

Lecture:

CALIBRATION OF MM AND SUBMM OBSERVATIONS: ATMOSPHERIC EFFECTS

OUTLINE:

- The Earth's atmosphere: absorption and scattering of EM radiation
- The millimeter wavelength range
- Curves of atmospheric transmission
- Observational strategies
- Calibration (atmospheric): single-dish observations
- ATM: atmospheric transmission model
- Radiometers
- Calibration (atmospheric): interferometry

- Solar system atmospheres:

THE ATMOSPHERES OF THE SOLAR SYSTEM The Gas Giants The Terrestrial Planets Other Bodies MERCURY **EARTH NEPTUNE VENUS** MARS Pressure: ~0.006 atm 96% **78**% 83% 96% 95% 96% 80% 3.5% 21% ~2.5% 3% ~10% 3% 15% 0.5% 1.5% 2.5% SULFUR GIVES GAS CLOUDS A YELLOW CAST STRONGES1 **FREEZE** SULFURIC WINDS IN Note: Planet sizes not to scale. Pressures for terrestrial planets are surface pressures. Mercury's atmosphere is not an atmosphere in the strict sense of the word, being a trillion times thinner than Earth's.

Earth's atmosphere: composition

Composition of the Atmosphere Near Earth's Surface

Permanent Gases			Variable Gases	
Gas	Symbol	Percent (by Volume) Dry Air	Gas (and Particles)	Symbol
Nitrogen	N_2	78.08	Water vapor	H ₂ O
Oxygen	O_2	20.95	Carbon dioxide	CO_2
Argon	Ar	0.93	Methane	CH ₂
Neon	Ne	0.0018	Nitrous oxide	$N_2\bar{O}$
Helium	He	0.0005	Ozone	O_3
Hydrogen	H_2	0.0006	Particles (dust, soot, etc.)	- U
Xenon	X_2^2	0.00009	Chlorofluorocarbons	

- Water vapor content will determine the feasibility of observations in the mm and submm range

Earth's atmosphere: structure

- Layers of the atmosphere:

- 70-80% of the total mass of the atmosphere is contained in the troposphere

- Troposphere contains almost all atmospheric water vapor

Earth's atmosphere: water vapor

- Water vapor:

Water vapor content is variable (~1-5% by volume)

Earth's atmosphere: physical processes

- The atmosphere absorbs and transmits different wavelengths of EM radiation
- The main physical processes involved are absorption and scattering

- Atmospheric windows (depends on altitude, season ...):

Earth's atmosphere: absorption process

- Molecules in the atmosphere absorb photons at certain wavelengths (electronic, rotational, vibrational, and ro-vibrational transitions + ionisation + dissociation)

Rotation

Antisymmetric stretching

Bending

Symmetric stretching

And also overtones, combinations of modes ...

Most important absorbers:

Water vapor: low abundance but it has electric dipolar transitions Oxygen: high abundance but it has magnetic dipolar transitions $(EDT/MDT)_{strength} \sim [100-1000]$

Rotation+vibration

Earth's atmosphere: absorption visible and IR

- Absorption in the visible and IR is caused by gases in the atmosphere, mainly: Water vapor(H_2O), carbon dioxide (CO_2), and ozone (O_3)

Earth's atmosphere: infrared altitude transmission

- Increasing altitude improves transmission

Aprox. 4500 m.

Aprox. 13000 m.

Earth's atmosphere: scattering

- Relevant types of scattering: Rayleigh and Mie
- Rayleigh scattering: $x=2\pi r/\lambda <<1$ (e.g. VIS molecules)
 - · Wavelength dependency: λ^{-4}
- Mie scattering: $x\sim1$ (e.g. VIS dust, water droplets, hydrometeors)
 - · Not so wavelength dependent

Earth's atmosphere: anomalous refraction or "radio-seeing"

- Atmospheric turbulence causes pointing errors (~1") and results are worst with poor weather conditions

- This is particularly worse for interferometric observations

(different columns of water vapor for each antenna): phase

errors

Earth's atmosphere: long wavelengths

- Ionosphere: UV radiation from the Sun photodissociates molecules (Lyman- α , NO, O_2 , ...) producing ions and free electrons that interact with EM waves
- Transmission cut-off (plasma frequency):

$$\frac{v_p}{kHz} = 8.97 \sqrt{\frac{N_e}{cm^{-3}}}$$

- Electron density varies between $1.5x10^6$ cm⁻³ (daytime) down to $2.5x10^5$ cm⁻³ (at night)
- Observatories in radio-quiet locations (human interference)

