The cosmic growth of the active black hole population

Andreas Schulze

Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU) The University of Tokyo

> Guillermo Haro Workshop 2015 INAOE, 10.07.2015

Black hole - galaxy coevolution

 $M_{\bullet} - \sigma_*$ relation

integrated cosmic BH accretion history parallel to SF history

McConnell & Ma (2013)

- \Rightarrow link between black hole growth and galaxy evolution
- \Rightarrow how are black holes growing?

AGN demographics: The AGN LF

AGN Luminosity function is main demographic quantity

optical: Schulze et. al (in prep.)

Andreas Schulze (Kavli IPMU)

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

AGN demographics: The AGN LF

AGN Luminosity function is main demographic quantity

X-ray: Miyaji et. al (2015)

Andreas Schulze (Kavli IPMU)

AGN demographics: AGN LF evolution

AGN Luminosity function is main demographic quantity

• space density of bright QSOs peaks at $z \approx 2-3$

optical: SDSS (Richards et al. 2006)

AGN demographics: AGN LF evolution

AGN Luminosity function is main demographic quantity

- space density of bright QSOs peaks at $z \approx 2-3$
- peak is shifted towards lower z for fainter AGN
- \Rightarrow AGN cosmic downsizing

AGN demographics: AGN LF evolution

AGN Luminosity function is main demographic quantity

- space density of bright QSOs peaks at $z \approx 2-3$
- peak is shifted towards lower z for fainter AGN
- \Rightarrow AGN cosmic downsizing

Implications for BH growth

- BH mass density accreted during QSO phases = local BH mass density (Soltan argument)
- most BH growth takes place in luminous AGN phase
- ⇒ AGN downsizing implies anti-hierarchical BH growth

Marconi et. al (2004)

Constraints on theoretical models

 SAMs & numerical simulations able to reproduce AGN LF and downsizing

SAMs

Numerical simulations

Andreas Schulze (Kavli IPMU)

Black hole growth history

How can we trace black hole growth?

Limitation of AGN LF:

Physical quantities of black holes:

- black hole mass M.
- accretion rate / Eddington ratio $\lambda = L_{bol}/L_{Edd}$

How can we trace black hole growth?

Limitation of AGN LF:

Physical quantities of black holes:

- black hole mass M.
- accretion rate / Eddington ratio $\lambda = L_{bol}/L_{Edd}$
- $\Rightarrow L \propto \lambda M_{\bullet}$ implies degeneracy between M_{\bullet} and λ
- \Rightarrow additional M_{\bullet} information able to break this degeneracy

How can we trace black hole growth?

Limitation of AGN LF:

Physical quantities of black holes:

- black hole mass M.
- accretion rate / Eddington ratio $\lambda = L_{bol}/L_{Edd}$
- $\Rightarrow L \propto \lambda M_{\bullet}$ implies degeneracy between M_{\bullet} and λ
- \Rightarrow additional M_{\bullet} information able to break this degeneracy

Active black hole mass function - $\Phi_{\bullet}(M_{\bullet})$ Eddington ratio distribution function - $\Phi_{\lambda}(\lambda)$

- well-defined AGN sample
- black hole mass estimates

• for virial motion in BLR:

$$M_{\bullet} = f \frac{R_{\rm BLR} \Delta V^2}{G}$$

크

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• for virial motion in BLR:

$$M_{\bullet} = f \frac{R_{\rm BLR} \Delta V^2}{G}$$

• ΔV from broad line width

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

< ∃ >

• for virial motion in BLR:

$$M_{ullet} = f rac{R_{
m BLR} \Delta V^2}{G}$$

- ΔV from broad line width
- scaling relation between BLR size and continuum luminosity (via reverberation mapping)

 $R_{
m BLR} \propto L_{
m 5100}^{
m 0.5}$

• for virial motion in BLR:

$$M_{ullet} = f rac{R_{
m BLR} \Delta V^2}{G}$$

- ΔV from broad line width
- scaling relation between BLR size and continuum luminosity (via reverberation mapping)

 $R_{
m BLR} \propto L_{
m 5100}^{
m 0.5}$

- estimate M_{\bullet} from spectrum $M_{\bullet} \propto L_{5100}^{0.5} \Delta V^2$
- \Rightarrow feasible to estimate M_{\bullet} for large samples of broad line AGN out to high z

What is an active black hole?

define active BH:

- \Rightarrow active BHs limited to broad line AGN
- \Rightarrow luminosity limit poor criteria for BHMF (incompleteness at low mass by definition)
- \Rightarrow define active black hole by Eddington ratio limit
- \Rightarrow active BH: type-1 AGN with log $\lambda > -2$

The bivariate distribution function of BH mass and Eddington ratio

• model DF via fitting of bivariate distribution function of M_{\bullet} and λ

- ⇒ Black hole mass function (BHMF) and Eddington ratio distribution function (ERDF) determined jointly by fitting probability distribution in $M_{\bullet} \lambda$ -plane
- via Maximum likelihood method (Schulze & Wisotzki 2010) or via Bayesian framework (Kelly et al. 2009)

ML approach BHMF + ERDF

- + survey selection function
- = probability distribution

The local active black hole mass function and Eddington ratio distribution function

Local (*z* < 0.3) BHMF and ERDF from the Hamburg/ESO Survey

Schulze & Wisotzki (2010)

 \Rightarrow No evidence for downturn at low black hole mass or at low Eddington ratio

