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• Overview of Pop III characteristics 

• BH seeds from Pop III stars:  

• A study on the importance of radiative feedback 

• Early mass accretion history in minihalos 

• Massive BH seed formation 

• BH seeds in the first galaxies: 

• Spatial distributions (central or dispersed?) 

• Mean multiplicities 

• How common are each case? What type of BH mass function arises? How 
does star formation occur around central BH seeds?
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Outline



Population III Stars 
Formation

• Metal-free star formation primarily rely on H2 cooling in the gas phase. 

• Form in DM halos with masses 105-7 M⊙  
at z ≥ 5, depending on H2 dissociating  
radiation background.
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O’Shea+ (2008)
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Wise+ (2007)1.2 kpc



Population III Stars 
Formation

• Cooling efficient only 
down to ~300 K. 

• Sets the Jeans mass 
of the central 
molecular cloud → 
1000 M⊙ 

• Some cores may 
fragment into 
multiple systems 
with stellar masses 
of tens of M⊙
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Omukai+ (2010)

Jeans Mass
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Turk+ (2009)
Field of view – 2000 AU 

Collapsing metal-free cloud fragments into 10 
and 6 M⊙ cores.  

Accretion rates = 0.06 M⊙/yr



Heger et al. (2003)

SNe
SNe

BHs
BHs

IMF?
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9Hirano+ (2015)

Population III Stars 
Working toward an IMF

1540 2.5D protostellar 
radiation-hydro 

calculations, taken from a 
cosmological sample
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Population III Stars 
Main Sequence – Radiative Feedback

• 106 M⊙ DM halo; z = 17; single 100 M⊙ star (no SN) 

• Drives a 30 km/s shock wave, expelling most of the gas

Density Temperature

1.2 kpc

Abel, Wise, & Bryan (2007)



Early stages of reionization from the first stars 
and galaxies (1 comoving Mpc3; z = 30 – 10)
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Accretion onto a Single Seed BH
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Accretion onto a Single BH 
Effects of X-ray Radiative Feedback
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• Focus on BH accretion and 
radiation after main sequence in a 
5 x 105 M⊙ halo for 200 Myr. 

• Initial BH mass = 100 M⊙ 

• Assume Bondi-Hoyle accretion. 
Simulation resolves the Bondi 
radius. 

• <1 M⊙ of accretion as the halo 
grows by a factor of 10.

Alvarez+ (2009)

Density Temperature

N
o Feedback

Feedback

Field of view = 7 kpc (inset: 300 pc) 
z = 17 → 11



Accretion onto a Single BH 
Effects of X-ray Radiative Feedback
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Accretion onto a Single BH 
Effects of X-ray Radiative Feedback

• With radiative feedback, 
maximum accretion 
rates reach are reduced 
by a factor of 100–104 to 
10-4 (dM/dt)edd 

• Only followed the 
evolution up to 5 x 106 
M⊙ halo. 

• Is rapid accretion 
possible in atomic 
cooling halos?
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Alvarez+ (2009)
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Accretion onto a Single BH 
Effects of X-ray Radiative Feedback
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Massive Black Hole Seeds



Direct Collapse Black Hole Formation

• “Standard” picture 
of DCBH formation 
in pre-galactic 
clouds 

• Isothermal collapse 
with T ≈ 8000 K.  
Requires metal-free 
and H2-free gas to 
prevent cooling to 
lower temperatures.
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Inayoshi & Omukai (2012)

H + e� ! H� + �
H� + H ! H2 + e�



Ingredients for a DCBH host halo

• How can we have a metal-free and 
H2-free halo? 

• Requires a strong UV incident 
field that dissociates H2.  Nearby 
radiation source, not a 
background. 

• BUT be far enough away that the 
halo is not metal-enriched. 

• Need a Goldilocks scenario with a 
close pair of Tvir ~ 104 K halos 
forming (Dijkstra+ 2008; Visbal+ 
2014). 

• Rare but not impossible.
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J > Jcrit

Z-enriched



Avoiding metal enrichment?
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Smith, JW, et al. (2015)



Direct BH Collapse 
Simulation Setup

• Zoom-in calculation to focus on 
the formation of Tvir = 104 K halo. 

