The HAWC γ-ray observatory searching for black holes, big & small

Alberto Carramiñana

Instituto Nacional de Astrofísica, Óptica y Electrónica - INAOE Luis Enrique Erro 1, Tonantzintla, Puebla, Mexico

HAWC MX spokesperson & Director General INAOE

<u>Instituto Nacional de</u> <u>Astrofísica,</u> <u>Óptica y Electrónica</u>

- The Observatorio Astrofísico Nacional de Tonantzintla (OAN-Ton), Puebla, was founded in 1942 by Luis Enrique Erro.
- Tonantzintla was the site of the discovery of HH objects (& Ton blue galaxies, flare stars...).
- In 1971 Guillermo Haro transformed the OAN-Ton into INAOE.
- INAOE was created with the project of establishing the Cananea observatory - today Observatorio Astrofísico Guillermo Haro, operational since 1988.

Gran Telescopio Milimétrico Alfonso Serrano

- The Large Millimeter Telescope Alfonso Serrano (LM/GTM).
- Twenty year collaboration between INAOE and UMASS, Amherst, to construct and operate the largest single dish mm telescope in the world: a 50m antenna for observations in the 0.8 - 4.0 mm band.
- Installed at the top of Sierra Negra at 4593m.
- Operational since May 2013 with a functional aperture of 32m.

Pico de Orizaba "Citlaltepetl" 5610m (18,400 ft)

Sierra Negra "Tliltepetl" 4582m (15,000 ft)

Latitude 19°N, Longitude = 97°W. In the Mexican state of Puebla 2hr drive East of Mexico City

And now HAWC!

The High Altitude Water Čerenkov γ-ray observatory

Wide field of view & high duty cycle γ -ray observatory to investigate the 100 GeV - 100 TeV energy range.

Mexico		United States	
Instituto Nacional de Astrofísica, Óptica y Electrónica	(INAOE)	University of Maryland	(UMD)
Universidad Nacional Autónoma de México		Los Alamos National Laboratory	(LANL)
Instituto de Astronomía UNAM	(IA-UNAM)	Colorado State University	(CSU)
Instituto de Ciencias Nucleares UNAM	(ICN-UNAM)	George Mason University	(GMU)
Instituto de Física UNAM	(IF-UNAM)	Georgia Institute of Technology	(GATECH)
Instituto de Geofísica UNAM	(IG-UNAM)	Michigan State University	(MSU)
Benemérita Universidad Autónoma de Puebla	(BUAP)	Michigan Technological University	(MTU)
Instituto Politécnico Nacional		Pennsylvania State University	(PSU)
Centro de Investigación y Estudios Avanzados	(CINVESTAV)	NASA GSFC	
Centro de Investigación en Cómputo - IPN	(CIC-IPN)	University of California Santa Cruz	(UCSC)
Universidad Autónoma de Chiapas	(UNACH)	University of California Irvine	(UCI)
Universidad Autónoma del Estado de Hidalgo	(UAEH)	University of New Hampshire	(UNH)
Universidad de Guadalajara	(UdG)	University of New Mexico	(UNM)
Universidad Michoacana de San Nicolás de Hidalgo	(UMSNH)	University of Rochester	(UR)
Universidad Politécnica de Pachuca	(UPP)	University of Utah	(UU)
		University of Wisconsin	(UW)

ONACYI

GH 2015 - INAOE - 13 July 2015

7

The y-ray band

The HAWC detector

Second generation WC γ -ray observatory - built from MILAGRO experience.

Located in Sierra Negra at higher altitude 4100m and lower latitude 19°N

- $4 \times$ larger dense sampling region (22,000m²)
- $10 \times \text{larger muon detection area} (22,000\text{m}^2)$
- Optical isolation of detector elements
- $15 \times \text{more sensitive than Milagro}$

Energy range 100 GeV - 100 TeV :: also cosmic-ray detector.

FOV: 1/6 of the sky instantaneous => scans 2/3 of all sky each sidereal day.

HAWC science

- Partial all-sky mapping:
 - deep mapping of 2/3 of the sky and of 2/3 Galactic plane.
 - Cosmic-ray anisotropies.
 - γ-ray transient sources: AGNs, GRBs, PBHs, Galactic transients, Galactic Center.
- Mapping and characterizing extended γ -ray sources: SNR, PWN, diffuse.
- Solar events; dark matter searches.
- Multiwavelength & multimessenger synergies.

