The formation of supermassive black holes via direct collapse at high redshift

#### Muhammad Latif

#### Institut d'Astrophysique de Paris, France

Marta Volonteri, Dominik Schleicher, Stefano Bovino, Tommaso Grassi, Jens Niemeyer, Wolfram Schmidt, Marco Spaans, Melanie Habouzit, Tillman Hartwig, Carline Van Borm, Simon Glover, Ralf Klessen







- \* Direct collapse scenario
- \* Feasibility of direct collapse scenario via high resolution cosmological simulations
- \* Role of turbulence and magnetic fields during seed BH formations
- \* Critical strength of UV flux and comparison of number density of DCBHs with observed quasar abundance
- \* Is complete isothermal collapse really necessary?

#### Direct collapse scenario



Regan et al 2009

# **Primordial gas chemistry**

> Ly  $\alpha$  is an efficient coolant

for T<sub>vir</sub> >10<sup>4</sup> K halos

- > At T<8000 K,  $H_2$  cooling
- Cools the gas to 300 K
- Strong Lyman Werner flux
- Photodissociation of H<sub>2</sub>



# Lyman Alpha Trapping

- Large columns of neutral gas make the gas optical thick
- Photon escape time
  becomes larger than free
  fall time
- ★ Equation of state becomes stiff due to the trapping of Lyman alpha photons

$$\begin{array}{c} 0.7 \\ 0.6 \\ 0.5 \\ 0.4 \\ 0.3 \\ 0.2 \\ 0.1 \\ 10^{0} \\ 10^{1} \\ 10^{2} \\ 10^{3} \\ 10^{4} \\ 10^{5} \\ 10^{6} \\ 0^{3} \\ 0^{2} \\ 10^{5} \\ 10^{6} \\ 0^{3} \\ 0^{2} \\ 0.1 \\ 0^{5} \\ 0^{6} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7} \\ 0^{7}$$

$$\gamma_{eff} = 1 + \frac{d\log T}{d\log\rho}$$

#### Spaans & Silk 2006, Latif et al. 2011

#### Thermal evolution



Lyman alpha trapping

Schleicher et al. 2010, Latif et al. 2011

# Lyman alpha Trapping



**Isothermal case** 

Lyman alpha trapping

Latif et al. 2011

# Simulation setup

- Comoving period box of 1 Mpc/h in size
- Cosmological Initial conditions at z=100
- > 6 Million MD particles
- > Two nested grids + 27 refinement levels
- > Halo masses of ~ 107  $M_{\odot}$
- UV flux of various strengths in units of J<sub>21</sub>
- X-rays
- First high resolution studies to explore the formation of seed BHs
- Perform Cosmological simulations using AMR code ENZO

#### Global properties of simulated halos



Latif et al 2013 MNRAS 433 1607L

# Movie shows the collapse of central 1 pc



# Movie shows the collapse of central 1 pc



## State of simulations



**\star** Collapse occurs isothermally with T~ 8000 K **\star** Provides large inflow rates of ~1M<sub> $\odot$ </sub>/yr

Latif et al. 2013 MNRAS 433 1607L

## Impact of H<sup>-</sup> cooling



|        | Simulations                |                                   |
|--------|----------------------------|-----------------------------------|
| Name   | Turbulence (~ % of $c_s$ ) | Rotation (% of $v_{\text{Kep}}$ ) |
| T40R0  | 40 %                       | 0 %                               |
| T40R10 | 40 %                       | 10 %                              |
| T40R20 | 40 %                       | 20 %                              |
| T20R10 | 20 %                       | 10 %                              |
| T80R10 | 80 %                       | 10 %                              |

#### Impact of rotation & turbulence



2014A&A...572A..22V Van Borm, Latif, Schleicher et al.

