Role of Turbulence, Magnetic Fields, and Feedback for Star Formation

Christoph Federrath

Guillermo Haro Workshop – INAOE Puebla – 14 July 2015

Australian National University

Australian Government

Australian Research Council

Two Points

2) Star Formation is Inefficient

Turbulence → Density PDF

Density PDF → Star Formation Rate

Modeling jet and outflow feedback

Federrath - G. Haro Workshop 2015

Turbulence Stars Feedback

C. Haro Workshop 2015 Canina Nebula, NASA, ESA, N. Smith (University of California, Berkeley), and The Hubble Heritage Team (STSCI/AURA), and NOAO/AURA/NSF

S. Guisard ESO

Pipe Nebula

Rho Ophiuchi Cloud

$SFR_{Oph} = 15 \times SFR_{Pipe}$

(Lada et al. 2010)

Federrath - G. Haro Workshop 2015

Universal star formation "law"?

(Heiderman et al. 2010; Lada et al. 2010, Gutermuth et al. 2011)

Federrath - G. Haro Workshop 2015

Krumholz, Dekel, McKee (2012)

A more universal star formation "law"

(Mach number, Driving, Virial parameter)

Federrath - G. Haro Workshop 2015

Federrath (2013, MNRAS 436, 3167)

(Mach number, Driving, Virial parameter)

Federrath - G. Haro Workshop 2015

Federrath (2013, MNRAS 436, 3167)

Federrath - G. Haro Workshop 2015

Federrath (2013, MNRAS 436, 3167)

Turbulence

- Reynolds numbers > 1000
- Kinetic energy cascade

Interstellar Turbulence – scaling

BUT: Larson (1981) relation: $E(k) \sim k^{-1.8-2.0}$

(see also Heyer & Brunt 2004; Roman-Duval et al. 2011)

Supersonic, compressible turbulence has steeper $E(k) \sim k^{-1.9}$ than Kolmogorov ($E \sim k^{-5/3}$)

Federrath et al. (2010); see also Kritsuk et al. (2007)

Supersonic turbulence @4096³ grid cells

Federrath 2013, MNRAS 436, 1245

Interstellar Turbulence

- Reynolds numbers > 1000
- Kinetic energy cascade

Interstellar Turbulence

- Reynolds numbers > 1000
- Kinetic energy cascade

Interstellar Turbulence

- Reynolds numbers > 1000
- Kinetic energy cascade

Turbulence driven by

- significant compressive forcing component - Ionization fronts, bubbles?
- Protostellar jets/winds?
- Supernova explosions?
- MRI / shear?
- Gravitational infall?
- Galactic spiral shock?
 - Mac Low & Klessen (2004)

Turbulence driving – solenoidal versus compressive

"Turbulence in a box"

- 3D, periodic boundaries
- Driven to supersonic speeds (Mach 2 50)
- Large-scale Forcing Term f

e.g., Vazquez 1994, Padoan+1997, Passot+1998, Stone+1998, Mac Low 1999, Klessen+2000, Ostriker+2001, Heitsch+2001, Cho+2002, Boldyrev+2002, Li+2003, Haugen+2004, Padoan+2004, Jappsen+2005, Ballesteros+2006, Mee+Brandenburg 2006, Kritsuk+2007, Kowal+2007, Dib+2008, Offner+2008, Schmidt+2009, Burkhart +2009, Cho+2009, Lemaster+2009, Glover+2010, Price+2011, DelSordo+2011, Collins +2012, Walch+2012, Scannapieco+2012, Pan+2012, Micic+2012, Robertson+2012, Price+2012, Bauer+2012 +++

Turbulence driving – solenoidal versus compressive

Ornstein-Uhlenbeck process (stochastic process with autocorrelation time) \rightarrow forcing varies smoothly in space and time,

following a well-defined random process

Solenoidal forcing

Compressive forcing

Turbulence driving – solenoidal versus compressive

Compressive forcing produces stronger density enhancements

(Federrath 2013, MNRAS 436, 1245: Supersonic turbulence @ 4096³ grid cells)

Federrath – G. Haro Workshop 2015

The density PDF

Density PDF

log-normal:

$$p_s \, \mathrm{d}s = \frac{1}{\sqrt{2\pi\sigma_s^2}} \exp\left[-\frac{(s-\langle s \rangle)^2}{2\sigma_s^2}\right] \, \mathrm{d}s$$
$$s \equiv \ln\left(\rho/\rho_0\right)$$

