Torque-limited growth of massive black holes in galaxies

Daniel Anglés-Alcázar CIERA Fellow Northwestern University

with: Romeel Davé, Feryal Özel, Neal Katz, Juna Kollmeier, Ben Oppenheimer

Guillermo Haro Workshop July 6-24, 2015, Tonantzintla, Puebla

Häring & Rix 04

Chen+13

Average black hole accretion in star-forming galaxies

Correlations between black hole mass and galaxy properties in the local universe

> Global cosmic evolution of star formation rate and black hole accretion rate densities Zheng+09

How do galaxies form?

Cosmic Microwave Background

BASIC INGREDIENTS

Initial conditions

Primordial density fluctuations

Background cosmology → LCDM

And lots of physics!

→ self-gravitating fluid dynamics, gas cooling, star formation, stellar feedback, supermassive black holes,...

Galaxy population today

Cosmological hydrodynamic simulations

Cosmic Microwave Background

Cosmological hydrodynamic simulations

BASIC INGREDIENTS

Initial conditions

Primordial density fluctuations

Background cosmology → LCDM

And lots of physics!

self-gravitating fluid dynamics, gas cooling, star formation, stellar feedback, supermassive black holes,...

Galaxy population today

Cosmological hydrodynamic simulations

Initial conditions
→ primordial density fluctuations

Background cosmology → LCDM

Dark matter dynamics
→ Collisionless Boltzmann equation

Baryonic physics

- \rightarrow Hydrodynamic forces
- \rightarrow Gas cooling

...

- \rightarrow Star formation
- \rightarrow Stellar Feedback

Assumed to be known

Well constrained by current N-body methods

Major challenge!

BLACK HOLE GROWTH AND FEEDBACK!

ARAA review by Somerville & Davé

Need to suppress star formation in massive galaxies!!

Need to suppress star formation in massive galaxies!!

Energy release from black hole accretion relative to galaxy binding energy:

~ 0.1 $M_{BH} c^2$ / $M_{galaxy} \sigma^2$

~ 100 -1000 !!

Multi-scale physics !!!

< 0.01 pc

Accretion disk physics
 Feedback processes

(3) Gas inflows from galactic scales

10 kpc

M33 doesn't have a supermassi black hole but it is beautiful!

> 10 orders of magnitude in spatial scale!

Black holes in Cosmological Hydrodynamic Simulations Need to start with accretion prescription!

ARAA review by Somerville & Davé

Accretion rates parameterized as a function of physical properties at the scales resolved in the simulation

Black holes in Cosmological Hydrodynamic Simulations Need to start with accretion prescription!

ARAA review by Somerville & Davé

Generic accretion model

 $\dot{M}_{\rm a} = D(t) M_{\rm a}^p$

Assume same physical conditions D(t) – different initial black hole mass

Subsequent Evolution of M_a and M_b?

 $\dot{M}_{\rm a} = D(t) M_{\rm a}^p$

Subsequent Evolution of M_a and M_b?

$$\frac{d}{dt} \left(\frac{M_{\rm a}}{M_{\rm b}} \right) = D(t) \frac{M_{\rm a}^p}{M_{\rm b}} \left[1 - \left(\frac{M_{\rm a}}{M_{\rm b}} \right)^{1-p} \right]$$

Subsequent Evolution of M_a and M_b?

$$\frac{d}{dt} \left(\frac{M_{\rm a}}{M_{\rm b}} \right) = D(t) \frac{M_{\rm a}^p}{M_{\rm b}} \left[1 - \left(\frac{M_{\rm a}}{M_{\rm b}} \right)^{1-p} \right]$$

$$\dot{M}_{a} = D(t) M_{a}^{p}$$

$$\frac{d}{dt} \left(\frac{M_{a}}{M_{b}}\right) = D(t) \frac{M_{a}^{p}}{M_{b}} \left[1 - \left(\frac{M_{a}}{M_{b}}\right)^{1-p}\right]$$