#### Impact of rotation & turbulence



Van Borm, Latif, Schleicher et al. 2014A&A...572A..22V

## Masses of protostars



- + Employed sink particles to follow the evolution for 20,000 yrs
- + Massive protostars of about  $10^5$   $M_{\odot}$  are formed

| Latif et al. 2013 MNRAS 436 2989L    |
|--------------------------------------|
| Begelman et al. 2006, Volonteri 2010 |

Mass  $[M_{\odot}]$ 

# What about Magnetic fields? Are they important in BH formation?

# Small scale dynamo



#### Image credit: Schober et al. 2012

# Magnetic field Amplification



Latif et al. 2013 MNRAS 433 668L

#### Magnetic field Amplification



#### Impact of Magnetic fields on Fragmentation



Latif et al. 2014 MNRAS 440 1551L

# Impact of shear and compression



$$\frac{D}{Dt}\left(\frac{B^2}{8\pi}\right) = \frac{1}{4\pi}\left(B_iB_jS_{ij}^* - 2/3B^2d\right)$$
  
see Schmidt+13 Shear Compression

Latif et al 2013 submitted Arxiv:1310.3680

#### Impact of Magnetic fields on Fragmentation



Latif et al. 2014 MNRAS 440 1551L

# Magnetic Fields during the formation of SMBHs



# What is the critical value of Lyman Werner Flux?



#### Dependence of J<sub>crit</sub> on radiation spectra



#### Dependence of J<sub>crit</sub> on halo properties



## Impact of X-ray heating on J<sub>crit</sub>



#### Estimates of J<sub>crit</sub> from 3D simulations



#### Number density of DCBHs



#### What if there is trace amount of H<sub>2</sub>

- \* Massive stars up to 1000 M<sub>☉</sub>
  can be formed in minihalos
  (Hirano et al 2014, Latif &
  Schleicher 2015)
- LW flux helps in suppressing H<sub>2</sub> formation and keeps the gas warm with 8000 K down to ~ pc scales
- Key requirement for the formation of supermassive star is mass inflow rate of 0.1 M<sub>o</sub> /yr





#### Latif & Volonteri 2015 Arxiv:1504.00263

#### Density structure in the halo



Latif & Volonteri 2015 Arxiv:1504.00263

#### Sink Masses & accretion rates



Latif & Volonteri 2015 Arxiv:1504.00263, to be published in MNRAS





#### What if fragmentation occurs at smaller scales

- \* Analytical model for disk fragmentation
- **\*** Assumptions:
  - Steady state condition Marginally stable (Q=1) Embedded in large inflow rates of 0.1 M<sub>o</sub>/yr
- \* Solve for Thermal balance



$$\mathbf{Q}_{+} = \mathbf{Q}_{-}$$

$$Q_+ = \frac{9}{4} \nu \Sigma \Omega^2$$

**\*** Viscous Heating

Latif & Schleicher 2015 Arxiv:1411:5902, published in A&A

#### Disk properties for central star of 10 M $_{\odot}$





Latif & Schleicher 2015 Arxiv:1411:5902, to be published in A&A

#### Thermal properties of disk



Schleicher et al. 2015 Arxiv:1504:06296

#### Key findings of this model

- \* Temperature of the disk increases due to viscous heating for higher accretion rates
- ★ H₂ gets collisionally dissociated (Also see Schleicher et al 2015)
- \* Clumps are able to migrate inward on short time scales, even tidally disrupted within central 10 AU

 $\star$  Feedback from the central star only becomes important at later stages for 10^4 M  $_{\odot}$ 

#### Summary

- $\blacktriangleright$  Direct isothermal collapse provides massive seeds of about  $10^5~\mbox{M}_{\odot}$  but sites are rare
- →Large accretion rates of ~0.1 M  $_{\odot}$  /yr are found in simulations with moderate UV flux
- No vigorous fragmentation is observed in such cases
- Viscous heating leads to collisional dissociation of H<sub>2</sub> and help in stabilising the disk.
- →Complete isothermal collapse may always not be necessary to form supermassive stars of about ~10<sup>5</sup> M ...