Vazquez-Semadeni (1994); Padoan et al. (1997); Ostriker et al. (2001); Hopkins (2013)

$$\sigma_s^2 = \ln\left(1 + b^2 \mathcal{M}^2\right)$$

b = 1/3 (sol) b = 1 (comp)

Federrath et al. (2008, 2010); Price et al. (2011); Konstandin et al. (2012); Molina et al. (2012); Federrath & Banerjee (2014); Nolan et al. (2015)

The density PDF

Compressive forcing and/or gravity required to explain observations

$\mathsf{PDF} \to \mathsf{The}$ dense gas fraction

Power-law tails \rightarrow gravitational collapse

Schneider et al. 2012–2015; Federrath & Klessen 2013; Girichidis et al. 2014; Sadavoy et al. 2014, Myers 2015

Federrath - G. Haro Workshop 2015

2D → 3D conversion (Brunt et al. 2010a,b)

Turbulence → Density PDF

Density PDF → Star Formation Rate

Modeling jet and outflow feedback

Federrath - G. Haro Workshop 2015

Density PDF is key for star formation theories:

- Initial Mass Function (Padoan & Nordlund 02, Hennebelle & Chabrier 08,09,
- Star Formation Efficiency (Elmegreen 08, Federrath & Klessen 13)
- **Kennicutt-Schmidt relation** (Elmegreen 02, Krumholz & McKee 05, Tassis 07, Ostriker+10, Elmegreen 11, Veltchev+11, Hopkins 12, Federrath 13, Salim+15)
- Star Formation Rate (Krumholz & McKee 05, Padoan & Nordlund 11, Renaud+12, Federrath & Klessen 2012)

All based on integrals over the turbulent density PDF

$$\text{SFR}_{\text{ff}} = \frac{\epsilon_{\text{core}}}{\phi_t} \int_{x_{\text{crit}}}^{\infty} x p(x) \, dx$$

Krumholz & McKee (2005), Padoan & Nordlund (2011); Hennebelle & Chabrier (2011,2013)

Hennebelle & Chabrier (2011) : "multi-freefall model"

Statistical Theory for the
Star Formation Rate:
SFR ~ Mass/time fraction
SFR_{ff} =
$$\epsilon \int_{s_{crit}}^{\infty} \frac{t_{ff}(\rho_0)}{t_{ff}(\rho)} \frac{\rho}{\rho_0} p(s) ds = \epsilon \int_{s_{crit}}^{\infty} exp\left(\frac{3}{2}s\right) p(s) ds$$

 $= \frac{\epsilon}{2} exp\left(\frac{3}{8}\sigma_s^2\right) \left[1 + erf\left(\frac{\sigma_s^2 - s_{crit}}{\sqrt{2\sigma_s^2}}\right)\right]$

Hennebelle & Chabrier (2011) : "multi-freefall model"

$p(s) = \frac{1}{\sqrt{2\pi\sigma_{*}^{2}}} \exp\left(-\frac{(s-s_{0})^{2}}{2\sigma_{*}^{2}}\right)$ **Statistical Theory for the Star Formation Rate:** $s = \ln(\rho/\rho_0) \qquad t_{\rm ff}(\rho) = \left(\frac{3\pi}{32G\rho}\right)^{1/2}$ freefall mass SFR ~ Mass/time fraction time $SFR_{ff} = \epsilon \int_{s}^{\infty} \frac{\overline{t_{ff}(\rho_0)}}{t_{ff}(\rho)} \frac{\rho}{\rho_0} p(s) \, \mathrm{d}s = \epsilon \int_{s}^{\infty} \exp\left(\frac{3}{2}s\right) p(s) \, \mathrm{d}s$ $= \frac{\epsilon}{2} \exp\left(\frac{3}{8}\sigma_s^2\right) \left| 1 + \operatorname{erf}\left(\frac{\sigma_s^2 - s_{\operatorname{crit}}}{\sqrt{2\sigma_s^2}}\right) \right|$

Hennebelle & Chabrier (2011) : "multi-freefall model"

From sonic and Jeans scales:

$$s_{\rm crit} \propto \ln\left(\alpha_{\rm vir} \, \mathcal{M}^2\right)$$

(Krumholz & McKee 2005, Padoan & Nordlund 2011)

$$\sigma_s^2 = \ln\left(1 + b^2 \mathcal{M}^2\right)$$

(e.g., Federrath et al. 2008)

$$SFR_{ff} = SFR_{ff} (\alpha_{vir}, b, \mathcal{M})$$

$$2 E_{kin} / E_{grav} \quad forcing \quad Mach number$$
Federrath – G. Haro Workshop 2015

$\underline{SFR}_{ff} = \underline{SFR}_{ff}(\alpha_{vir}, \underline{b}, \mathcal{M}) \quad Density PDF \rightarrow Star Formation Rate$

SFR_{ff} (simulation) = 0.14 \times 52SFR_{ff} (simulation) = 7.3SFR_{ff} (theory)= 0.15 \times 52SFR_{ff} (theory)= 7.8Theory and Simulations agree well.