The mm and submm wavelength range

- Atmospheric opacity mainly due to:
 - · Water vapor(H_2O) bands: 1.63, 0.92mm ...
 - · *Oxygen* (0₂) bands: 2.52, 5mm ...
 - . And other molecules like N_2 or CO_2 for v>300GHz

The mm and submm wavelength range: altitude

- Observatories at high altitude and dry atmospheric conditions

Curves of atmospheric transmission

- IRAM-30m (h~2850m):

Curves of atmospheric transmission

- *ALMA* (*h*~5000*m*):

Curves of atmospheric transmission: zenith + pwv variation

- *ALMA* (*h*~5000*m*):

Increase ZA = Increase air mass

Increase pwv

Observational strategies: water vapor

The effect of water vapor in our observations:

```
2;1 IKTAU SRVFINAL FTS 0:20-NOV-2013 R:12-OCT-2015 RA: 03:53:28.84 DEC: 11:24:22.6 Eq 2000.0 Offs: +0.0 +0.0 Unknown tau: 0.134 Tsys: 272. Time: 4.10E+03min El: 0.0 N: 788636 I0: 28037.8 V0: 33.80 Dv: -0.2821 LSR F0: 207590.000 Df: 0.1954 Fi: 220095.538
```


Observational strategies

Winter or summer?

Daytime or night?

Altitude (astronomical)?

Altitude (geographical)?

Pause to summarise

- The atmosphere causes absorption of incoming astronomical radiation
- High contents of water vapor in the atmosphere are bad for mm and submm observations
- High altitude and dry conditions improve the detection of astronomical signals

What else can we do?

Calibration – single-dish: basics

- Review of concepts that we will use:

Nyquist theorem:
$$P = \Delta \nu kT$$

Antenna

Planck's law: $B_{\nu}(T) = \frac{h\nu^3}{c^2} \frac{1}{e^{h\nu/kT} - 1}$

temperature

Radiation temperature:
$$J(T) = \frac{c^2}{2kv^2}I = \frac{hv}{k}\frac{1}{e^{hv/kT}-1}$$

Radiative transfer:
$$I_{\nu}(s) = I_{\nu}(0) e^{-\tau_{\nu}(0)} + \int_{0}^{\tau_{\nu}(0)} B_{\nu}(T(\tau)) e^{-\tau} d\tau$$

Optical depth:
$$\tau_{v}(s) = \int_{s_0}^{s} \kappa_{v}(s) ds$$

Calibration – single-dish: signal from empty sky

- Goal: obtain the net astronomical signal
- What are we really measuring? (Empty sky):

$$T_{\rm A}(z) = T_{\rm rx} + T_{\rm atm} \, \eta_1 (1 - e^{-\tau_0 X(z)}) + T_{\rm amb} (1 - \eta_1)$$

 $T_{A}(z)$: Antenna temperature at an elevation z

 T_{rx} : receiver temperature

 T_{atm} : effective temperature of the atmosphere

 η_L : feed/forward efficiency (~0.9)

 τ_o : zenith optical depth

X(z): air mass at zenith distance z

T_{amb}: ambient temperature

Calibration – single-dish: chopper wheel method (T_{ry})

- Goal: obtain a Kelvin per Volt conversion factor

$$P_{out} \propto V_{out} = g(T_{input} + T_{rx}) \qquad \qquad y = mx + b$$

 P_{out} , V_{out} : power detector

g: gain factor (slope)

$$T_{input}$$
: calibrated loads T_{cold} : ~77K (He, N_2)
 T_{hot} : room temp.

$$T_{rx}$$
: receiver temperature $\rightarrow T_{rx} = \frac{T_{hot} - YT_{cold}}{Y - 1}$ $Y = \frac{V_{rx} + V_{hot}}{V_{rx} + V_{cold}}$

$$Y = \frac{V_{rx} + V_{hot}}{V_{rx} + V_{cold}}$$

$$g[V/K] = \frac{(V_{rx} + V_{hot}) - (V_{rx} + V_{cold})}{T_{hot} + T_{cold}}$$

Calibration – single-dish: skydip

 η_{L} : forward efficiency (aka F_{eff} ~0.9) is measured with a skydip

1) Obtain different pairs of (T_A, z) measures:

Observe at different zenith distances with almost equal weather conditions (same noise from other sources)

2) Least squares fitting of: $T_A(z) = T_{rx} + T_{atm} \eta_1 (1 - e^{-\tau_0 X(z)}) + T_{amb} (1 - \eta_1)$

This is usually done by the observatory staff

Calibration – single-dish: atmospheric effects

The atmosphere is a complex system, how do we simplify it?

