CHAOTIC COLD ACCRETION ONTO SMBHS

Massimo Gaspari

MAX PLANCK INSTITUTE FOR ASTROPHYSICS FELLOW

RAINING ONTO SMBHS

Massimo Gaspari

MAX PLANCK INSTITUTE FOR ASTROPHYSICS FELLOW

OUTLINE

FEEDING?

- cold versus hot mode
- linking group scale to sub-pc scale
- beyond classic Bondi and thin disc
- cooling, heating, rotation, turbulence:
 chaotic cold accretion [CCA]

FEEDBACK ?

- amount of energy released
- deposition of energy
- mechanical versus thermal
- bubbles, shocks, metal uplift, turbulence, L_x-T_x <---> observations

MG+2009-2015

MG+2013-2015

SELF-REGULATED LOOP

ON SPHERICALLY SYMMETRICAL ACCRETION

H. Bondi

(Received 1951 October 3)

Summary

The special accretion problem is investigated in which the motion is steady and spherically symmetrical, the gas being at rest at infinity. The pressure is taken to be proportional to a power of the density. It is found that the accretion rate is proportional to the square of the mass of the star and to the density of the gas at infinity, and varies inversely with the cube of the velocity of sound in the gas at infinity. The factor of proportionality is not determined by the steady-state equations, though it is confined within certain limits. Arguments are given suggesting that the case physically most likely to occur is that with the maximum rate of accretion.

 $\dot{M}_{\rm B} = 4\pi\lambda_{\rm c} \frac{(GM_{\rm BH})^2}{c_{\rm s,\infty}^3} \rho_{\infty} \propto K_{\infty}^{-3/2}$

"FOR SIMPLICITY,"

 $4\pi r^2 \rho v = \text{constant}$

$$\frac{v^2}{2} + \int_{p_{\infty}}^{p} \frac{dp}{\rho} - \frac{GM}{r} = \text{constant} \ (=0).$$

$$p/p_{\infty} = (\rho/\rho_{\infty})^{\gamma}$$

"FOR COMPLEXITY, ... " (PHYSICAL)

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho v) = \alpha \rho_* - q \frac{\rho}{t_{\text{cool}}} + S_{1,\text{jet}}, \qquad (1)$$

-

$$\frac{\partial \rho \boldsymbol{v}}{\partial t} + \nabla \cdot (\rho \boldsymbol{v} \otimes \boldsymbol{v}) + \nabla P = \rho \boldsymbol{g}_{\text{DM}} + S_{2,\text{jet}}, \qquad (2)$$

$$\frac{\partial \rho \varepsilon}{\partial t} + \nabla \cdot \left[\left(\rho \varepsilon + P \right) v \right] = \rho v \cdot g_{\rm DM} + \alpha \rho_* \left(\varepsilon_0 + \frac{v^2}{2} \right) \\ - n_{\rm e} n_{\rm i} \Lambda(T, Z) + S_{3,\rm jet},$$
(3)

$$P = (\gamma - 1)\rho\left(\varepsilon - \frac{v^2}{2}\right).$$
(4)

FEEDING: SMBH ACCRETION

FLASH4 simulations

MG+2013-2015

- concentric SMR zooming: $box = 50 \text{ kpc} \rightarrow dx \sim 20 R_s 0.1 \text{ pc}$ $\sim 10 \text{ million range} \qquad 600 r_B \text{ and } 200 t_B$
- 3D eulerian gas dynamics: unsplit PPM (3rd order) + varying physics
- massive galaxy group with dark matter halo: $M_{\rm vir} = 4 \times 10^{13} \, {\rm M}_{\odot}$
- central elliptical galaxy (NGC 5044): $M_{\text{star}} = 3.4 \times 10^{11} \text{ M}_{\odot}$
- SMBH: $M_{\rm bh} = 3 \times 10^9 \,\mathrm{M_{\odot}} \rightarrow \mathrm{relativistic} \,\mathrm{PW}: \,\phi_{\rm PW} = -GM_{\rm bh}/(r-R_{\rm s})$
- observed gas T(r) [cool-core] $\rightarrow n(r)$ via hydrostatic equilibrium

1.

STRATIFICATION

PURE HOT MODE (BONDI)

 $\dot{M}_{\rm Bondi} = 4\pi (GM_{\rm BH})^2 \rho_{\infty} / c_{s,\infty}^3$

PURE HOT MODE (BONDI)

 $\dot{M}_{\rm Bondi} = 4\pi (GM_{\rm BH})^2 \rho_{\infty} / c_{s,\infty}^3$

STEADY & SPHERICAL TURBULENCE

AGN feedback, SNe, mergers, galaxy motions, ...

subsonic (~100 km s⁻¹) \rightarrow spectral forcing

Simulations & Observations: e.g. Sanders & Fabian 2013, Norman & Bryan 1999, Lau et al. 2009, Ruszkowski & Oh 2010, 2011, Vazza et al. 2011, Gaspari et al. 2012b

MG+2014

|v| cut

ICM POWER SPECTRUM

 $\delta \rho / \rho \sim \text{Mach}_{1D}$

globally self-similar over Mach and L_{inj}

(density perturbations relative to the underlying radial profile)

REAL CASE: COMA CLUSTER

TURBULENT HOT MODE

time [Myr]

MG+15

З.

