by black hole feedback? To test this, here we compare the simulation with no winds and no black hole feedback from the
right panel of Figure 4 (left) to the same simulation but incorporating black hole feedback (right). Simulations without

galactic winds do not produce a break in the MBH–Mbulge relation regardless of black hole feedback. Indeed,

this shows that black hole feedback has little e↵ect on the scaling relation: the simulation with black hole

feedback (right) seems to produce black holes and galaxies with lower masses relative to the no-feedback run

(left), but the scaling relation is roughly una↵ected. I think this is the main e↵ect that we want to show in the paper,
which is not as clear for simulations with constant winds which introduce a break in the MBH–Mbulge relation unrelated to
black hole feedback.

Figure 6: new runs!!

Figure 7: Variations of the fiducial simulation with ✏m = 10% (Figure 1, middle panel; reproduced here in the middle panel)
for mass retention rates ✏m = 50% (left) and ✏m = 5% (right). Changing ✏m mostly a↵ects the normalization of the

MBH–Mbulge relation but possibly also the early evolution of black holes.

3

Self-consistent simulations with GIZMO including black hole seed 
formation, black hole mergers, torque-limited growth and outflows… 
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Effects of winds: gas 
Anglés-Alcázar et al. (2014) 

Simulations with galactic winds 

Simulations with no winds SFR surface density 

2D maps made with great help from Brant Robertson 



Effects of winds: stars 
Anglés-Alcázar et al. (2014) 

Stellar mass surface density 

2D maps made with great help from Brant Robertson 

Simulations with galactic winds 

Simulations with no winds 



SINS galaxies (Förster Schreiber+09) 
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