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Models of formation of MBHs

Volonteri (2012)

See also Rees (1984)
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Core collapse

Star clusters cause core collapse by
2-body interaction

Stars get hotter, so
that E, balances the
increased E_,

2-body interaction,
Core shrinks — and faster stars

some more escape
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Recent cosmological simulation

Katz+(2015)
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Tidal disruption & Loss cone depletion

Stars passing within tidal radius of BHs are
destroyed and accreted onto the BHs

Consequently, loss cone is made
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2-body relaxation
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Resonant Relaxation (RR)

Rauch & Tremaine (1996)

Star in Kepler motion can give a torque to

other stars foratimet<t,.
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Model: Disk model &
star cluster

1: Disk surface density

Isothermal Mestel disk 3: Spherical density structure at galactic
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Model:Growth of BH

191 roy,
foe ™ ar = InA Gm

(Fujii & Portegies Zwart 2014)

Mg =m, . + (Portegies Zwart & McMillan 2002)
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log Myys (M)
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Very Massive Stars

Esx ~ 0.007 x My x 10°terg

GM?
Rvir

Egrav ~ A

Mass of VMSs decreases
with redshift due to the
bigger size of clusters



Stellar density distribution

t=0 King profile
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log Mg, (M)

Black hole mass
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log N/dlogMg,/Mpc?

If Pop Il star clusters

' to the shorter
e-collapse timescale

_2 [ [ [ [ [ [ [ [ [ [ [ [ | [ [ [ [ [ [
} 7 =6 i
i 10—500 MQ |

_4 - |
! a=-2.35 |

lf ]
i E Due
I '1 Cor

_8 ] : —

_10 | | I | 1 | | I | | | | | i | | | | | | | I_
3 4 5 6 7

log Mgy (M)



log N/dlogM,./Mpc?

Globular Clusters

- 6 T T 1

7=0

\
2
\

\
@
\

log My, (M)

Mach the mass range of the
observed local GCs

—6.9

—-8.9

Number density of our modeled GCs

Is much smaller than that of local
observed GCs.

10 15 20
redshift



Summary

e We model the formation of SMBH seeds in
merging first galaxies.

* Merging of galaxies with M, ~10%° M_ . leads
to compact star clusters, resulting in very
massive stars of ~¥1000 M_, after the core-

collapse

* Massive BHs can grow up to ~10° M, via
stellar relaxation processes (2-body and
resonant relaxation of stars)



Schematic view of our model
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