COOLING

$$\mathcal{L} = -n_e n_i \Lambda(T, Z)$$

RADIATIVE COOLING

$$\mathcal{L} = -n_e n_i \Lambda(T, Z)$$
 erg s⁻¹ cm⁻³

PURE COLD MODE

PURE COLD MODE (ROTATION)

PURE COOLING

HEATING

AGN feedback: outflows, shocks, turbulence

SNe, mergers, conduction, cosmic rays can contribute

MS0735.6 cluster (McNamara+05)

GLOBAL THERMAL EQUILIBRIUM

AGN outflow feedback: net heating deposition

 $\mathcal{H}\sim \langle \mathcal{L}
angle$

CHAOTIC COLD ACCRETION ("CCA")

COOLING + HEATING + TURBULENCE

condensation up to several kpc

Thermal Instability (TI): $t_{\rm cool}/t_{\rm ff} < 10$

MG+13

 $M_{\rm BH} \sim M_{\rm cool}$

Angular momentum cancellation

Capture by clumpy torus

- Accretion driven by **inelastic collisions**: cloud-cloud and cloud-torus
- Very clumpy & turbulent torus (crucial for the AGN unification theory)
- Cold clouds may form the BLR/NLR or HVC
- Deflection of jets / outflows & BH spin changes

CHAOTIC COLD ACCRETION (ROTATION)

3. TI are weaker as rotation dominates: vertical infall => radial compression is marginal => lower TI threshold $t_{cool}/t_{ff} < 1$ (non-spherical case; McCourt et al. 2012)

sub-Eddington accretion rates: 3.e-4 - 3.e-2 --> covers well the mechanical mode regime (e.g. Russell+13)

COLD vs HOT ACCRETION

• $t_{\rm cool}/t_{\rm ff} < 10 =>$ condensation & TI

chaotic cold accretion

 $\dot{M}_{\rm BH} \sim 100 \, \dot{M}_{\rm Bondi}$

• $t_{\rm cool}/t_{\rm ff} >> 10 =>$ overheated phase

stifled Bondi/hot accretion

 $\dot{M}_{\rm BH} \lesssim 1/3 \, \dot{M}_{\rm Bondi}$

e.g. NGC 4649 (Humphrey et al. 2008) NGC 1332 (Humphrey et al. 2009)

CHAOTIC COLD ACCRETION DRIVES AGN FEEDBACK

5.

FEEDBACK

FLASH4 simulations

MG+2009-2015

Cluster $\rightarrow M_{\rm vir} \approx 10^{15} M_{\odot}, R_{\rm vir} \approx 2.5 \,\,{\rm Mpc}$ Group $\rightarrow M_{\rm vir} \approx 4 \times 10^{13} M_{\odot}, R_{\rm vir} \approx 0.9 \,\,{\rm Mpc}$ Elliptical $\rightarrow M_* \approx 3 \times 10^{11} M_{\odot}, R_{\rm eff} \approx 10 \,\,{\rm kpc}$

- large-scale runs: 100 pc 2 Mpc
- Dark matter + central galaxy potential
- Radiative cooling
- Stellar evolution: heating + mass loss
- **Bipolar AGN outflows + self-regulation:**

$$\frac{1}{2}\dot{m}_{\rm jet}v_{\rm jet}^2 = P_{\rm jet} = \epsilon \,\dot{M}_{\rm acc}c^2$$
$$\dot{M}_{\rm acc} \sim \dot{M}_{\rm coc}$$

PURE COOLING FLOW EVOLUTION

AGN HEATING

KEY OBSERVATIONAL CONSTRAINTS

- **Quenching** the pure cooling flow for several (> 7) Gyr
- Self-regulated feedback (quasi thermal equilibrium)
- Preserve the **cool-core** structure (*T* and *n* profiles)
- Naturally producing typical observed features: bubbles, shocks, metals dredge-up, cold gas, turbulence

JET VELOCITY

COLD GAS: BY-PRODUCT AND FUEL OF FEEDBACK

AGN FEEDBACK KEY IMPRINTS

QUENCHING THE SOFT X-RAY SPECTRUM

MG 2015

AGN outflows deposits relatively more heat in the inner cooler phase
 turbulence becomes transonic in the cooler phase => stronger diffusion

CAN AGN FEEDBACK "BREAK" SELF-SIMILARITY?

solid line: stacking 250000 central brightest galaxies (X-ray fluxlimited) Anderson, Gaspari, White+15

X-ray data: cool-core structure preserved for several Gyr

MG+14 black filled points: AGN feedback simulations

SELF-REGULATED CCA FEEDBACK

 $\alpha_{\rm boost} \sim 50 - 100$

 $\dot{M}_{\rm BH} \sim \dot{M}_{\rm cool}$

- **Fast** communication time between the gas and the BH
- Rapid **intermittency**: bubbles, shocks, ripples, metal uplift.

• Symbiosis between the BH and the <u>whole</u> galaxy => Magorrian (linear) relation $M_{\rm BH} \propto M_{\rm cold} \propto M_*$

SELF-REGULATED AGN FEEDBACK

