INTERPRETING OBSERVATIONS I: STAR FORMING REGIONS

NURIA MARCELINO

(based on talk by B. Tercero)

Molecules are found in all places of the Universe where the temperatures are below 2000-2500 K and the density large enough to allow chemical reactions

ОН^{*} Н₂O^{*} Н₃O^{*}

CH

NH.

NH.

NH

NH

NH

CH

NH.

NH₂

Orion KL, Tercero et al. (2010)

Sgr B2, Goicoechea & Cernicharo (2002)

Prestellar cores Agúndez et al. 2015

IRAM 04191+1522 Class 0 protostar Belloche et al. 2002

Fig. 1. Spectra of TMC-1 and L483 showing the emission lines assigned to the J = 5-4 and J = 10-9 rotational transitions of NCCNH⁺, ly-

Infall and outflow spectral signatures !

Barnard 1b Gerin et al. 2015

HOW TO INTERPRET YOUR DATA

STEPS:

- 1. An idea of your source
- 2. A deep knowledge of your telescope
- 3. What kind of information you will get?
- 4. Line identification
- 5. Observed line parameters
- 6. Physical conditions and column densities: different sets of data will provide more constrained parameters
- 7. Physical model and Chemical model

Evolved star $T_k \sim 3000 - 10 \text{ K}$ $n(H_2) \sim 10^{15} - 10 \text{ cm}^{-3}$

Dark cloud

T_k~10 K

 $n(H_2) \sim 10^4 \text{ cm}^{-3}$

Low mass star-forming region Shocks, HH objects, Hot corinos

> PDR far-UV field $T_k \sim 85-500 \text{ K}$ $n(H_2) \sim 10^{4-5} \text{ cm}^{-3}$

> > HII region

Hot core T_k~200 K n(H₂) ~10⁷ cm⁻³

Diffuse gas n(H₂) ~ 1-10 cm⁻³ T_K ~ 50-100 K

Species	(1)	(2)	(3)	Species	(1)	(2)	(3)
CS	4	3	3	HC ₅ N	46	6	30
HCS ⁺	1	0	0	HC ₇ N	34	0	0
SO	2	1	1	HC ₉ N	16	0	0
OCS	1	0	0	H_2C_3	4	0	0
NH ₃	6	0	0	H_2C_4	12	0	0
HNCO	5	0	0	H_2CO	1	0	0
$l-C_3H$	6	0	0	H_2CCO	3	0	0
C_4H	27	0	0	H_2CS	2	1	1
C_5H	16	0	0	CH_2CN	38	0	0
C_6H	42	0	0	CH ₃ CN	5	0	0
C_3N	12	0	0	CH ₃ C ₃ N	8	0	0
CCO	1	0	0	CH ₃ CCH	3	0	0
C_3O	2	0	0	CH_3C_4H	8	0	0
CCS	11	1	3	CH ₃ OH	1	0	0
C_3S	8	1	1	CH ₃ CHO	2	0	0
HC_3N	47	5	27	НСССНО	1	0	0
HCCNC	5	0	0	CH ₂ CHCN	12	0	0
HNCCC	4	0	0	<i>c</i> -C ₃ H	6	0	0
HC ₃ NH ⁺	2	0	0	c-C ₃ H ₂	10	2	6