SIMPLE MODEL:

Static, 1-D plane parallel, LTE, ideal gas

Calibration – single-dish: simple model of the atmosphere

Equation of state:
$$P = \frac{\rho}{M} RT$$

Scale height:
$$H = \frac{RT}{\mu g} \approx 7998 \, m$$
.

Hydrostatic equilibrium:
$$\left| \frac{dP}{dz} \right| = -\rho g$$
 $\rightarrow P(z) = P_o e^{-z/H}$

Temperature gradient:
$$\left| \frac{dT}{dz} \right| = -6.5[K/km], (z<11km)$$

LTE:

$$(z < 90 km.)$$

$$220 < T < 320 K$$

$$1020 < P < 0.0015 mb$$

$$N_u = \frac{g_u}{g_l} \exp(-\Delta E/kT)$$
Boltzmann's distribution

Calibration – single-dish: Atmospheric Transmission Model

Atmospheric transmission model (Cernicharo, 1985, IRAM report):

- Radiative transport in a plane parallel atmosphere:

$$I_{\nu}(s) = I_{\nu}(0)e^{-\tau(0,s)} + \int_{0}^{s} S_{\nu}(s')e^{-\tau(s',s)}\kappa_{\nu}(s')ds' \Big|_{(\kappa_{\nu})_{lu} = \frac{8\pi^{3}N\nu}{3hcQ}} \left(e^{-E_{l}/kT} - e^{-E_{u}/kT}\right) + \left(e^{-E_{u}/kT} - e^{$$

- Estimate the integrated opacity along the line of sight:
 - Abundance distribution of all the species: $N_i(s)$
 - Spectroscopic parameters: transition probabilities...
 - Species: $H_2^{16}O$, $H_2^{18}O$, $H_2^{17}O$, HDO, $^{16}O_2$, $^{16}O^{18}O$, $^{16}O^{17}O$, $^{16}O_3$,
- $^{16}O^{16}O^{18}O$, $^{16}O^{18}O^{16}O$, $^{16}O^{16}O^{17}O$, $^{16}O^{17}O^{16}O$, N_2O , CO, SO_2 , H_2S , NO_2
- Integrate for all the spectrum (all frequencies)

Calibration – single-dish: ATM line profiles

Line profile:

Natural broadening: negligible (~10⁻⁶ Hz)

Pressure broadening: dominates at h<50km. (~2.5 Mhz/mbar)

Van Vleck-Weisskopf profile: Collisional broadening Approximation: t_{col}<<1/A_{ul}

$$f_{\text{VVW}}(\nu, \nu_{l \to u}) = \frac{\nu \Delta \nu}{\pi \nu_{l \to u}} \left(\frac{1}{(\Delta \nu)^2 + (\nu - \nu_{l \to u})^2} + \frac{1}{(\Delta \nu)^2 + (\nu + \nu_{l \to u})^2} \right).$$

<u>Doppler broadening:</u> low pressure (density)

Gaussian profile:

$$f_D(\nu, \nu_{l \to u}) = \frac{1}{\Delta \nu_D} \left(\frac{\ln 2}{\pi} \right)^{\frac{1}{2}} exp \left[-\left(\frac{\nu - \nu_{l \to u}}{\Delta \nu_D} \right)^2 \ln 2 \right]$$

Calibration – single-dish: ATM pseudo-continuum

Continuum-like absorption:

Empirical law proportional to:

- 1) (water vapor partial pressure)²
- 2) product of water vapor and foreign-gas partial pressure

Calibration – single-dish: ATM results

Example: Variation with alitude

Calibration – single-dish: results

47°06'00"

13h30m00

R.A. 2000

40°

- Atmospheric calibration procedure is done automatically (chopper wheel method to obtain counts for: SKY-HOT LOAD-COLD LOAD) you only need to include this procedure in your

Calibration – interferometry: phase delay

- We have seen that fluctuating atmosphere causes anomalous refraction or "radio-seeing" ————

- Refractive effects cause phase delays when using long baseline interferometry: tropospheric variability of H_2O

Alma goal: ~0.001" angular resolution

Alma baselines: up to ~10 km.

1mm of pwv is equivalent to 7mm pathlength delay

ALMA shortest wavelength is ~0.3mm (delay~20λ)

Calibration – interferometry: phase delay effects

Phase fluctuations measured with the Very Large Array at 22 GHz as a function of the baseline

Simulated images of a 2 Jy point-source observed with ALMA with the presence of uncorrected phase fluctuations

Calibration – interferometry: radiometers

- Solution:

- 1) Fast switching: observe well-known source
- 2) Radiometers: predict pathlength variations due to

*H*₂O vapor using radiometers+ATM and correct the delay

Scheme of an ALMA Radiometer operating at 183 GHz $(p-H_2O 3,1,3 - 2,2,0 \text{ line})$

The beam enters through the window, and goes to the horn after succesive reflections in M2 and M3.

