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INntroduction

Two main scenarios for massive black hole formation:

LIGHT seeds
e Poplll remnants (M = 102 Mo)

HEAVY seeds
(M = 104 Mo )

e Direct collapse of a massive gas cloud
. Quasistars/SMS
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Two main scenarios for massive black hole formation:

LIGHT seeds

e Poplll remnants (M = 102 Mo)
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e Direct collapse of a massive gas cloud
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INntroduction

Two main scenarios for massive black hole formation:

LIGHT seeds
e Poplll remnants (M = 102 Mo)
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The Relativistic collapse of a
nuclear stellar cluster’'s core

Proposed in the 80's by Quinlan & Shapiro (1987)
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The Relativistic collapse of a
nuclear stellar cluster’'s core

Proposed in the 80's by Quinlan & Shapiro (1987)
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The Relativistic collapse of a
nuclear stellar cluster’'s core

Proposed in the 80's by Quinlan & Shapiro (1987)
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The Relativistic collapse of a
nuclear stellar cluster’'s core

But additional effect need to be be considered!
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The Relativistic collapse of a
nuclear stellar cluster’'s core

But additional effect need to be be considered!
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GIRM

Davies et al. (2011) reconsidered the fate of a NSC in a
cosmological framework.

1. Deepening of the potential well
2. Tighter stellar/compact object orbits and smaller core

radius
3. Binaries cannot prevent further contraction
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In Lupi et al. (2014) we implemented this model in a semi-
analytic code by B. Devecchi (Devecchi et al. 2009).
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GIRM

In Lupi et al. (2014) we implemented this model in a semi-
analytic code by B. Devecchi (Devecchi et al. 2009).

e Merger trees provided by Pinocchio (Monaco, 2002), a semi-
analytic code aimed at following the cosmic evolution of dark matter
haloes.

e The code by Devecchi builds and follows the baryonic components
within the dark matter haloes.
- Gas inflows are self-consistently computed.
- Different models for BH seed formation can be included.



GIRM

NSC’s core contraction

Toy model:
e stars on nearly circular orbits
e single star angular momentum conservation during the inflow
event

le = vV/GM(< ro)rog = \/G[M(< ro) + Mgas| T

'

o M(<7“())
T‘()_ M(<TO)‘|_Mgas 66(0’3)




GIRM

NSC’s core contraction

Toy model:
e stars on nearly circular orbits
e single star angular momentum conservation during the inflow
event

i = \/GM(< T0)To = \/G[M(< o W]

'

B ik e Ec(0.3)
RO— MO"'Mgas ’

To model different responses we assumed a power-law relation



Fraction of haloes hosting a BH seed
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GIRM

BH seed mass distribution
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summary

Results:
e GIRM channel would be active at lower redshift than the Popll|
channel (z ~ 10)
e GIRM is competitive to other channels like Poplll, resulting in a
comparable population

e GIRM would produce intermediate mass BHs as coalescence of stellar
mass BHs, (Mgn~1023Mo) in situ

Open issues:

e The NSC must be prone to a very large gas inflow

e The gas inflow should be confined in the centre without fragmenting and
forming stars

e The inflow events should occur on timescales shorter than the typical BH
ejection timescale
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I'he heavy seed scenario

What we need:

* o avoid gas fragmentation

® [0 effectively dissipate angular momentum

e Jo drive gas toward the centre of galaxies at rates of at least
i M@/yr
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I'he heavy seed scenario

What we need:

* [0 aveiata f =
e To effe Further and more detalled mvestlgatlon

*ToO drl\“ would be necessary
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Madau, Haardt & Dotti (MHD, 2014) discussed super-
critical (super-Eddington) accretion onto stellar mass BHs
as a viable mechanism to bypass the difficulties
associated to both light and heavy seed scenarios




The Slim Disc Model

Abramowicz et al. (1988), Sadowski et al. (2009,2014)
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Super-critical accretion on stellar
mass BHS In gas-rich galaxy nuclel
(Lupi et al. in preparation)

MHD (and Volonteri, Silk & Dubus, 2014) discussed how the
conditions for super-critical accretion are plausible in the dense
environments of high redshift massive proto-galaxies.

Initial conditions
e (Gaseous disc o Stellar background
-M = 108M® -M = 2)(108'\/'@
=Rei = S0pe R = 100 pc

i s =0 K

e 70 stellar mass BHSs



The code: GIZMO (Hopkins, 2015)

New mesh-free Lagrangian methods to solve the hydrodynamics
equations.

1. Volume partition scheme to model the gas distribution starting
from a discrete set of tracer points (“particles”)

New Meshless Method Unstructured / Moving—Mesh Methods Smoothed —Particle Hydrodynamics

2. “Godunov-type” method to solve the Riemann problem between two
particle “eftective faces”



BH accretion/feedback

We considered our BHs as sink particles and we implemented the
following recipes:

e Fux accretion prescription (Bleuler et al., 2014)
Mﬁux — _/ le(P(’U — vsink))dV
Qace

e BH feedback, following Booth & Schaye (2009), assuming the
radiative efficiency - accretion rate relation derived in MHD:

B LA(a) - 0.985 - 0.015
= 16 r+ B(a) | r+Cl(a)
A(a) = (0.9663 — 0.9292¢a)9-°0%° ; _
B(a) = (4.627 — 4.445q) 9:%°%4 r= Mg/ M
C(e) = (8273 —T7i81a) "%,

1 http://grackle.readthedocs.org (The Enzo Collaboration et al. 2014; Kim et al. 2014)
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BH-clump capture process
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Effect of the radiative efficiency
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Effect of the resolution
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summary

Results:

e A radiatively inefficient accretion is a necessary condition to grow
supermassive BHs in less than 1 Gyr, able to explain the most massive
guasars

¢ A stellar mass BH embedded in a fragmenting CND can experience a
gravitational capture by a massive gaseous clump, which provides a large
enough inflow to trigger a phase of super-critical accretion

e The radiatively inefficient accretion on to the BH prevents the clump from
being disrupted, allowing for an unimpeded fast growth able to increase
the BH mass ~10-100 times more than with a standard Shakura & Sunyaev
accretion model.



summary

Open issues:

e [he accretion history strongly depends on the spatial resolution achieved In
our runs.

® Despite the high resolution reached we cannot properly resolve the
accretion disc scales, so our accretion rates are overestimated.
—> A quantitative convergence Is far from being reached.

e Our simulations are highly idealised. We totally neglected the galaxy
scales, which could provide large inflows to replenish the nucleus
previously depleted from the gas as consequence of SNa explosions.

e [he BH-clump capture process can occur only until the BH mass exceeds
the clump mass.



Next steps

Flacconi et al. in preparation

L ~ 85 Mpc comoving up to z=6.5

Mgas ~ 880 Mo

¢ = 47 physical pc (hi-res region ~ 2.5 Ryir at z=6)

~1.5x108 particles a z=6.5 (~ 3.5x107 within the virial radius)
Mhalo ~ 1.2x1018 Mo at z=0 (~10"" Mo at z=6.5)

Rvir ~ 25 kpc at z=6.5

Metal cooling

Haardt & Madau (2012) UV background
Blast wave SN feedback

Kroupa (2001) IMF

Pressure floor (to resolve at least 3 elements)
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