TMC-1 **Dark cloud** Kaifu et al. (2004) 8.8 – 50 GHz

Orion KL **High mass star forming region** Blake et al. (1987) 215 - 263 GHz

Extended ridge9Compact ridge7–8Plateau7–8	4 3–5	55–60 80–140	$\sim 10^5$ $\gtrsim 10^6$	Extended ≲ 30"	3 × 10 ²³	CN, CO, CS, NO, SO, CCH, C_3H_2 , CH ₃ CCH, HCO ⁺ , HCS ⁺ , HCN, HNC, HC ₃ N PN(?), OCS, HDO, H ₂ CO,
Compact ridge 7–8 Plateau 7–8	3–5	80–140	≳10 ⁶	$\lesssim 30''$		PN(?), OCS, HDO, H ₂ CO,
Plateau 7–8						H ₂ CS, HCOOH, CH ₃ CHO(?), CH ₃ CN, H ₂ CCO, CH ₃ OH, HCOOCH ₃ , CH ₃ OCH ₃
	≳20–25	95–150	≳10 ⁶	≲20″	$\lesssim 1 \times 10^{23}$	CO, CS, SiO, SO, SO ₂ , OCS, H_2S , HDO, H_2CO , HCN, HC_3N
Hot core 3–5	5–10	150-300	≳107	≲10″	1×10^{24}	CO, HDO, H ₂ CO, HNCO, HCN, HC ₃ N, CH ₃ CN, C ₂ H ₃ CN, C ₂ H ₅ CN

Different components of the gas within the region

Orion KL **High mass star forming region** Blake et al. (1987) 215 - 263 GHz

Source	$(\mathrm{km} \mathrm{s}^{-1})$	Δv (km s ⁻¹)	$T_{\rm rot}$ (K)	$n (cm^{-3})$	$ heta_{ ext{source}}$	N _{H2} (cm ⁻²)	Molecules Detected
Extended ridge	9	4	55–60	~10 ⁵	Extended	3×10^{23}	CN, CO, CS, NO, SO, CCH, C_3H_2 , CH ₃ CCH, HCO ⁺ , HCS ⁺ , HCN, HNC, HC ₃ N
Compact ridge	7–8	3–5	80–140	≳10 ⁶	≲ 30″	· · ·	PN(?), OCS, HDO, H ₂ CO, H ₂ CS, HCOOH, CH ₃ CHO(?), CH ₃ CN, H ₂ CCO, CH ₃ OH, HCOOCH ₃ , CH ₃ OCH ₃
Plateau	7–8	≳20–25	95–150	≳10 ⁶	≲20″	$\lesssim 1 \times 10^{23}$	CO, CS, SiO, SO, SO ₂ , OCS, H_2S , HDO, H_2CO , HCN, HC_3N
Hot core	3–5	5–10	150-300	≳107	≲10″	1×10^{24}	CO, HDO, H_2 CO, HNCO, HCN, HC ₃ N, CH ₃ CN, C ₂ H ₃ CN, C ₂ H ₅ CN

COM's

N-rich; O-rich; Organic saturated

Orion KL **High mass star forming region** Blake et al. (1987) 215 - 263 GHz

Source	$(\mathrm{km} \mathrm{s}^{-1})$	$\frac{\Delta v}{(\mathrm{km \ s}^{-1})}$	T _{rot} (K)	n (cm ⁻³)	$ heta_{ ext{source}}$	$N_{\rm H_2} ({\rm cm}^{-2})$	Molecules Detected
Extended ridge	9	4	55–60	$\sim 10^5$	Extended	3 × 10 ²³	CN, CO, CS, NO, SO, CCH, C ₃ H ₂ , CH ₃ CCH, HCO ⁺ , HCS ⁺ , HCN, HNC, HC ₃ N
Compact ridge	7–8	3–5	80–140	≳10 ⁶	≲ 30″		PN(?), OCS, HDO, H_2CO , H_2CS , HCOOH, CH ₃ CHO(?), CH ₃ CN, H_2CCO , CH ₃ OH, HCOOCH ₃ , CH ₃ OCH ₃
Plateau	7–8	≳20–25	95–150	≳10 ⁶	≲20″	$\lesssim 1 \times 10^{23}$	CO, CS, SiO, SO, SO ₂ , OCS, H_2S , HDO, H_2CO , HCN, HC_3N
Hot core	3–5	5–10	150-300	≳107	≲10″	1 × 10 ²⁴	CO, HDO, H_2 CO, HNCO, HCN, HC ₃ N, CH ₃ CN, C ₂ H ₃ CN, C ₂ H ₅ CN

