

Formation of Supermassive Black Holes via Direct Collapse: Successes and Problems

Dominik Schleicher Departamento de Astronomía Universidad de Concepción

Collaborators:

Stefano Bovino (Hamburg), Pedro Capelo (Zürich), Stephanie Dörschner (Göttingen), Andrea Ferrara (Pisa), Tommaso Grassi (Copenhagen), **Muhammad Latif (Paris)**, Jens Niemeyer (Göttingen), Francesco Palla (Florence), Wolfram Schmidt (Hamburg), Marco Spaans (Groningen), Caroline Van Borm (Groningen)

Guillermo Haro Workshop 2015, 07.07.2015

Supermassive black holes at high redshift

- The highest-redshift black hole observed is at z=7.085 with 2x10⁹ solar masses (Mortlock et al. 2011).
- A supermassive black hole with I2 billion solar masses has been observed at z=6.3 (Wu et al. 2015).
- Total accreted mass at z~6
 <1000 M_{solar} Mpc⁻³ (Treister et al. 2013).

Guillermo Haro Workshop 2015, 07.07.2015

Progenitors as massive primordial stars?

Hirano et al. (2014): Potentially stars more than 1000 solar masses.

Guillermo Haro Workshop 2015, 07.07.2015

Black holes from the first stars

- Stellar black holes could form between 30-100 or 300 to 1000 solar masses.
- Recent simulations show fragmentation and reduced masses (Clark et al. 2011, Greif et al. 2012, Latif et al. 2013).

Guillermo Haro Workshop 2015, 07.07.2015

Pathways to black hole formation

Guillermo Haro Workshop 2015, 07.07.2015

Black holes from stellar clusters

~1000 M_{solar} mass black holes from stellar clusters

Devecchi et al. (2012)

Guillermo Haro Workshop 2015, 07.07.2015

Thermodynamics in primordial gas

Impact of turbulence

- During gravitational collapse, turbulence is driven on the Jeans scale.
- Typical simulations resolve the Jeans length with 4-16 cells (Truelove 1997).
- Resolving turbulent eddies requires

 a numerical resolution of at least
 32 cells per eddy!
 (Federrath et al. 2011, Latif et al. 2013).

Guillermo Haro Workshop 2015, 07.07.2015

Resolution limits: Turbulence on unresolved scales

Schmidt & Federrath (2011)

Guillermo Haro Workshop 2015, 07.07.2015

Simulations of black hole formation

- Cosmological simulations with the adaptive mesh refinement code Enzo.
- Physics modules: dark matter, hydrodynamics, SGS turbulence and primordial chemistry.
- Focus on gravitational collapse in 10⁷ solar mass halos.
- The evolution becomes adiabatic at densities >10⁻¹⁰ g cm⁻³ to mimic the formation of protostellar cores.
- We will initially consider a strong radiation background to dissociate molecular hydrogen.

Guillermo Haro Workshop 2015, 07.07.2015

Halo structure after the initial collapse

Latif, Schleicher, Schmidt & Niemeyer (2013a)

Guillermo Haro Workshop 2015, 07.07.2015

The central region after four free-fall times

Guillermo Haro Workshop 2015, 07.07.2015

Formation of self-gravitating disks

Guillermo Haro Workshop 2015, 07.07.2015

Radial profiles after four free-fall times

Latif, Schleicher, Schmidt & Niemeyer (2013a)

Guillermo Haro Workshop 2015, 07.07.2015

Disk stability and support against gravity

Left: Support against gravity by thermal pressure, resolved turbulence and unresolved turbulence. Right: Toomre-Q parameter for disk stability.

Latif, Schleicher, Schmidt & Niemeyer (2013a)

Guillermo Haro Workshop 2015, 07.07.2015

Comparison run: no SGS model

Guillermo Haro Workshop 2015, 07.07.2015

Comparison run: no SGS model

Guillermo Haro Workshop 2015, 07.07.2015

Central clump masses

Table 1: Properties of the simulated halos are listed here					
Model	Mass	spin parameter	Collapse redshift	Clump Masses	Clump Masses
	${ m M}_{\odot}$	λ	Z	LES (M _o)	ILES (M_{\odot})
Α	8.06×10^{6}	0.0347468	12.06	950	460
В	4.3×10^{6}	0.0309765	11.3	850	850
С	2×10^{7}	0.0178532	12.6	800	611
D	1.0×10^{7}	0.0338661	12.8	850	842
E	1.9×10^{7}	0.0084786	13.7	1200	741
F	4.5×10^{7}	0.0294066	18.1	800	588
G	2.3×10^{7}	0.021782	15.9	800	815
Н	9.7×10^{6}	0.0099387	13.5	900	1522
Ι	8.2×10^{6}	0.0252206	15.0	556	1000

Characteristic mass scales are similar for hydro and SGS runs, but much more variation in standard hydro results!

