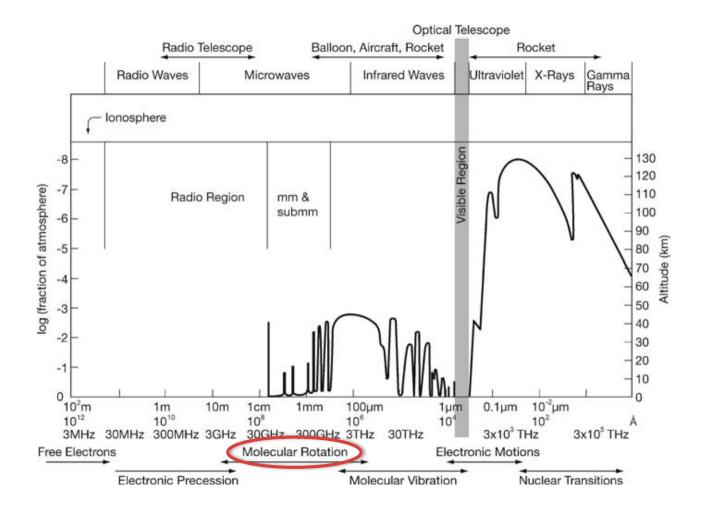
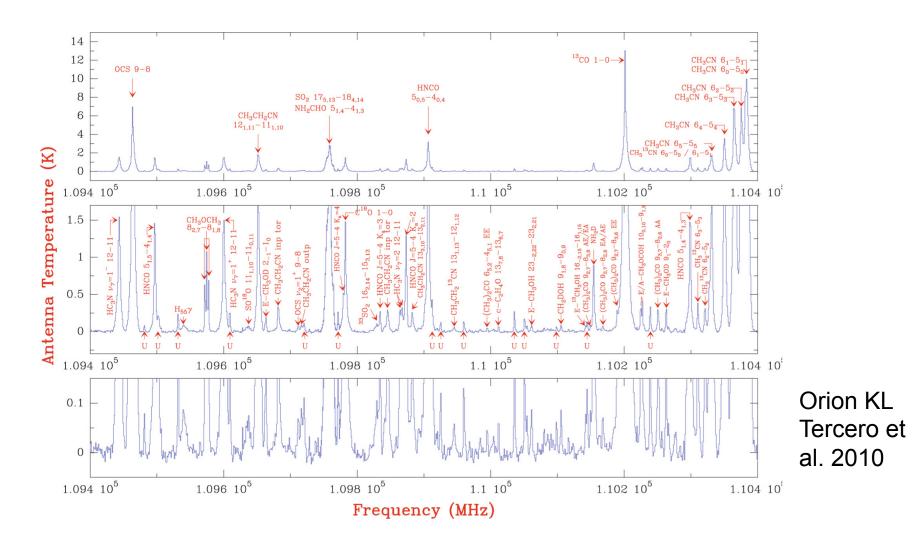
OBSERVATIONAL METHODS IN RADIO ASTRONOMY I : SINGLE-DISH

INTRODUCTION

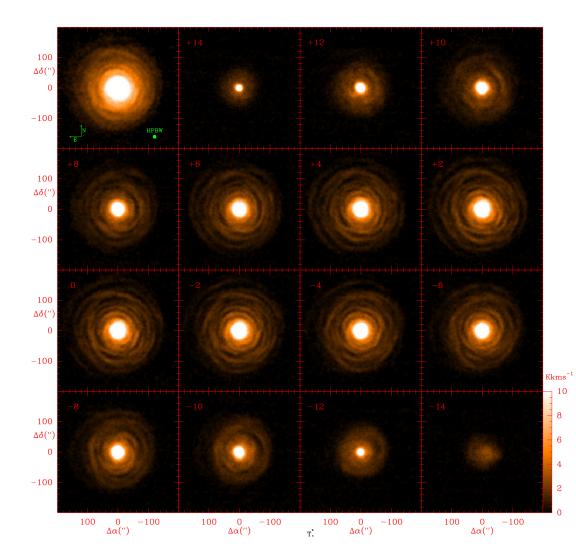
THE MM-SUBMM WINDOW



THE MM-SUBMM WINDOW: spectral line surveys



THE MM-SUBMM WINDOW: velocity channel maps



IRC+10216; CO J=2-1 Cernicharo et al. 2015

GOALS / QUESTIONS

Goals

- Measure the signal emitted from a particular region in the sky
- Obtain spectral or spatial information of the source
- Determine chemical and/or physical properties