Shock chemistry

Species	OCS
$CH_2CN \nu = 0$	OCS $v_2=1$
	$O^{13}CS$
$CH_2CN v_2 = 1$	HC ₃ N
$CH_{3}^{13}CN \nu = 0$	$HC_{3}N v_{7}=1$
	DC_3N^*
CH ₃ NC [*]	SO
CD ₃ CN*	S ¹⁸ O
CH ₃ OH v_t =0,1	SO ₂
	34 SO ₂
$^{13}CH_{3}OH \nu = 0$	HNCO
13 CH ₃ OH v_t =1	HN ¹³ CO
CH ₂ DOH	$(0+p)-H_2^{13}CS$
CH ₃ OCHO ν =0	(0+p)-HDCS*
CH ₃ OCHO v_t =1	нсоон
CH ₃ OCDO	$H^{13}COOH$
S-CH ₂ DOCHO	HCOOD*
A-CH ₂ DOCHO	
CH_3CH_2CN	CH_3OCH_3
$CH_3CH_2CN v_{13}=1 / v_{21}=1$	$CH_3CHO v_t = 0$
CH ₂ CHCN ν_{11} =0,1	$CH_3CHO v_t = 1$
CH ₃ CH ₂ OH	$CH_3CHO v_t=2$
CH ₃ COCH ₃	$aGg'-(CH_2OH)_2$
(o+p)-H ₂ CO	$(o+p)-H_2CCO^*$
$(o+p)-H_2^{13}CO$	CH ₂ OHCHO
$(o+p)-D_2CO$	NH_2CHO^*

NGC 7129 FIRS 2 Hot core intermediate mass star Fuente et al. (2014) 218.2 – 221.8 GHz

And many more cases...

IMPORTANT: The census of molecules also depends on the frequency range and the telescope sensitivity

2. A deep knowledge of your telescope

- 30 m diameter → HPBW → beam dilution.
 - 3 mm: HPBW ~ 27"
 - 2 mm: HPBW ~ 17"
 - 1 mm: HPBW ~ 10"
- EMIR receivers at 3, 2, 1.3 mm: 80-115.5 GHz, 123-178 GHz, 200-350 GHz
- Image-band rejection of the receivers
- Spectral resolution
- Observing mode → Wobbler/ position-switching, frequency switching...

2. A deep knowledge of your telescope

Herschel Space Observatory HIFI / PACS / SPIRE 480–1280, 1426–1535, and 1573–1906 GHz FarIR wavelengths; Light hydrides

ALMA: Powerful interferometer Millimeter and submillimeter High angular resolution

2. A deep knowledge of your telescope

Herschel Space Observatory HIFI / PACS / SPIRE

And many more...

IMPORTANT: It is very useful to understand the telescope to be in a position of evaluating the data. You have to be aware of why you are using an instrument and not other

3. What kind of information you will get?

30" HPBW at 80 GHz IRAM 30-m → 12500 AU

9" HPBW at 280 GHz IRAM 30-m → 3750 AU

2"x1".5 ALMA SV synthetic beam → 830 AU

44" HPBW at 480 GHz HIFI → 18333 AU

16.5" HPBW at 1280 GHz HIFI → 6827 AU

11" HPBW at 1900 GHz HIFI → 4583 AU

White: H₂; **blue/red (SMA)**: CO; **green** (SMA): CH₃CN; **orange (SCUBA)**: 850 µm; **black**: runaway stars; Zapata et al. 2011.

3. What kind of information you will get?

3. What kind of information you will get?

HOW TO INTERPRET YOUR DATA

STEPS:

- 1. An idea of your source
- 2. A deep knowledge of your telescope
- 3. What kind of information you will get?
- 4. Line identification
- 5. Observed line parameters
- 6. Physical conditions and column densities: different sets of data will provide more constrained parameters
- 7. Physical model and Chemical model

Prior to go to the catalogs you can try:

- For the most abundant species (more intense lines):
 - Compare your data with other studies of the source
 - Compare your frequency range with other studies in the same frequency range (corrected from v_{LSR})