4100m (13,450 ft)

The atmosphere is part of the detector

HAWC construction

February 2012 to December 2015

Water Cherenkov Detectors

- Each water tank is filled with 180,000 liters of water.
- Water is treated to ensure maximum transparency.
- Each WCD has 3(8") + 1(10") PMT: fast response and good QE to Cherenkov light (blue to UV).
- Optical fiber for calibration.
- Each WCD is connected to the central counting house.

HAWC-100 Sept 2013

GH 2015 - INAOE - 13 July 2015

-16

HAWC-100 Sept 2013

HAWC Utility Building

- Water filtration
- Bladder testing

Counting house

- DAQ & laser calibration
- system

HAWC Utility Building

- Water filtration
- Bladder testing

Consejo Nacional de Ciencia y Tecnologí

INADE

24

ONAC

Timing information

• Relative timing of signals allows to determine the arrival direction of primary particles in the sky.

Timing information

- Relative timing of signals allows to determine the arrival direction of primary particles in the sky.
- Tank spacing is 25 to 50 light-ns.
- Arrival times are fitted to a curved plane.
- HAWC timing residuals below 1ns.

ONAC

Energy deposition

- PMTs measure individual pulses of light.
- Energy estimation.
- γ /hadron discrimination.
- Must define the core and model energy deposits according to standard (NKG) shower models and simulations of the response of HAWC.

Sensitivity & Field of View

Transit instrument

- FOV = 1.8 Sr
- HAWC scans 2/3 of the celestial sphere every sidereal day to a depth of 1 Crab @ 5σ :
- transient events
- extended diffuse sources
- \Rightarrow 60 mCrab / sqrt(year)

HAWC science

- Partial all-sky mapping:
 - deep mapping of 2/3 of the sky and of 2/3 Galactic plane.
 - Cosmic-ray anisotropies.
- γ-ray transient sources: AGNs, GRBs, PBHs, Galactic transients, Galactic Center.
- Mapping and characterizing extended γ -ray sources: SNR, PWN, diffuse.
- Solar events; dark matter searches.
- Multiwavelength & multimessenger synergies.

HAWC phases

HAWC 30	September 2012	Early science data
HAWC 111	August 2013	Beginning of formal science operations
HAWC 250	November 2014	Upgrade to quasi-full detector
HAWC 300	March 2015	Inauguration and beginning of full operations

<u>HAWC cosmic rays</u> <u>Moon shadow</u>

- HAWC-95 and HAWC-111
- 12 June 2013 to 8 July 2014
- Full runs = contiguous 24hrs:
 - 181 days (4332 hours)
 - 85.6×10^9 events
- Median energy: 2 TeV
- Potential for e[±] flux measurements above 1 TeV.

Cosmic-ray anisotropies

γ / hadron discrimination

γ-ray

Hadron

GH 2015 - INAOE - 13 July 2015

34

The Crab

<u>Mrk 421</u>

- Brightest quasar in the night sky
- Nearby Bl Lac at z = 0.03.
- First extragalactic TeV source (Punch et al. 1992).
- Detected by Milagro. [1-NPI I PARTING I TAN I

Animations and light curves by Robert Lauer

GH 2015 - INAOE - 13 July 2015

1.5

1.0

0.5

0.0

-0.5

0

Mrk 501

- Nearby Bl Lac at z = 0.033.
- Highly variable TeV emission, with short timescales (Quinn et al. 1996).

Flux norm at 1 TeV [TeV $^{-1}$ cm $^{-1}$ s $^{-1}$]

1.0

0.5

0.0

-0.5

0

Marginal detection with Milagro.

Animations and light curves by Robert Lauer

AGN / EBL

Fuentes extragalácticas 1FHL potencialmente detectables con HAWC

- HAWC horizon limited to z≤0.3 due to γγ→ee interaction with the extragalactic background light.
- Axions may explain TeV detections beyond EBL.

1FHL	Asociación	Tipo	Z	Γ	σ / \sqrt{yr}
J0035.9+5950	1ES 0033+595	bzb	0.086	1.74 ± 0.18	6.02
J0152.6+0148	PMN J0152+0146	bzb	0.080	1.77 ± 0.34	4.85
J0316.6+4119	IC 310	rdg	0.019	1.31 ± 0.45	13.16
J0521.7+2113	VER J0521+211	bzb	0.108	1.97 ± 0.14	3.02
J0650.8+2504	1ES 0647+250	bzb	0.203	1.56 ± 0.18	10.25
J0816.3-1310	PMN J0816-1311	bzb	0.046	2.06 ± 0.27	3.19
J1104.4+3812	Mkn 421	bzb	0.031	1.91 ± 0.06	6.23
J1230.8+1224	M 87	rdg	0.004	1.25 ± 0.50	20
J1653.9+3945	Mkn 501	bzb	0.034	1.86 ± 0.10	5.30
J1728.3+5014	I Zw 187	bzb	0.055	1.67 ± 0.34	3.85
J2322.5+3436	TXS 2320+343	bzb	0.098	1.51 ± 0.32	9.68
J2347.0+5142	1ES 2344.514	bzb	0.044	1.48 ± 0.18	5.14