• Idealized with only atomic H/He 
cooling (emulates a very strong 
dissociating UV background) 

• (1.5 Mpc)3 volume 

• DM mass resolution: 100 M⊙ 

• Max AMR level: 41 (dx = 0.01 R⊙)
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Wise, Turk, & Abel (2008)
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• Inner 1 pc contains 105 M⊙ 

• Infall rates ≈ 1 M⊙ yr-1 

• Turbulent Mach numbers up to 4 
• Rotational bar instabilities 

➙ “Bars within bars” 
• Not rotational supported

1 pc



Massive BH Seed Formation 
Working past the ideal case

• Strong UV background with self-shielding: H2 dissociation and H– photo-
detachment (e.g. Shang et al. 2010; Wolcott-Green & Haiman 2012; Regan, 
Johansson, & Wise 2014). 

• Lyman-α trapping above n ~ 106 cm-3.  Can be modeled with an effective 
equation of state (Spaans & Silk 2006; Schleicher et al. 2010).  Or can we directly 
compute the radiative transfer? Graduate student Qi Ge is working on an 
approximate Lyman-α radiation transport scheme in the optically-thick regime. 

• Magnetic fields suppressing fragmentation?  (Latif et al. 2013)  

• Intermediate stage: Supermassive (quasi-)star & supernova? (Begelman et al. 
2006; Hosokawa et al. 2013; Heger et al. 2013). 

• Feedback from the initial seed?
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Effects of an anisotropic radiation source
• Simulation setup: 2 Mpc/h box with a 4.2-σ peak (106 M⊙ at z=30; 6 x 107 M⊙ at z=20). 

• Emulate a nearby (3 proper kpc) galaxy with a radiation point source. 

• Use radiation transport (adaptive ray tracing) for only Lyman-Werner photons, using the 
Draine & Bertoldi (1996) shielding function, corrected by Wolcott-Green (2012).
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Regan, Johansson, Wise (2014)



Effects of an anisotropic radiation source

• Requires a UV 
background 
intensity of J21 ~ 
103 to suppress 
H2 formation, 
allowing a central 
105 M⊙ Jeans 
unstable object 
to form. 

• Strong accretion 
flows of >0.2 M⊙/
yr still occur with 
an anisotropic 
radiation source.
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Regan, Johansson, Wise (2014)

J21 ~ 103



Effects of an anisotropic radiation source
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Regan, Johansson, Wise (2014)



Preliminary results: Effects of an anisotropic 
radiation source with IR radiation

• Update reaction rates 
and include HeH+ 
(Glover 2015) 

• Include radiation 
transport of 

• H– photo-detachment 

• H2+ ionizing 

• Upgrade to 64-bit 
precision (0.4 mas vs. 
26” for 32-bit) in the 
adaptive ray tracing.
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Regan, Johansson, Wise (in prep)



Next step: Realistic SED with H- and He-ionizing 
and X-ray radiation
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Regan, Johansson, Wise (in prep)
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Open Questions 
Feedback in the Massive BH Seed Formation

• What fraction of gas goes into the BH, stars, and 
outflows? 

• What are the effects of radiative feedback on 
the inflows in the direct collapse scenario?   

• Decreasing accretion rates? 
• Triggered / suppressed star formation? 

• See Ayçin Aykutalp’s talks on Wednesday 
and Thursday. 

• What happens when a pre-existing BH exists in 
a pristine, collapsing gas cloud?
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THE FIRST GALAXIES



Numerical Approach 
Cosmological Simulations – Enzo

• Requirements: 

• Follows the high-z  formation of a ~109 M⊙ halo 

• Resolves the smallest (Pop III) star-forming mini-haloes (M ~ 105 M⊙) 

• Accurate model of star formation and feedback – smaller halos are more 
susceptible to feedback effects. 