Catalogs: CDMS, JPL, Lovas, Splatalogue

97301.1 → OCS; 97301.2085 MHz; J=8-7 97583.6 → CH_3OH

Species	Chemical Name	Ordered Freq (MHz) (rest frame, <mark>redshifted)</mark>	Resolved QNs	CDMS/JPL Intensity	Lovas/AST Intensity	E _L (cm ⁻¹)	E _L (K)
<u>³⁴SO₂ v=0</u>	Sulfur Dioxide	97580.42780, 97580.42780	47(11,37)-48(10,38)	-5.61220		915.2838	1318.7920
(CH ₃) ₂ CO <u>v=0</u>	Acetone	97582.33750, 97582.33750	4(3,2)-3(0,3)EE	-7.14450		2.4740	3.5595
<u>СН₃ОН <u>v</u>t = 0</u>	Methanol	97582.80400, 97582.80400	2(1,1)-1(1,0)	-4.94698	<2.5	11.7330	16.8811
<u>g-CH₃CH₂OH</u>	gauche-Ethanol	97588.85820, 97588.85820 🤇	15(3,12)-14(4,11), vt= 0- 0	-7.72060		113.8145	163.7527

b-type transition: gauche-CH₃CH₂OH $\rightarrow \mu_a$ =1.264D μ_b =0.104D \rightarrow b-type transitions of these mol. will be very weak; A_{ul} (Einstein coefficient)

97703.1 → SO₂; 97702.334 MHz; $J_{Ka,Kc} = 7_{3,5} - 8_{2,6}$ 97716.3 → ³⁴SO; 97715.405 MHz; $N_J = 2_3 - 1_2$

In case of doubt:

• Visit CDMS:

http://www.astro.uni-koeln.de/cdms/molecules

- Has been this species detected? Where?
- Maybe I have discovered a new molecule in space ?? or I can give the first detection in my source ?
- → Search for all transitions of this species in your data, those that could be detected (models are very useful for COM's)

MADEX Cernicharo (2012)

Search for all transitions of this species in your data → BUT ONLY THOSE THAT COULD BE DETECTED