HAWC AGN/EBL sample by Sara Coutiño

Gamma-Ray Bursts

- GRB 130427A: one of the brightest and most energetic GRBs detected:
 - Bright optical counterpart: magnitude 7.4 and z=0.34.
 - Highest energy photon detected (95 GeV) in any GRB.
- Main HAWC DAQ not running at the time of burst.
- Zenith angle (57°) was too large for a HAWC detection.

Gamma-Ray Bursts

Primordial Black Holes

- Originated in density fluctuations in the very early Universe:
 - Collapse of cosmic loops.
 - Bubble collisions.
 - Collapse of domain walls.
- Alternative to Pop III remnants or Direct Collapse scenarios.
- Potential probes of:
 - early Universe: PBHs affect early Universe processes.
 - viable dark matter candidates
 - high energy physics: contributions to γ -ray background among other.
 - quantum gravity: evaporation process.

GH 2015 - INAOE - 13 July 2015

Carr (2005), Carr et al. (2010)

Primordial Black Holes

BH radiate thermally with a temperature (Hawking 1974):

$$T_{\rm BH} = \frac{\hbar c^3}{8\pi \, G \, M \, k_{\rm B}} \sim 10^{-7} \, \left(\frac{M}{M_{\odot}}\right)^{-1} \, {\rm K},$$

and evaporate in a time scale:

$$\tau(M) \sim \frac{G^2 M^3}{\hbar c^4} \sim 10^{64} \left(\frac{M}{M_{\odot}}\right)^3 \text{ yr}.$$

Only PBHs smaller than 10^{15} g would have evaporated by now.

Primordial Black Holes

PBH evaporation limits on multiple time scales set with Milagro (Abdo et al. 2015).

HAWC will set the most stringent upper limits for burst lasting 1ms - 100s and emitting in the TeV range.

HAWC PBH expectations by Tilan Ukwatta

ICRC-0708 (Ukwatta et al).

Highlights from the High Altitude Water Cherenkov Observatory			Pretz et al.	866
		Anisotropy update	Fiorino et al.	147
		First results from HAWC on GRBs	Taboada et al.	237
	Results from monitoring TeV blazars with HAWc		Lauer et al.	239
		HAWC diffuse Galactic emission	Baughman et al.	247
	HAWC observations of Supernova remnants and pulsar wind nebulae		Hui et al.	323
	Observations of the Crab nebula with early HAWC data		Salesa et al.	348
		Fermi bubbles with HAWC	Ayala et al.	379
		First dark matter limits with HAWC	Longo et al.	402
	TeV o	bservations of the Galactic plane with HAWC and joint analysis	Zhou et al.	737
		HAWC/Icecube CR anisotropy	Díaz Velez et al.	997
		Selection of AGN to study the extragalactic background light	Coutiño et al.	35
		Measurement of e+e- flux	BenZvi et al.	216
HAWC @ ICI		Monitoring of TeV binaries	BenZvi et al.	217
		A high level analysis framework for HAWC	Younk et al.	238
		HAWC design, operation and analysis	Smith et al.	397
		Detector considerations for HAWC southern observatory	DuVernois et al.	418
Update paths for the HAWC observatory		Sandoval et al.	529	
	All sky sensitivity of HAWC to GRBs		Wood et al.	672
		Gamma / hadron separation	Capistrán et al	692
	Observational Characteristics of the final stages of evaporating black holes		Ukwatta et al.	708
Sensitivity of HAWC to primordial black holes		Ukwatta et al.	710	
Observations of the Sun shadow			Enriquez et al.	716
	Enriquez et al.	722		
	Weisgarber et al.	732		
	Salesa et al.	739		
	Gamma hadron separation using pairwise compactness method with HAWC		Hampel et al.	829
		HAWC analysis of isotropic diffuse gamma-ray emission	Pretz et al.	867
	Searching for pulsed very high energy emission from pulsars using HAWC		Álvarez et al.	1022
HAWC sensitivity to Lorentz invariance violation Nellen et				1056
		HAWC dark matter	Harding et al.	1296
			~	

www.webcamsdemexico.com