Questions

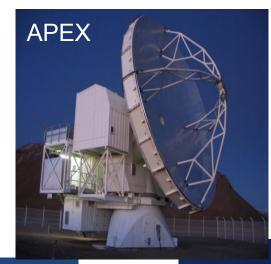
- Measurement fidelity
- Calibration

Not covered in this talk

• Receivers and backends

ANTENNAS

RADIOTELESCOPES



GBT

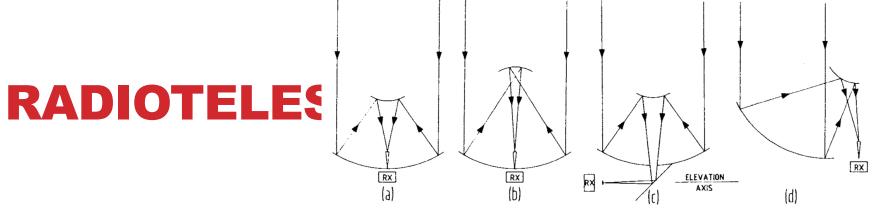


Fig. 7.6 The geometry of (a) Cassegrain, (b) Gregory, (c) Nasmyth and (d) offset Cassegrain systems

Parabolic primary dish, but different positions of the receivers:

- Cassegrain: hyperbolic, convex subreflector
- Gregory: elliptical, concave subreflector behind the prime focus (e.g. Effelsberg)
- Nasmyth: hyperbolic subreflector and flat tertiary mirror (e.g. IRAM 30m, APEX)
- Offset Cassegrain: "half" parabolic and hyperbolic subreflector (e.g. GBT)

Advantages of the different optical configurations:

- Secondary focus: 5-10 times larger f/D ratios, less sensitive to lateral focus offsets, increase effective area, decrease spillover
- Nasmyth system: receivers are not tilted with elevation, more space in rx cabin
- Offset Cassegrain: less blockage by subreflector and support structure, less standing waves

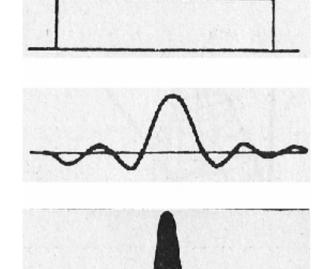
RADIOTELESCOPES

Obs.	D (m)	∨ (GHz)	λ (mm)	HPBW (")	Latitude (deg)
IRAM	30	70 - 345	4 - 0.7	35 - 7	+37
GTM	50 (32)	(73 – 116, 230)	4 - 0.85	20 - 6	+19
APEX	12	230 - 1200	1.3 - 0.3	30 - 6	-22
JCMT	15	210 - 710	2 - 0.2	20 - 8	+20
Herschel	3.5	500 - 2000	0.6 - 0.1	43 - 11	space
	collecting area			↓ angular resolution ~ λ/D	

ANTENNA THEORY: POWER PATTERN

- Reciprocity theorem: antenna in emission
- Distribution of electric field on the dish: $E_{ant}(x, y)$
- Far field radiated by the dish: $E_{ff}(l,m) \propto \mathcal{F}[E_{ant}(x,y)]$
- Power emitted $\propto \left| E_{ff}(l,m) \right|^2$
- Power pattern: $P(l,m) \propto \left| E_{ff}(l,m) \right|^2$
- Beam solid angle: $\Omega_A = \int_{4\pi} P(\Omega) d\Omega$
- Effective area: $A_e = \eta_A \cdot A_{geom} \rightarrow \eta_A$: aperture efficiency

• Fundamental relation:
$$A_e \cdot \Omega_A = \lambda^2$$



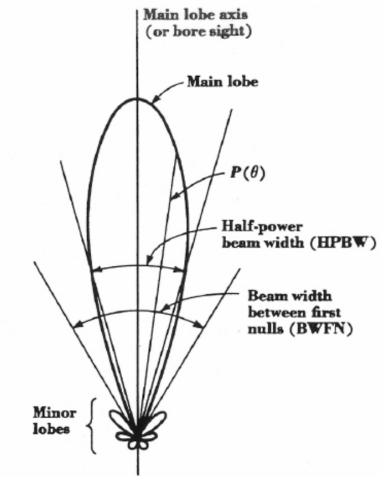
ANTENNA THEORY: POWER PATTERN

Main beam solid angle:

$$\Omega_{MB} = \int_{\substack{main\\lobe}} P(\Omega) d\Omega$$

Main beam efficiency:

$$\eta_B = \frac{\Omega_{MB}}{\Omega_A}$$



POWER COLLECTED BY AN ANTENNA

Power from a monochromatic point source, collected by an area A_e:

$$p_{\nu} = \frac{1}{2} A_e \cdot S_{\nu} \quad [W \, \text{Hz}^{-1}]$$

Flux density S_v measured in Jy: 1Jy = 10⁻²⁶ J s⁻¹ m⁻² Hz⁻¹

• If source is extended:
$$\delta p_v = \frac{1}{2} A_e \cdot I_v \cdot \delta \Omega$$
 [W Hz⁻¹]

Brightness I_{v} measured in Jy sr-1: 1Jy sr⁻¹ = 10⁻²⁶ J s⁻¹ m⁻² Hz⁻¹ sr⁻¹

Source flux density is:

 $S_{v} = \int_{\Omega_{s}} I_{v}(\Omega) d\Omega$

BUT observed flux density is:

$$S_{obs} = \int_{\Omega s} P(\Omega) I_{\nu}(\Omega) d\Omega < S_{\nu}$$

TEMPERATURE SCALES

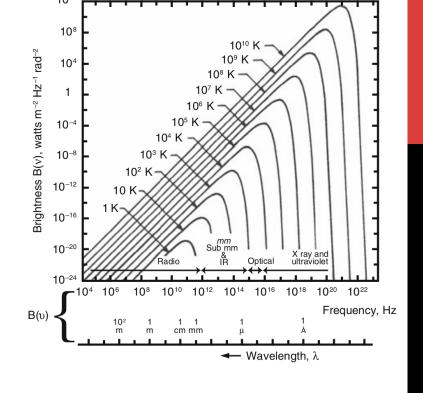
BLACK BODY RADIATION

Planck Law :

$$B_{\nu}(T) = \frac{2h\nu^{3}}{c^{2}} \frac{1}{e^{h\nu/kT} - 1}$$

Rayleigh-Jeans approximation:

$$hv \ll kT \rightarrow B_{\nu}(T) = \frac{2\nu^2}{c^2}kT$$



Brightness temperature: temperature a black body would have to match the observed intensity of an extended source at frequency v:

$$I_{\nu}(\Omega) = B_{\nu}(T_b) \quad \Rightarrow \quad T_b = \frac{c^2}{2k\nu^2} I_{\nu}(\Omega) = \frac{\lambda^2}{2k} I_{\nu}(\Omega)$$

$$S_{\nu} = \int_{\Omega s} I_{\nu}(\Omega) d\Omega = \frac{2k}{\lambda^2} T_b \Delta \Omega$$

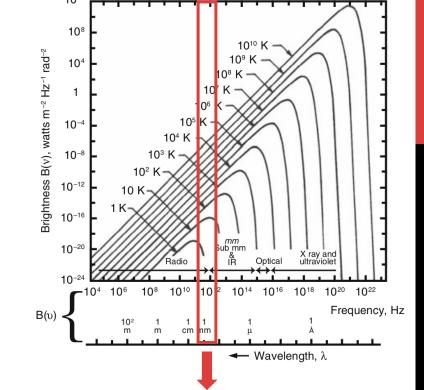
BLACK BODY RADIATION

Planck Law :

$$B_{\nu}(T) = \frac{2h\nu^{3}}{c^{2}} \frac{1}{e^{h\nu/kT} - 1}$$

Rayleigh-Jeans approximation:

$$hv \ll kT \rightarrow B_{\nu}(T) = \frac{2\nu^2}{c^2}kT$$



Brightness temperature: temperature a bla NOTE this is not valid match the observed intensity of an extended in the mm and low T:

$$I_{\nu}(\Omega) = B_{\nu}(T_b) \quad \Rightarrow \quad T_b = \frac{c^2}{2k\nu^2} I_{\nu}(\Omega)$$

$$S_{\nu} = \int_{\Omega s} I_{\nu}(\Omega) d\Omega = \frac{2k}{\lambda^2} T_b \Delta \Omega$$

$$\frac{v}{GHz} << 20.84 \frac{T}{K}$$

At T=10K: 230 GHz~208.4K (cold dark clouds)