$CH_2OHCHO \rightarrow \mu_a=0.2620D \ \mu_b=2.330D$

LINE	Ju	Ku	ku	J1	К1	k1	FREQ(MHz)	Error	Eupp	Aul	Sij	gu	Nu	N1
3653	33	7	27	33	5	28	200041.12203	.006364	345.2	1.140E-07	1.19421a	67	831	803
	27	3	24	27	3	25	200045.76982	.015115	217.5	9.564E-08	.82239a	55	524	500
1	20	18	3	21	17	4	200050.14667	.013416	313.3	1.873E-06	.15179b	41	749	733
	20	18	2	21	17	5	200050.14667	.013416	313.3	1.873E-06	.15179b	41	750	732
_	39	8	32	38	9	29	200053.75918	.022070	477.8	1.482E-05	2.31392b	79	1151	1125
3658	27	3	24	27	2	25	200074.65594	.015100	217.5	8.053E-05	8.75234b	55	524	499
3659	33	9	24	34	6	29	200089.32915	.022090	364.1	4.877E-07	.06455b	67	879	849
3660	9	2	7	8	Θ	8	200203.76200	.009014	28.4	1.403E-08	.04157a	19	70	47
3661	46	5	41	47	4	44	200220.84827	.084290	615.2	7.460E-07	.13679b	93	1476	1452
3662	46	5	41	47	3	44	200220.85640	.084290	615.2	1.045E-09	.01516a	93	1476	1451
2662	46	6	41	47	4	44	200228.15090	.084285	615.2	1.045E-09	.01516a	93	1477	1452
	46	6	41	47	3	44	200228.15902	.084285	615.2	7.461E-07	.13679b	93	1477	1451
2	33	24	9	34	23	12	200329.11995	.011321	660.8	6.493E-06	.85631b	67	1587	1556
	33	24	10	34	23	11	200329.11995	.011321	660.8	6.493E-06	.85631b	67	1588	1555
3667	10	3	7	9	2	8	200381.86446	.007616	36.6	4.048E-05	1.67200b	21	89	67
3668	35	6	29	35	6	30	200385.07072	.010620	383.2	1.199E-07	1.32366a	71	921	896
2000	7	5	3	7	3	4	200477.94570	.008580	30.7	2.693E-09	.00627a	15	74	50
0	46	30	17	47	29	18	200497.50838	.026366	1145.4	9.395E-06	1.71559b	93	2246	2242
5	46	30	16	47	29	19	200497.50838	.026366	1145.4	9.395E-06	1.71559b	93	2247	2243
Ŭ	25	2	23	25	2	24	200502.86600	.018866	180.5	7.450E-08	.58996a	51	435	411
3673	25	2	23	25	1	24	200505.90563	.018864	180.5	5.829E-05	5.83616b	51	435	410
3674	13	4	9	13	1	12	200563.23026	.009551	60.9	4.998E-06	.26472b	27	150	122
	27	4	24	27	3	25	200565.23907	.014949	217.6	8.111E-05	8.75073b	55	525	500
Λ	25	3	23	25	2	24	200589.17472	.018829	180.5	5.836E-05	5.83600b	51	436	411
4	25	3	23	25	1	24	200592.21435	.018827	180.5	7.459E-08	.58992a	51	436	41
	27	4	24	27	2	25	200594.12520	.014933	217.6	9.639E-08	.82203a	55	525	49 🗾
3679	32	5	27	32	5	28	200618.03700	.010183	317.3	1.173E-07	1.18232a	65	764	73 🛴
3680	26	7	19	27	4	24	200742.66144	.017960	227.2	2.646E-07	.02743b	53	545	52
3681	45	8	37	44	10	34	200921.34545	.029081	631.4	1.623E-08	.22784a	91	1518	1495
3682	42	8	34	42	8	35	201083.26086	.017410	556.1	1.210E-07	1.58273a	85	1333	1316
3683	31	9	22	32	5	27	201110.92938	.019507	327.0	6.593E-10	.00639a	63	786	764

- IMPORTANT: Study something about the source
- Study something about the molecules: Interpret Einstein coefficients, energies of the upper level, dipole moments and associated transitions
- Models are very useful for identifying the emission of the most complex species → Large number of transitions

5. Observed line parameters

Software: GILDAS package (CLASS)

- 1. A molecule has been identified
- 2. I observed several lines from different transitions
- 3. I fit the line profiles to n Gaussians

I can derive physical parameters for each component (Gaussian):

- LTE approximation: T_{rot} and N of the molecule (rotational diagram)
- LVG approximation: T_k and $n(H_2)$ of the region

- LVG: n(H₂)<10⁶⁻⁷ cm⁻³
 but collisional rates are needed !
- LTE: $n(H_2) > 10^7 \text{ cm}^{-3}$ (most of the hot cores)

e.g. COM's \rightarrow collisional rates are not available for most of these species.

But

COM's are typical of hot cores \rightarrow LTE is a reasonable approximation for the study of COM's in hot cores.

6. T_{rot} and N over the source diameter $\ln\left(\frac{N_u}{g_u}\right) = \ln\left(\frac{8\pi k\nu^2 W_{obs}}{hc^3 A_{ul}g_u}\right) = \ln\left(\frac{N}{Q_{rot}}\right) - \frac{E_{upp}}{kT_{rot}} + \ln b$ See Turner (1991)

But... How can I derive the size of my source?