Active fraction of local black holes

compare to quiescent BHMF of Marconi et al. 2004

Active fraction of local black holes

compare to quiescent BHMF of Marconi et al. 2004

- significant decrease of active fraction toward higher M.
- indication for cosmic downsizing in black hole mass

Active BHMF and ERDF at higher redshifts

at z > 0.4 BHMF and ERDF determined from SDSS QSO sample

- \Rightarrow evidence for black hole mass downsizing
- \Rightarrow only high mass end of BHMF, high λ end of ERDF

< ロ > < 同 > < 回 > < 回 >

combine bright, large area surveys (**SDSS**) with deep, small area AGN surveys (**VVDS**, **zCOSMOS**)

SDSS:	<i>i</i> < 19.1	$\Omega_{eff} = 6248 \ deg^2$
	color selection	
VVDS:	wide: $I_{AB} < 22.5$ deep: $I_{AB} < 24.0$ random selection	$\label{eq:Oeff} \begin{split} \Omega_{eff} &= 4.5 \; \text{deg}^2 \\ \Omega_{eff} &= 0.6 \; \text{deg}^2 \end{split}$
zCOSMOS:	$I_{\rm AB} <$ 22.5 random + X-ray se	$\Omega_{\mathrm{eff}} =$ 1.6 deg ²

Bivariate distribution function of M_{\bullet} and λ at 1 < z < 2

Schulze et al. (2015)

Active black hole demographics at 1 < z < 2

active black hole mass function

Eddington ratio distribution function

Schulze et al. (2015)

Comparison with $M_{\bullet} - \lambda$ plane and AGN LF

Evolution of the active black hole mass function and Eddington ratio distribution function

comparison with local distribution functions

- \Rightarrow strong downsizing in the active BHMF
- \Rightarrow decrease of average Eddington ratio towards z = 0

Evolution of the AGN space density

- \Rightarrow strong downsizing in the active BHMF
- ⇒ moderate evolution in ERDF

Active black hole fraction at $z \sim 1.5$

compare to quiescent BHMF derived from stellar mass function

at $z \approx 1.5$ broad line AGN active fraction almost independent of M_{\bullet}

< <p>A < </p>

The evolution of the active black hole fraction

 \Rightarrow witness shutoff of black hole growth at the high mass end between z = 2 and z = 0

< <p>A < </p>

Constraints on theoretical models

- ⇒ comparison with galaxy evolution models
- ⇒ discriminate between different models of galaxy evolution, AGN feedback, ...
 - comparison with numerical simulation from Hirschmann et al. (2014)
- \Rightarrow good match at z > 1 and $M_{\bullet} < 10^{9.5}$
- ⇒ disagreement at low-*z* and high M_{\bullet} => caused by radio-mode AGN feedback implementation

Schulze et al. (2015)

Constraints on SMBH seeds

- \Rightarrow comparison with models of merger-driven black hole growth
- \Rightarrow discriminate between different models of SMBH seeds

Natarajan & Volonteri (2012)

⇒ massive seed model preferred

Connecting AGN demographics to the quenching of star formation

quenching of star formation (e.g. Peng+10)

- environment quenching
 - \Rightarrow satellite galaxies
- mass quenching
 - ⇒ SN Feedback?
 - \Rightarrow strangulation? (at low mass?)
 - \Rightarrow AGN feedback?

Connecting AGN demographics to the quenching of star formation

quenching of star formation (e.g. Peng+10)

- environment quenching
 - \Rightarrow satellite galaxies
- mass quenching
 - ⇒ SN Feedback?
 - \Rightarrow strangulation? (at low mass?)
 - ⇒ AGN feedback?

outflows observed in luminous AGN

Cresci et al. (2014)

Linking AGN to the quenching of star formation

Bundy+08: determined AGN host galaxy mass function within 0.4 < z < 1 from AEGIS

⇒ AGN trigger rate matches star formation quenching rate

AGN host galaxy mass function in COSMOS

determine the AGN host galaxy mass function

Sample: hard X-ray selected AGN from XMM-COSMOS

- \Rightarrow 915 AGN in redshift range 0.3 < z < 2.5
- \Rightarrow *M*_{*} from SED fitting
- \Rightarrow account for obscuration via N_H distribution
- ⇒ define AGN by cut in specific accretion rate log L_X/M_* > 32
- ⇒ AGN X-ray LF used as additional constraint

Bongiorno, AS et al. (in prep.)

Joint distribution function of M_{\star} and L_X/M_{\star}

Joint distribution function of M_{\star} and L_X/M_{\star}

Host galaxy mass function and L_X/M_{\star} function

Bongiorno, AS et al. (in prep.)

э

・ロト ・ 四ト ・ ヨト ・ ヨト

AGN as driver for mass quenching of galaxies?

Compare:

- \Rightarrow mass function of galaxies in the process of being mass-quenched, based on Peng et al. (2010) model (red)
- \Rightarrow AGN host galaxy mass function of luminous AGN, log $L_X > 43$ (blue)

Conclusions

- active BHMF and ERDF provide additional observational constraints on BH growth and galaxy evolution
- established at z < 2
- \Rightarrow downsizing in AGN LF mainly driven by downsizing in the BHMF
- ⇒ shutoff of black hole growth at the high mass end from z = 2 to z = 0
- ⇒ new observational constraints for theoretical models of galaxy formation and BH growth
 - determined AGN host galaxy mass function at 0.3 < z < 2.5
- ⇒ luminous AGN population consistent with mass quenching of massive galaxies