ANTENNA TEMPERATURE: T_A

• Johnson noise: in thermal equilibrium, the power produced by a resistor is determined by its physical temperature:

$$p_v = kT$$
 (Nyquist theorem)

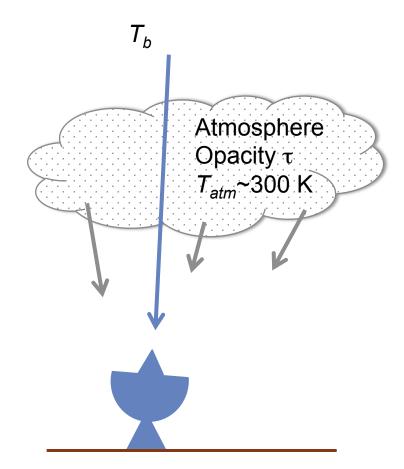
• We can define an equivalent antenna temperature: $|p_v = kT_A|$

• As seen before:
$$p_v = \frac{Ae}{2} \int_{\Omega s} P(\Omega) I_v(\Omega) d\Omega$$

$$\rightarrow T_A(\Omega) = \frac{Ae}{2k} \int_{\Omega s} I_V(\Omega) P(\Omega) d\Omega \quad \text{; using } A_e \cdot \Omega_A = \lambda^2$$

$$\rightarrow T_A(\Omega) = \frac{1}{\Omega_A} \int_{\Omega_s} \frac{\lambda^2}{2k} I_{\nu}(\Omega) P(\Omega) d\Omega = \frac{1}{\Omega_A} \int_{\Omega_s} T_b P(\Omega) d\Omega$$

ANTENNA TEMPERATURE: *T'*_A



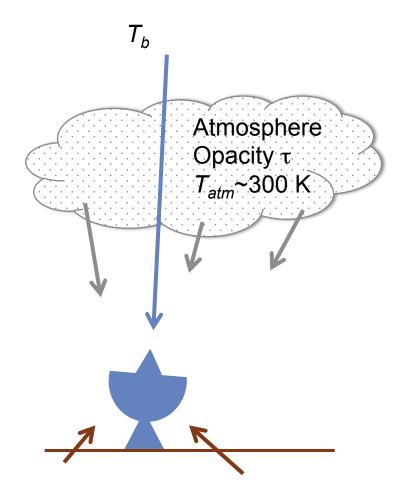
• Atmosphere effects, at a given v:

• Antenna temperature corrected by atmospheric absorption:

$$T'_A = T_A e^{-\tau_v}$$

• Note that for space telescopes, e.g. Herschel: $T'_A = T_A$

ANTENNA TEMPERATURE: *T**_A



 Correct for rear-sidelobes: measure the power received only from the forward 2π sr:

$$T_A^* = \frac{1}{P_{2\pi}} \int_{\Omega s} T_b P(\Omega) d\Omega$$

$$T_{A}^{*} = \frac{P_{4\pi}}{P_{2\pi}} T'_{A} = \frac{T'_{A}}{F_{eff}}$$

• Forward efficiency:

$$F_{eff} = \frac{P_{2\pi}}{P_{4\pi}}$$

MAIN BEAM TEMPERATURE: T_{MB}

- Take into account main-beam and error-lobes
- Same as T^*_{A} but within the main beam instead of 2π :

$$T_{MB} = \frac{1}{P_{MB}} \int_{\Omega_S} T_b P(\Omega) d\Omega = \frac{P_{4\pi}}{P_{MB}} T'_A$$

Beam efficiency:
$$B_{eff} = \frac{P_{MB}}{P_{4\pi}}$$

$$\Rightarrow \quad T_{MB} = \frac{T'_A}{B_{eff}} = \frac{F_{eff}}{B_{eff}} T_A^*$$

what we measure is T^*_A or T_{MB} which are NOT T_b

- Small sources: $\Omega_s << \Omega_{MB}$: $T_{MB} \approx T_b \Omega s / P_{MB} < T_b$ \rightarrow beam dilution
- Large sources: $\Omega_s >> \Omega_{MB}$: $T_A^* \approx T_b \int_{2\pi} P(\Omega) d\Omega / P_{2\pi} \approx T_b$
- Special case: $\Omega_s = \Omega_{MB}$: $T_{MB} = T_b \int_{\Omega s} P(\Omega) d\Omega / P_{MB} = T_b$