Latif et al. (2013a)

Guillermo Haro Workshop 2015, 07.07.2015

Implications of high accretion rates

Hosokawa et al. (2012): Very extended protostellar envelopes at high accretion rates (>0.006 M_{solar} per year).

Latif et al. (2013a): Accretion rates of order 1 M_{solar} per year in the first four free-fall times.

Guillermo Haro Workshop 2015, 07.07.2015

Interaction of accretion and contraction

Timescale to transport mass in the nuclear core >> Kelvin-Helmholtz time until $M \ge 3.6 \times 10^8 \, \dot{m}^3 M_{\odot}$

Schleicher, Palla, Ferrara, Galli & Latif (2013)

Guillermo Haro Workshop 2015, 07.07.2015

Supermassive stars or quasi-stars?

Schleicher, Palla, Ferrara, Galli & Latif (2013)

Guillermo Haro Workshop 2015, 07.07.2015

The longer-term evolution

Characteristic time evolution of the accretion in four different halos

Latif, Schleicher, Schmidt & Niemeyer (2013b)

Guillermo Haro Workshop 2015, 07.07.2015

Density distribution after 20000 years

Latif, Schleicher, Schmidt & Niemeyer (2013b)

Guillermo Haro Workshop 2015, 07.07.2015

Stabilization via angular momentum

Latif, Schleicher, Schmidt & Niemeyer (2013b)

Guillermo Haro Workshop 2015, 07.07.2015

The characteristic mass scale

Guillermo Haro Workshop 2015, 07.07.2015

Important caveats

- The simulations so far assume a very strong UV background to dissociate molecular hydrogen.
- The required value is however very high, the process thus
 Extremely rare (e.g. Dijkstra et al. 2014, Latif et al. 2015).

 The long-term evolution of such disks is currently just marginally understood -> further investigation.

Guillermo Haro Workshop 2015, 07.07.2015

Dependence of the central mass on the UV background -Do we need an isothermal collapse?

UV radiation field: $J(\nu) = J_{21} \times 10^{-21} \frac{B_{\nu}(T_r)}{B_{\nu,H}(T_r)} erg \ s^{-1} \ cm^{-2} \ sr^{-1} \ Hz^{-1}$

Latif, Schleicher, Bovino, Grassi & Spaans (2014) see also Latif & Volonteri (2015)

Guillermo Haro Workshop 2015, 07.07.2015

Uncertainties in the critical UV field strength for atomic cooling

Latif, Bovino, Grassi, Schleicher & Spaans (2014)

Guillermo Haro Workshop 2015, 07.07.2015

Self-gravitating stationary disk model

Toomre Q
parameter:
$$Q = \frac{c_s \Omega}{\pi G \Sigma}$$

self-regulation: Q~I

 $\Sigma = \frac{M_{tot}}{3\pi\nu}$

stationarity plus mass conservation:

Kepler rotation:

$$\Omega_K = \sqrt{\frac{GM_*}{R^3}}$$

viscous heating: $Q_+ = \nu \Sigma (R\Omega')^2$

surface cooling: $Q_{-} = 2H\Lambda_{\rm H/H_2}$

disk height:
$$H = \frac{c_s}{\Omega}$$

Latif & Schleicher (2015)

heating=cooling

Guillermo Haro Workshop 2015, 07.07.2015

Impact of viscous heating in self-gravitating disks

Latif & Schleicher (2015)

Guillermo Haro Workshop 2015, 07.07.2015

Viscous heating in a full chemical model

Schleicher et al., (2015)

Guillermo Haro Workshop 2015, 07.07.2015

Viscous heating in a full chemical model

Guillermo Haro Workshop 2015, 07.07.2015

Summary

- Massive black holes with 10⁵ solar masses can form if molecular hydrogen is fully dissociated.
- Large-scale simulations indicate the formation of 10³⁻10⁴
 solar mass objects for moderate amounts of H2.
- Large uncertainties in the determination of J_{crit}
 -> importance of 3D simulations!
- On scales of 10-100 AU, viscous heating can stabilize the disk and support the formation of very massive objects.

D. Schleicher

• The impact of metals and dust needs to be further explored in the future.

Guillermo Haro Workshop 2015, 07.07.2015