The chopper wheel deflects the beam following the sequence:
Sky-Cold-Sky-Hot

Calibration – interferometry: radiometers

- Performance of an ALMA radiometer tested at the SMA:

Red curve: fluctuating atmospheric path measured by the interferometer **Blue curve:** estimated by the radiometer

Calibration - interferometry: ALMA radiometers

- Each 12 m antenna has its own radiometer which measures the T_b of the sky on timescales ~1 s.
- On timescales longer than 3 min.: phase calibrators
- These data are stored for phase-correction (Nikolic et al. 2013)

Red curve: brightness temperature model of the 183 GHz line of water with 1 mm of pwv.

The eight channels of the radiometer are shown

BASIC BIBLIOGRAPHY

- "Tools of Radio Astronomy" T.L. Wilson, K. Rohlfs, S. Hüttemesiter. A&A Library, Springer 5th Ed.
 2009
- Carter, M., Lazareff, B., Maier, D., et al. 2012, A&A, 538, A89
- Nikolic, B., Bolton, R.C., Graves, et al. 2013, A&A, 552, A104
- Pardo, J.R., Cernicharo, J., & Serabyn, E. 2001, IEEE Transactions on Antennas and Propagation,
 49, 1683
- Ulich, B.L. & Haas, R.W. 1976, ApJ, 30, 247
- Check EMIR for astronomers Wiki (internal reports):

http://www.iram.es/IRAMES/mainWiki/EmirforAstronomers

http://www.iram.es/IRAMES/mainWiki/CalibrationPapers

• Play with it:

https://almascience.eso.org/about-alma/atmosphere-model https://www.mrao.cam.ac.uk/~bn204/alma/atmomodel.html

Additional slide: Calibration method equations

Loads are considered black bodies and their physical temperatures are equivalent to their

This is equivalent to a 10% higher T_{rv} acceptable approximation

• How to convert counts into antenna temperature (when measuring the sky):

$$\frac{T_{hot} - T_A^{sky}}{C_{hot} - C_{atm}} = \frac{T_{hot} - T_{cold}}{C_{hot} - C_{cold}} \quad with \quad T_A^{sky} = \eta_l T_{sky} + (1 - \eta_l) T_{cab}$$

$$T_{cab} = 0.8 T_{hot} + 0.2 T_{amb} \quad (IRAM-30m)$$

- ullet T_{skv} and $oldsymbol{ au}$ are calculated by fitting the emission of both receiver sidebands with ATM (pwv)
- Spectral line calibration: difference of counts between the source and the blank sky (off position) is related to the difference of counts between the hot load and the blank sky:

$$T_{A}^{*} = T_{cal} \frac{C_{source} - C_{atm}}{C_{hot} - C_{atm}} = \frac{1 + G_{i}}{\eta_{l} \exp(-\tau_{sig} A)} (T_{hot} - T_{A}^{sky}) \left(T_{hot} - T_{A}^{sky} \right) \left(T_{i} - T_{i}^{sky} \right) \left(T_{i} - T_{i}^{sky$$

Additional slide: Calibration method equations

• Counts for the hot load:

$$C_{hot} = g[G_{sig}J(v_{sig},T_{hot})+G_{ima}J(v_{sig},T_{hot})+T_{rx}]$$

Counts for the blank sky:

$$\left| C_{\textit{atm}} \! = \! g \left(G_{\textit{sig}} \! \left[\eta_{l} J \left(\nu_{\textit{sig}}, T_{\textit{sky}} \right) \! + \! \left(1 \! - \! \eta_{l} \right) J \left(\nu_{\textit{sig}}, T_{\textit{cab}} \right) \right] \! + \! G_{\textit{ima}} \! \left[\eta_{l} J \left(\nu_{\textit{ima}}, T_{\textit{sky}} \right) \! + \! \left(1 \! - \! \eta_{l} \right) J \left(\nu_{\textit{ima}}, T_{\textit{cab}} \right) \right] T_{\textit{rx}} \right) \right|$$

For each sideband:

$$J(v, T_{sky}) = J(v, T_{atm})(1 - \exp(-\tau A)) + J(v, T_{bg}) \exp(-\tau A)$$

where we assumed:

$$J(v_{sig},T)=J(v_{ima},T)=J(T)$$

Difference of counts between source and blank sky:

$$C_{source} - C_{atm} = g G_{sig} \eta_l \exp(-\tau_{sig} A) T_A^*$$

See "Calibration of spectral line data at the IRAM-30m radio telescope" C. Kramer, 1997 (Bilbiography: Calibration Papers).