• General case:
$$\Omega_{s} \sim \Omega_{MB}$$
: $T_{A}^{*} = T_{b} \int_{\Omega s} P(\Omega) d\Omega / P_{2\pi}$

• Usually, T_{MB} is used assuming "the source fills the beam", but...

$$\begin{array}{ccc} \Omega_{\rm s} < \Omega_{\rm MB} \rightarrow & T_b > T_{MB} \\ \Omega_{\rm MB} < \Omega_{\rm s} < 2\pi & \rightarrow & T_{MB} > T_b > T^*_A \\ 2\pi < \Omega_{\rm s} & \rightarrow & T^*_A > T_b \end{array}$$

FROM KELVIN TO JANSKY

• Flux density:
$$S_v = \int_{\Omega s} I_v(\Omega) d\Omega = \frac{2k}{\lambda^2} \int_{\Omega s} T_b d\Omega$$

• Power received by the antenna: $kT'_A = k \frac{T_A^*}{F_{eff}} = \frac{1}{2} A_e \cdot S_v$

$$\rightarrow \quad \frac{S_{\nu}}{T_A^*} = \frac{2k}{A} \frac{F_{eff}}{\eta_A} \quad \text{[Jy K-1]}$$

- Depends on the antenna
- Values are tabulated, e.g. for IRAM 30m:
 range from ~ 6 @ 90 GHz, to ~ 11 @ 340 GHz

CALIBRATION

CALIBRATION

Calibration needs to account for:

- Atmosphere: Emission/absorption at frequency v ٠
 - Turbulence producing phase drifts ٠
- - Full detection system: Antenna characteristics and looses
 - Receivers: gain, noise, stability
 - Cables, backends, etc.

Questions:

- How to convert counts at the backend level, to power in ٠ physical units
- How to correct for the atmospheric contribution •

CALIBRATION

• What we measure... $C_{sou} = \chi \Big[T_{rec} + F_{eff} e^{-\tau_v} T_{sou} + T_{sky} \Big]$

where
$$T_{sky} = F_{eff} (1 - e^{-\tau_v}) T_{atm} + (1 - F_{eff}) T_{amb}$$

 T_{rec} : noise contribution from the receiver
 T_{sky} : noise contribution from the atmosphere (T_{atm}) ,
and the receiver cabin and ground (T_{amb})
 \rightarrow Details in Lecture by Luis Velilla on friday

 Correct for atmospheric emission and stability (atmospheric and instrumental) → switching bw ON and OFF positions (observing modes)

CALIBRATION: T_{sys} and noise

<u>System temperature</u>: gives a measure of the noise including all sources, from the sky to backends

→ Statistical noise in our spectra (radiometer formula):

$$\sigma = \sqrt{\sigma_{on}^2 + \sigma_{off}^2} = \frac{T_{sys}}{\sqrt{d\nu \cdot \Delta t}} \text{ ; with } \Delta t = \frac{t_{on} \cdot t_{off}}{t_{on} + t_{off}}$$

$$\sigma = \frac{T_{sys}}{\sqrt{d\nu \cdot t}}$$

- dv: spectral resolution
- t_{on}/t_{off} : ON/OFF integration time
- Δt : depends on the observing mode

OBSERVING MODES: position switching

 The telescope cyclically moves between two positions, ON (Source+Atmosphere) and OFF (Atmosphere)

 \rightarrow Subtracting both positions gives the source signal

- Cons:
 - OFF position without any signal → need to go far away sometimes (and spend time moving the antenna)
 - If OFF position is far, atmosphere varies \rightarrow bad baselines

•
$$t_{on} = t_{off} = t_{tot}/2 \rightarrow \Delta t = t_{tot}/4 \rightarrow$$

$$\sigma_{psw} = \frac{2 \cdot T_{sys}}{\sqrt{dv \cdot t_{tot}}}$$

OBSERVING MODES: wobbler switching

- The secondary cyclically and quickly moves between the ON and OFF (usually symmetric OFF – ON – ON – OFF)
- Pros: very good baselines
- Cons:
 - Limited wobbling throw
 - Always in one antenna direction \rightarrow rotates in the sky
 - → Source must be compact