Federrath - G. Haro Workshop 2015

The Star Formation Rate – Magnetic fields

Federrath & Klessen (2012)

Federrath – G. Haro Workshop 2015

The Star Formation Rate – Magnetic fields

Federrath - G. Haro Workshop 2015

Convergence with

numerical resolution

Simulation study with

- solenoidal, mixed, and compressive forcing
- sonic Mach numbers 3 50
- Alfvén Mach numbers 1 infinity

Tourus Class I YSO Flat YSO HCN(1-0) Clumps

log Σ_{SFR} (M_{\odot} yr⁻¹ kpc⁻²)

0

Simulation study with

- cloud masses of 300 − 4×10⁶ M_☉
- solenoidal, mixed, and compressive forcing
- sonic Mach numbers 3 50
- Alfvén Mach numbers 1 infinity

Simulation study with

- cloud masses of 300 − 4×10⁶ M_☉
- solenoidal, mixed, and compressive forcing
- sonic Mach numbers 3 50
- Alfvén Mach numbers 1 infinity

log Σ_{SFR} (M_{\odot} yr⁻¹ kpc⁻²)

Simulation study with

- cloud masses of $300 4 \times 10^6 M_{\odot}$
- solenoidal, mixed, and compressive forcing
- sonic Mach numbers 3 50
- Alfvén Mach numbers 1 infinity

Taurus ■ Class | YSO ☆⊽ Flat YSO ☆⊽ HCN(1-0) Clumps ◇ C2D+GB Clouds □

Turbulence → Density PDF

Density PDF → Star Formation Rate

Modeling jet and outflow feedback

Federrath - G. Haro Workshop 2015

Star Formation – Jets and Outflows

Star Formation – Jets and Outflows

Reduce fragmentation (Hennebelle & Tyessier 08, Bürzle+11, Federrath & Klessen 12)

Drive jets / outflows (Banerjee & Pudritz 2006, Seifried et al. 2012, Moraghan et al. 2013)

Federrath – G. Haro Workshop 2015

Sink particles

- Quantify fragmentation and accretion
- Prevent code from stalling

$$t_{\rm ff} = \left(\frac{3\pi}{32G\rho}\right)^{1/2}$$

Resolve Jeans length

$$\lambda_{\rm J} = \left(\frac{\pi c_{\rm s}^2}{G\rho}\right)^{1/2}$$

 $\rightarrow
ho_{
m res}$ (resolution criterion)

Truelove et al. (1997) (see also Bate & Burkert 1997)

Collapse checks to avoid spurious sink creation

1. Cell exceeds density threshold, $ho~>~
ho_{
m res}$

Federrath, Banerjee, Clark, Klessen (2010, ApJ 713, 269)

Collapse checks to avoid spurious sink creation

- 1. Cell exceeds density threshold, $ho~>~
 ho_{
 m res}$
- 2. Highest level of AMR
- 3. Converging towards the center
- 4. Central minimum in gravitational potential
- **5. Jeans unstable**, $|E_{\text{grav}}| > 2E_{\text{th}}$
- 6. Bound, $E_{\text{grav}} + E_{\text{th}} + E_{\text{kin}} + E_{\text{mag}} < 0$
- 7. Not within the accretion radius of an existing sink particle

Sink particle implementation in FLASH

Movies available: http://www.ita.uni-heidelberg.de/~chfeder/pubs/sinks/sinks.shtml

all checks ON

 $ho >
ho_{
m res}$ only

Federrath, Banerjee, Clark, Klessen (2010, ApJ 713, 269)

Federrath - G. Haro Workshop 2015

Federrath et al. 2014, ApJ 790, 128

List of SGS outflow parameters.