Subsequent Evolution depends on power index **p**

 M_a and M_b converge if p < 1

• $dm_{ab}/dt < 0$, if $m_{ab} > 1$

•
$$dm_{\rm ab}/dt > 0$$
, if $m_{\rm ab} < 1$

Anglés-Alcázar et al. (2015)

Independent of D(t) !!

$$\dot{M}_{a} = D(t) M_{a}^{p}$$

$$\frac{d}{dt} \left(\frac{M_{a}}{M_{b}}\right) = D(t) \frac{M_{a}^{p}}{M_{b}} \left[1 - \left(\frac{M_{a}}{M_{b}}\right)^{1-p}\right]$$

Subsequent Evolution depends on power index **p**

$$M_{a} \text{ and } M_{b} \text{ diverge if } p > 1$$

• $dm_{ab}/dt ≥ 0$, if $m_{ab} > 1$
• $dm_{ab}/dt ≥ 0$, if $m_{ab} < 1$

Anglés-Alcázar et al. (2015)

Independent of D(t) !!

Massive black holes in simulations

Bondi accretion + thermal feedback

Springel+05, Di Matteo+05,08, and many others

σ (km s")

 \rightarrow Feedback self-regulation drives the BH-galaxy connection

$$\dot{M}_{a} = D(t) M_{a}^{p}$$

$$\frac{d}{dt} \left(\frac{M_{a}}{M_{b}}\right) = D(t) \frac{M_{a}^{p}}{M_{b}} \left[1 - \left(\frac{M_{a}}{M_{b}}\right)^{1-p}\right]$$

Subsequent Evolution depends on power index **p**

$$M_{a} \text{ and } M_{b} \text{ diverge if } p > 1$$

• $dm_{ab}/dt ≥ 0$, if $m_{ab} > 1$
• $dm_{ab}/dt ≥ 0$, if $m_{ab} < 1$

Anglés-Alcázar et al. (2015)

Independent of D(t) !!

$$\dot{M}_{\rm a} = D(t) M^p_{\rm a}$$

p = 2 in Bondi prescription

$$\dot{M}_{\rm Bondi} = \alpha \, \frac{4\pi \, G^2 M_{\rm BH}^2 \rho}{(c_{\rm s}^2 + v^2)^{3/2}}$$

Springel+05 Di Matteo+05 and many others

Need to break dependence on M_{BH} for convergence !

$$\dot{M}_{\rm BH} = D(t, \dot{M}_{\rm BH}) \times M^p_{\rm BH}$$

$$\dot{M}_{\rm a} = D(t) M^p_{\rm a}$$

p = 2 in Bondi prescription

$$\dot{M}_{
m Bondi} = lpha \, rac{4\pi \, G^2 M_{
m BH}^2
ho}{(c_{
m s}^2 + v^2)^{3/2}}$$

Springel+05 Di Matteo+05 and many others

Need to break dependence on M_{BH} for convergence !

$$\dot{M}_{\rm BH} = D(t, \dot{M}_{\rm BH}) \times M_{\rm BH}^p$$

Anglés-Alcázar et al. (2015)

Feedback loop required !!

 $M_{\rm BH} = D(t, M_{\rm BH}) \times M_{\rm BH}^p$

 \rightarrow Is black hole growth self-regulated by a non-linear feedback loop?

 \rightarrow Is the observed connection between black holes and galaxies driven by feedback self-regulation?

 \rightarrow If so, can we break the degeneracy between black hole accretion and feedback?

 \rightarrow Need to improve the accretion parameterization

<u>Bondi neglects angular momentum!!</u>

Physics of gas inflows

"Gas at galactic scales must loose > 99.9% of angular momentum to get to the black hole accretion disk"

Jogee 2006

- Galaxy interactions and internal gravitational instabilities trigger non-axisymmetric perturbations to the gravitational potential on galactic scales
- Gravitational torques drive gas inflows to smaller scales, triggering further instabilities and driving gas to ever smaller scales

"Bars within Bars"

Shlosman et al. 1989, 1990

But transport of gas by bars is not efficient within BH radius of influence...