•
$$t_{on} = t_{off} = t_{tot}/2 \rightarrow \Delta t = t_{tot}/4 \rightarrow$$

$$\sigma_{wsw} = \frac{2 \cdot T_{sys}}{\sqrt{dv \cdot t_{tot}}}$$

OBSERVING MODES: frequency switching

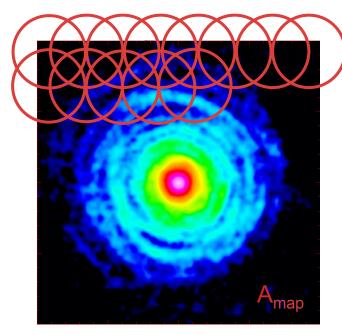
- The tuning frequency cyclically and quickly changes between two phases: $f_{rest} f_{throw}$ and $f_{rest} + f_{throw}$
- Pros: The telescope is <u>always</u> ON source
 - No need for OFF positions
 - Lower loise
- Cons:
 - Limited frequency throw → narrow lines
 - Presence of negative ghosts \rightarrow low line density
 - Presence of atmospheric lines
 - Strong ripples in the baselines (standing waves)

•
$$t_{on} = t_{off} = t_{tot} \rightarrow \Delta t = t_{tot}/2 \rightarrow$$

$$\sigma_{fsw} = \frac{\sqrt{2} \cdot T_{sys}}{\sqrt{dv \cdot t_{tot}}}$$

OBSERVING MODES: on-the-fly mapping

• The telescope continuously slew through the source with time to map it. The result is a cube of spectra



- Nr of independent measurements: $n_{beam} = A_{map} / A_{beam}$
- $t_{on}^{beam}, t_{off}^{beam}: \Delta t = \frac{t_{on}^{beam} \cdot t_{off}^{beam}}{t_{on}^{beam} + t_{off}^{beam}}$
- Linear scanning speed and area speed: $v_{area} = v_{linear} \Delta \theta$
- Nyquist sampling: $\Delta \theta = \theta/2$

OBSERVING MODES: on-the-fly mapping

- The telescope continuously slew through the source with time to map it. The result is a cube of spectra
- Frequency switching:

$$t_{on}^{beam} = t_{off}^{beam} = t_{tot} / n_{beam} \rightarrow \Delta t = t_{tot} / 2n_{beam} \rightarrow$$

$$\sigma_{fsw} = \frac{\sqrt{2n_{beam}} \cdot T_{sys}}{\sqrt{d\nu \cdot t_{tot}}}$$

• Position switching: share same OFF for multiple ONs ON-ON-ON-OFF-ON-ON-OFF-... $\sigma_{psw} = \frac{\left(\sqrt{n_{beam}} + \sqrt{n_{submap}}\right) \cdot T_{sys}}{\sqrt{dnut}}$

$$\rightarrow \frac{\sigma_{psw}}{\sigma_{fsw}} = \frac{1}{\sqrt{2}} \left(1 + \sqrt{\frac{n_{submap}}{n_{beam}}} \right) \ge 1$$

GOALS / QUESTIONS

Goals

- Measure the signal emitted from a particular region in the sky
- Obtain spectral or spatial information of the source
- Determine chemical and/or physical properties

Questions

- Measurement fidelity : η_A , η_B , F_{eff} , B_{eff}
- Calibration
 - Gain calibration: $C_{sou} \rightarrow T^*_A$, $T_{MB} \rightarrow Sv$
 - Observing switching modes: remove noise contribution from the atmosphere and whole detection system

BUT THERE'S MORE...

- Real antenna:
 - Real beam pattern
 - Error beams
 - Antenna deformations: astigmatism, coma, etc.
- Other calibration measurements needed during observations:
 - Pointing: optimize with direction Az, El (gravity)
 - Focus: optimize secondary position in *z* (temperature)
- Receivers: e.g. *image band rejection* (SSB, DSB,..)
- Backends: bandwidth and spectral resolution

FURTHER READING

- "Tools of Radio Astronomy", T.L. Wilson, K. Rohlfs, S. Hüttemesiter A&A Library, Springer 5th Ed. 2009
- IRAM 30m and interferometry schools: <u>http://www.iram-institute.org/EN/content-page-67-7-67-0-0-0.html</u>
- NRAO Radio Astronomy essentials web course: <u>https://science.nrao.edu/opportunities/courses/era</u>
- IRAM technical reports

http://www.iram-institute.org/EN/content-page-161-7-66-161-0-0.html