SGS Parameter	Symbol	Default	Reference
Outflow Opening Angle	$ heta_{ m out}$	30°	[1]
Mass Transfer Fraction	$f_{ m m}$	0.3	[2]
Jet Speed Normalization ^{a}	$ \mathbf{V}_{ ext{out}} $	$100{\rm kms^{-1}}$	[3]
Angular Momentum Fraction	f_{a}	0.9	[4]
Outflow Radius	$r_{ m out}$	$16\Delta x$	Section 4

^a The outflow velocities are dynamically computed Notes. according to the Kepler speed at the footpoint of the jet, $|\mathbf{V}_{\rm out}| = 100\,{\rm km\,s^{-1}}(M_{\rm sink}/0.5\,M_{\odot})^{1/2}$ (see Equation 13). References: [1] Blandford & Payne (1982); Appenzeller & Mundt (1989); Camenzind (1990); [2] Hartmann & Calvet (1995); Calvet (1998); Tomisaka (1998); Bacciotti et al. (2002); Tomisaka (2002); Lee et al. (2006); Cabrit et al. (2007); Lee et al. (2007); Hennebelle & Fromang (2008); Duffin & Pudritz (2009); Bacciotti et al. (2011); Price et al. (2012); Seifried et al. (2012); [3] Herbig (1962); Snell et al. (1980); Blandford & Payne (1982); Draine (1983); Uchida & Shibata (1985); Shibata & Uchida (1985, 1986); Pudritz & Norman (1986); Wardle & Königl (1993); Bacciotti et al. (2000); Königl & Pudritz (2000); Bacciotti et al. (2002); Banerjee & Pudritz (2006); Machida et al. (2008); [4] Pelletier & Pudritz (1992); Bacciotti et al. (2002); Banerjee & Pudritz (2006); Hennebelle & Fromang (2008).

Outflow mass: $M_{\rm out} = f_{\rm m} M_{\rm acc} \Delta t$

Outflow velocity:
$$|\mathbf{V}_{\text{out}}| = \left(\frac{GM_{\text{sink}}}{10R_{\odot}}\right)^{1/2} = 100 \,\text{km}\,\text{s}^{-1} \left(\frac{M_{\text{sink}}}{0.5\,M_{\odot}}\right)^{1/2}$$

Outflow angular momentum: $\mathbf{L}_{out} = f_{a} \left(\mathbf{S}'_{sink} - \mathbf{S}_{sink} \right) \cdot \mathbf{S}'_{sink} / |\mathbf{S}'_{sink}|$

Federrath - G. Haro Workshop 2015

Modeling jets/outflows

Without Subgrid Mode (low res)	Without Sub (mid res)	Without Subgrid Model (mid res)		With Subgrid Model (low res)	
Low resolution No subgrid model	High resolution No subgrid model		Low resolution With SGS outflow model		
				Enterrate at at (2014)	

Movies available: http://www.ita.uni-heidelberg.de/~chfeder/pubs/outflow_model/outflow_model.shtml

Federrath et al. 2014, ApJ 790, 128

Resolution study *without* SGS model:

Time

Resolution

Federrath - G. Haro Workshop 2015

Resolution study without SGS model:

Time

Federrath et al. 2014, ApJ 790, 128

Subgrid model reproduces observations and theory

Federrath et al. 2014, ApJ 790, 128

Subgrid model is automatically adaptive

Federrath - G. Haro Workshop 2015

Star Formation – Outflow/Jet Feedback

Movies available: http://www.ita.uni-heidelberg.de/~chfeder/pubs/outflow_model/outflow_model.shtml

Federrath et al. 2014, ApJ 790, 128

The role of outflow/jet feedback for star cluster formation

RESULTS:

- Outflow/Jet feedback reduces the SFR by factor ~ 2
- Outflow/Jet feedback reduces average star mass by factor ~ 3

The role of outflow/jet feedback for star cluster formation

- Outflow/Jet feedback reduces the SFR by factor ~ 2
- Outflow/Jet feedback reduces average star mass by factor ~ 3

Why is Star Formation is so Inefficient?

Movies available: http://www.mso.anu.edu.au/~chfeder/pubs/ineff_sf/ineff_sf.html

Turb

Turb+ Mag+ Jets

Star Formation is Inefficient

Federrath 2015, MNRAS 450, 4035

Conclusions

- Supersonic, magnetized turbulence is key for star formation
 - SFR from density PDF depends on virial parameter, forcing parameter, Mach number, plasma beta
 - Very good agreement between theory, simulations and observations
- Subgrid model for jet/outflow feedback in star cluster formation:
 - Implemented for AMR, tested, and demonstrated convergence
 - Star formation rate reduced by $\sim 2x$
 - Average star mass reduced by $\sim 3x \rightarrow IMF$
- Star Formation is inefficient →

Only combination of Turb+Mag+Feedback gives realistic SFRs