 INTERFEROMETRIC OBSERVATIONS → Check previous studies of your source

2. USING OPTICALLY THICK LINES → (Sometimes optically thick lines are useful)

 $\begin{array}{l} \text{Region thermalized } \mathsf{T}_{ex}=\mathsf{T}_k \\ \mathsf{T}_b=\mathsf{T}_{ex}(1{\text{-}}e^{\text{-}\tau}) \xrightarrow{} \text{optically thick} \xrightarrow{} \mathsf{T}_b=\mathsf{T}_{ex} \\ \mathsf{T}_{obs}=\mathsf{T}_b(\Omega_{source}/\Omega_{beam}) \end{array}$

- 1. A molecule has been identified
- 2. I observed several lines from different transitions
- 3. I fit the line profiles to n Gaussians $\rightarrow \rightarrow v_{LSR}, \Delta v, T_A^*$ for the different spectral components
- 4. T_{rot} and *N* from rotational diagrams for each component

- 1. A molecule has been identified
- 2. I observed several lines from diffe transitions
- 3. I fit the line profil \rightarrow
 - orifferent spectral → VL ERATIVE
 - No N from rotational diagrams for each component

1. A molecule has been identified

- 2. I observed several lines from different transitions
- 3. I fit the line profile OOO ans \rightarrow

A MODEL WILL HELP TO IDENTIFY LINES (COM'S AND OTHERS) AND TO DETERMINE $v_{\text{LSR}}, \Delta v, T_A^*, T_{\text{rot}}, N \text{ (and } T_k, n(\text{H}_2) \text{ using LVG)}$

MODEL

	Hot narrow comp.	Cold narrow comp.	Hot wide comp.	Cold wide comp.
$d_{\rm sou}$ (")	5	10	5	10
offset ('')	2	2	0	0
$\Delta v_{\rm FWHM} \ ({\rm km s^{-1}})$	6(7*)	6(7*)	20	20
$v_{\rm LSR} ({\rm km s^{-1}})$	5	5	3	3
$T_{\rm rot}$ (K)	320	100	200	90
$N_{\rm CH_2 CHCN(g.s.)}$ (cm ⁻²)	$(3.0 \pm 0.9) \times 10^{15}$	$(1.0 \pm 0.3) \times 10^{15}$	$(9\pm3)\times10^{14}$	$(1.3 \pm 0.4) \times 10^{15}$
Red: CH ₂ CHCN mod Cyan: Total model	$ e \rightarrow four cor$	nponents		
$2 CH_{3}OCH_{3}$ $1 0$			CH2CHCN	- $ -$
142.4 142.45 142	2.5 142.55	151.9	151.95	152

	Hot narrow comp.	Cold narrow comp.	Hot wide comp.	Cold wide comp.
<i>d</i> _{sou} ('')	5	10	5	10
offset (")	2	2	0	0
$\Delta v_{\rm FWHM} \ ({\rm km s^{-1}})$	6(7*)	6(7*)	20	20
$v_{\rm LSR} (\rm km s^{-1})$	5	5	3	3
$T_{\rm rot}$ (K)	320	100	200	90
$N_{\rm CH_2 CHCN(g,s,)}$ (cm ⁻²)	$(3.0 \pm 0.9) \times 10^{15}$	$(1.0 \pm 0.3) \times 10^{15}$	$(9 \pm 3) \times 10^{14}$	$(1.3 \pm 0.4) \times 10^{15}$
$N_{\text{CH}_2\text{CHCN}(v_{11}=1)}(\text{cm}^{-2})$	$(9 \pm 3) \times 10^{14}$	$(2.5 \pm 0.8) \times 10^{14}$		•••
$N_{\rm CH_2 CHCN(v_{11}=2)}(\rm cm^{-2})$	$(2 \pm 1) \times 10^{14}$	$(5 \pm 2) \times 10^{13}$	•••	•••
$N_{\rm CH_2 CHCN(v_{11}=3)}(\rm cm^{-2})$	$\leq (2 \pm 1) \times 10^{14}$	$\leq (5 \pm 2) \times 10^{13}$	•••	•••
$N_{\rm CH_2 CHCN(v_{15}=1)}(\rm cm^{-2})$	$(4 \pm 1) \times 10^{14}$	$(1.0 \pm 0.3) \times 10^{14}$	•••	•••
$N_{\text{CH}_2\text{CHCN}(v_{10} = 1 \Leftrightarrow (v_{11} = 1, v_{15} = 1))}(\text{cm}^{-2})$	$(4 \pm 2) \times 10^{14}$	$(8 \pm 4) \times 10^{13}$		