• Approaches: 

• Small-scale boxes (< 3 comoving Mpc3) 

• Adaptive mesh refinement (AMR) 

• Distinct modes of Population II and III star formation and feedback 

• Radiative and supernovae feedback from both populations

enzo-project.org

Wise et al. (2012ab, 2014)



Pre-reionization dwarf galaxy properties 
Radiative cooling agents
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Wise et al. (2014)
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First galaxy properties
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Wise et al. (2014)
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Projected Density 
Black dots = BHs

Projected Temp.

z = 23 → 11 
75 comoving kpc
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The First Galaxies 
BH Populations
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“Renaissance” simulations



The First Galaxies 
Renaissance Simulations

41

• Follow three regions (“rare peak”, mean, void) until z ~ 10. 
• 40 comoving Mpc box, 5 comoving Mpc zoom-in region 

• At z = 15 in the rare peak region, there are 
• Three >109 M⊙ DM halos; >13,000 Pop III stars 

• ~3 x 108 M⊙ of Pop II stars in ~1,000 dwarf galaxies

enzo-project.org

Xu, JW, Norman (2013) 
Xu et al. (2014) 

Chen, JW, et al. (2014) 
Ahn et al. (2015) 

O’Shea, JW, et al. (2015)
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The First Galaxies 
Overdense “Rare Peak” Region
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Projected Temperature 
(scale: 103 – 3 x 104 K)

Projected Density 
(scale: 3 x 10-28 – 3 x 10-24 g/cm3)
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Chen et al. (2014) 
Ahn et al. (2015) 

O’Shea et al. (2015)



The First Galaxies 
High-z Galaxy Luminosity Functions
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O’Shea, JW, et al. (2015)

• Flattening at MUV ≳ -14 
• Magenta line: Can be matched with 

a “galaxy occupation fraction” 
• FF = Unlensed Frontier Fields 
• H = Hubble XDF 
• J = JWST 105 s ultra-deep field 
• Jx10 = 10x magnification
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The First Galaxies 
Pop III Remnant Multiplicity
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• Zoom-in region hosts a few 109 
M⊙ (4-σ) halos by z=15. 

• Halo mass function has 5x the 
abundances as a mean region. 

• Similar to a mean density region 
at z = 10. 

• Pop III SFR suppressed but 
constant for the last 60 Myr at 
10-6 yr-1 cMpc-1 

• Mainly caused by Lyman-
Werner feedback
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The First Galaxies 
Pop III Remnant Multiplicity

• In this “rare peak”, strong local 
Lyman-Werner feedback suppresses 
Pop III star formation below 107 M⊙. 

• Most Pop III stars form in 1-2 x 107 
M⊙ halos. 

• Afterward through mergers, halos 
between 107 and 108 M⊙ host 10 Pop 
III remnants on average at z = 15. 

• 109 M⊙ host about 50 Pop III 
remnants. 

• Interesting note: There are several 
atomic cooling halos that haven’t 
hosted Pop III stars.
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The First Galaxies 
Pop III Remnant Multiplicity – X-ray binaries?

• Recall that recent simulations 
have suggested that Pop III 
stars may form in binaries 

• High-mass X-ray binaries 
could exist in dwarf galaxies 

• (Xu+ 2014) Partially photo-
ionizes and photo-heats the 
IGM. 

• (Ahn+ 2014) Could be detected 
in 21cm observations with SKA.
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z = 15

XRBs



Piecing it All Together

• Depending on its neighbors and 
collapse time, every halo should 
experience some UV 
background. 

• J21 → Mform → f� → NBH or MBH 

• Also determines whether Pop 
III star formation or DCBH. 

• Frequency of all of these events 
results in an initial BH mass 
function.
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O’Shea+ (2008)

Machacek+ (2
001)
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Wise+ (2007)1.2 kpc



Summary

• Radiative feedback from Pop III seed BHs has little dynamical 
effect on large-scales but heats and rarefies the local 
surrounding medium, limiting accretion rates to ~10-10 M⊙/yr. 

• BH accretion is limited in most minihalos, and points to 
growth in halos with M > 108 M⊙. 

• In high-redshift galaxies, there are tens of BH seeds from Pop 
III stars roaming around the ISM, weakly accreting material. 

• Massive BH seed formation may occur in some rare metal-
free halos in strong UV radiation field.
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