Analytic gravitational torque model

Hopkins & Quataert 2010, 2011

Inside BH potential the dominant asymmetries driving gas inflows are eccentric/ lopsided disk (m=1), not bar-like (m=2) modes

Perturbations to the stellar component drive the gas into shocks that dissipate energy and angular momentum

Simulations vs. analytic models

Multi-scale simulations of gas rich disks Hopkins & Quataert 2010,2011

Gravitational torques provide angular momentum transport

Cosmological hydrodynamic simulations

→Gadget2 code (Springel05) extended (Oppenheimer & Davé)

Multi-phase ISM, metal cooling, UV background, feedback (energy, mass, metals) from type Ia-II SNe, AGB stars, momentum-driven winds,...

Cosmological zoom simulations

Central black hole accretion rate in post-processing:

Gravitational torque model

Hopkins & Quataert 2010,2011

$$\dot{M}_{\rm Torque} \approx \alpha_{\rm T} f_{\rm disk}^{5/2} \times \left(\frac{M_{\rm BH}}{10^8 \,{\rm M}_{\odot}}\right)^{1/6} \left(\frac{M_{\rm disk}(R_0)}{10^9 \,{\rm M}_{\odot}}\right) \\ \times \left(\frac{R_0}{100 \,{\rm pc}}\right)^{-3/2} \left(1 + \frac{f_0}{f_{\rm gas}}\right)^{-1} \,{\rm M}_{\odot} \,{\rm yr}^{-1}$$

- Parameterize angular momentum transport below resolution
- Gas inflows down to 0.01 pc scales as a function of galaxy properties

Cosmological zoom simulations

Central black hole accretion rate in post-processing: Gravitational torque model Hopkins & Quataert 2010,2011 $\dot{M}_{Torque} \approx \alpha_T f_{disk}^{5/2} \times \left(\frac{M_{BH}}{10^8 M_{\odot}}\right)^{1/6} \left(\frac{M_{disk}(R_0)}{10^9 M_{\odot}}\right)$ $\times \left(\frac{R_0}{100 \text{ pc}}\right)^{-3/2} \left(1 + \frac{f_0}{f_{gas}}\right)^{-1} M_{\odot} \text{ yr}^{-1}$

Black hole accretion rates

→ Bondi \rightarrow Gravitational torque \rightarrow Eddington

Evolutionary tracks of >200 BHs/galaxies from early times down to z = 0

Evolution of Eddington ratios

Evolution of Eddington ratios

Main sequence for black hole growth?

SFR – AGN connection

Average black hole growth proportional to star formation

Evolution of Eddington ratios

Significant offset in M_{bh}/M_{gal} ratios at high-z may have implications for the evolution of Eddington ratios

Torque-limited growth of BHs in Galaxies

- 1. Black holes and galaxies evolve on average toward the observed scaling relations, regardless of the initial conditions, and with no need for mass averaging through mergers or additional self-regulation processes.
- 2. Cosmological gas infall and transport of angular momentum in the galaxy by gravitational instabilities drive the observed connection between black holes and galaxies. Common gas supply modulated by gravitational torques! (Escala).
- 3. SFR~BHAR correlation when averaging over galaxy evolution time scales (Rosario, Mullaney, LaMassa, Diamond-Stanic, Juneau, Daddi, Delvecchio, Ruschel Dutra, ...). AGN Main Sequence?
- 4. Outflows powered by the accretion disk may have a strong impact on the host galaxy (Harrison, Veilleux, Kewley, Rupke,...): key role in this model by providing significant mass loss but no need for strong interaction with the inflowing gas to regulate black holes in a non-linear feedback loop.

Torque-limited growth of BHs in Galaxies

Self-consistent simulations with GIZMO including black hole seed formation, black hole mergers, torque-limited growth and outflows...

AGN-merger connection

Effects of winds: gas

Anglés-Alcázar et al. (2014)

Simulations with galactic winds

SFR surface density

Simulations with no winds

2D maps made with great help from Brant Robertson

Effects of winds: stars

Anglés-Alcázar et al. (2014)

Simulations with galactic winds

Stellar mass surface density

Simulations with no winds

2D maps made with great help from Brant Robertson

Simulations vs. observations

Simulations vs. observations

Momentum