Vibrational Temperatures

$$\frac{N(\text{CH}_2\text{CHCN } v_{\text{X}})}{N(\text{CH}_2\text{CHCN})} = \frac{\exp\left(-\frac{E_{v_{\mathcal{X}}}}{T_{\text{vib}}}\right)}{f_{\mathcal{V}}} \qquad \qquad N(\text{CH}_2\text{CHCN}) = N_{\text{g.s.}} \times f_{\mathcal{V}}$$

Tvib > Trot \rightarrow IR pumping, temperature gradient ?

	Hot narrow comp.	Cold narrow comp.	Hot wide comp.	Cold wide comp.
<i>d</i> _{sou} (")	5	10	5	10
offset (")	2	2	0	0
$\Delta v_{\rm FWHM} \ ({\rm km \ s^{-1}})$	6(7*)	6(7*)	20	20
$v_{\rm LSR} ({\rm km s^{-1}})$	5	5	3	3
$T_{\rm rot}$ (K)	320	100	200	90
$N_{\rm CH_2 CHCN(g.s.)}$ (cm ⁻²)	$(3.0 \pm 0.9) \times 10^{15}$	$(1.0 \pm 0.3) \times 10^{15}$	$(9 \pm 3) \times 10^{14}$	$(1.3 \pm 0.4) \times 10^{15}$
$N_{\rm CH_2CHCN(v_{11}=1)}(\rm cm^{-2})$	$(9 \pm 3) \times 10^{14}$	$(2.5 \pm 0.8) \times 10^{14}$	•••	•••
$N_{\rm CH_2CHCN(v_{11}=2)}(\rm cm^{-2})$	$(2 \pm 1) \times 10^{14}$	$(5 \pm 2) \times 10^{13}$	•••	
$N_{\rm CH_2CHCN(v_{11}=3)}(\rm cm^{-2})$	$\leq (2 \pm 1) \times 10^{14}$	$\leq (5 \pm 2) \times 10^{13}$	•••	
$N_{\rm CH_2CHCN(v_{15}=1)}(\rm cm^{-2})$	$(4 \pm 1) \times 10^{14}$	$(1.0 \pm 0.3) \times 10^{14}$		
$N_{\text{CH}_2\text{CHCN}(v_{10} = 1 \Leftrightarrow (v_{11} = 1, v_{15} = 1))}(\text{cm}^{-2})$	$(4 \pm 2) \times 10^{14}$	$(8 \pm 4) \times 10^{13}$		
$N_{13}_{\rm CH_2 CHCN}(\rm cm^{-2})$	$(4 \pm 2) \times 10^{14}$	$(5 \pm 2) \times 10^{13}$		
$N_{\rm CH_2^{13}CHCN}(\rm cm^{-2})$	$(4 \pm 2) \times 10^{14}$	$(5 \pm 2) \times 10^{13}$		
$N_{\rm CH_2CH^{13}CN}({\rm cm}^{-2})$	$(4 \pm 2) \times 10^{14}$	$(5 \pm 2) \times 10^{13}$		
$N_{\rm CH_2CHC^{15}N}(\rm cm^{-2})$	$\leq (1.0 \pm 0.5) \times 10^{14}$	$\leq (2 \pm 1) \times 10^{13}$		
$N_{\rm HCDCHCN}({\rm cm}^{-2})$	$\leq (4 \pm 2) \times 10^{14}$	$\leq (4 \pm 2) \times 10^{13}$		
$N_{\rm DCHCHCN}({\rm cm}^{-2})$	$\leq (4 \pm 2) \times 10^{14}$	$\leq (4 \pm 2) \times 10^{13}$		
$N_{\rm CH_2CDCN}(\rm cm^{-2})$	$\leq (3 \pm 1) \times 10^{14}$	$\leq (3 \pm 1) \times 10^{13}$		
			-	

Isotope ratios ¹²C/¹³C ratio Lower limits to ¹⁴N/¹⁵N, H/D

- We have identified many more molecules
- Other species could trace different regions
- Repeat the procedure for another molecule
- Add the obtained synthetic spectrum to the total model
- Add this new information to your understanding of the source (dense and hot gas, shocks, ambient cold cloud ?)
- Improve the chemical models

Component	Source diameter (")	Offset (IRc2) (")	$n(\mathrm{H}_2)$ cm ⁻³	<i>T</i> _K (K)	$\Delta v_{\rm FWHM}$ (km s ⁻¹)	$v_{\rm LSR}$ (km s ⁻¹)
Extended ridge (ER)	120	0	10^{5}	60	4	8.5
Compact ridge (CR)	15	7	10^{6}	110	3	8
High-velocity plateau (HVP)	30	4	10^{6}	100	30	11
Plateau (PL)	20	0	5×10^{6}	150	25	6
Hot core (HC)	10	2	1.5×10^{7}	220	10	5.5
20.5 km s ⁻¹ component	5	2	5×10^{6}	90	7.5	20.5

Component	SO_2
	$N \times 10^{15}$
	(cm^{-2})
Extended ridge	0.23 ± 0.06
Compact ridge	1.2 ± 0.4
High-velocity plateau	130 ± 50
Plateau	10 ± 3
Hot core	100 ± 40
$20.5 \text{ km s}^{-1} \text{ comp.}$	0.17 ± 0.06

A single model with 5 components that reproduces all SO₂ lines simultaneously → 166 lines E_{up} from 15 to 1400 K

$\frac{\text{SO}_2}{N \times 10^{15}}$	${}^{34}\text{SO}_2$ $N \times 10^{15}$	$\frac{\text{SO}_2^{(a)}}{N \times 10^{15}}$	$^{33}SO_2$ N × 10 ¹⁵	$\frac{\mathrm{SO}^{18}\mathrm{O}}{N\times10^{15}}$	$\frac{\mathrm{SO}^{17}\mathrm{O}}{N\times10^{15}}$	$SO_2 v_2 = 1$ $N \times 10^{15}$	${}^{34}\text{SO}_2 v_2 = 1$ $N \times 10^{15}$
(cm^{-2})	(cm^{-2})	(cm^{-2})	(cm^{-2})	(cm^{-2})	(cm^{-2})	(cm^{-2})	(cm^{-2})
0.23 ± 0.06	0.10 ± 0.04	2.3 ± 0.7	0.04 ± 0.001	0.020 ± 0.007	0.007 ± 0.003	0.013 ± 0.003	
1.2 ± 0.4	0.5 ± 0.2	12 ± 2	0.07 ± 0.02	0.03 ± 0.01	0.007 ± 0.003	0.20 ± 0.05	0.05 ± 0.02
130 ± 50	7 ± 2	161 ± 46	1.0 ± 0.3	0.9 ± 0.3	0.10 ± 0.04	0.4 ± 0.1	0.06 ± 0.02
10 ± 3	0.6 ± 0.2	14 ± 3	0.5 ± 0.2	0.06 ± 0.02	0.03 ± 0.01		
100 ± 40	10 ± 4	230 ± 60	4 ± 1	1.5 ± 0.5	0.9 ± 0.3	4 ± 1	0.7 ± 0.2
0.17 ± 0.06	0.04 ± 0.01	0.8 ± 0.2	0.009 ± 0.003	•••	• • •	•••	•••

N (SO₂) using ³⁴SO₂ Isotopologues ratios Vibrational Temperatures

How to analyze spectral line surveys?

- 1. Identify molecular transitions of a given species
- 2. Identify lines from isotopologues and vibrationally excited states of the same species
- 3. Model the lines
- 4. Derive source structure, densities, kinetic temperatures and chemical abundances
- 5. Repeat for another molecule
- 6. Identify unknown lines
- 7. Model the chemistry
- 8. Ask our physical-chemistry and laboratory colleagues for help