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OUTLINE:

- The Earth's atmosphere: absorption and scattering of EM 

radiation

- The millimeter wavelength range

- Curves of atmospheric transmission

- Observational strategies

- Calibration (atmospheric): single-dish observations

- ATM: atmospheric transmission model

- Radiometers

- Calibration (atmospheric): interferometry



Earth's atmosphere: Solar system

- Solar system atmospheres:



Earth's atmosphere: composition

- Water vapor content will determine the feasibility of 

observations in the mm and submm range



Earth's atmosphere: structure

- Layers of the atmosphere:

- 70-80% of the total mass of 

the atmosphere is contained 

in the troposphere 

- Troposphere contains almost 

all atmospheric water vapor



Earth's atmosphere: water vapor

- Water vapor:

Water vapor content is variable (~1-5% by volume)



Earth's atmosphere: physical processes

- The atmosphere absorbs and transmits different wavelengths 

of EM radiation

- The main physical processes involved are absorption and 

scattering

- Atmospheric windows (depends on altitude, season ...):



Earth's atmosphere: absorption process

-  Molecules in the atmosphere absorb photons at certain wavelengths 

(electronic, rotational, vibrational, and ro-vibrational transitions + 

ionisation + dissociation)

Rotation

Rotation+vibration

Antisymmetric
stretching

Bending Symmetric
stretching

And also overtones, combinations of modes …

Most important absorbers: 
Water vapor: low abundance but it has electric dipolar transitions
Oxygen: high abundance but it has magnetic dipolar transitions

(EDT/MDT)strength~ [100-1000]



Earth's atmosphere: absorption visible and IR

-  Absorption in the visible and IR is caused by gases in the 

atmosphere, mainly: Water vapor(H2O), carbon dioxide (CO2), 

and ozone (O3)



Earth's atmosphere: infrared altitude transmission

-  Increasing altitude improves transmission
Aprox. 4500 m.

Aprox. 13000 m.



Earth's atmosphere: scattering

-  Relevant types of scattering:  Rayleigh and Mie

- Rayleigh scattering:  x=2πr/λ<<1 (e.g. VIS molecules)

· Wavelength dependency: λ-4

- Mie scattering:  x~1 (e.g. VIS dust, water droplets, hydrometeors)

· Not so wavelength dependent



Earth's atmosphere: anomalous refraction or “radio-seeing”

- Atmospheric turbulence causes pointing errors (~1'') and 

results are worst with poor weather conditions

- This is particularly worse for interferometric observations 

(different columns of water vapor for each antenna): phase 

errors    

CORRECTION

WITH

RADIOMETERS

FOR 

INTERFEROMETERS



Earth's atmosphere: long wavelengths

-  Ionosphere: UV radiation from the Sun photodissociates 

molecules (Lyman-α, NO, O2, ...) producing ions and free 

electrons that interact with EM waves

- Transmission cut-off (plasma frequency):  

- Electron density varies between 1.5x106 cm-3 (daytime) down 

to 2.5x105 cm-3 (at night)

- Observatories in radio-quiet locations (human interference) 

ν p

kHz
=8.97 √ N e

cm−3



The mm and submm wavelength range

-   -  Atmospheric opacity mainly due to: 

· Water vapor(H2O) bands: 1.63, 0.92mm ...

· Oxygen (O2) bands: 2.52, 5mm … 

. And other molecules like N2 or CO2 for  ν>300GHz



The mm and submm wavelength range: altitude

-   -  Observatories at high altitude and dry atmospheric conditions

IRAM-30m
h~2850m

ALMA
h~5000m

GTM 
h~4600m



Curves of atmospheric transmission

-   -  IRAM-30m (h~2850m):



Curves of atmospheric transmission

-   -  ALMA (h~5000m):



Curves of atmospheric transmission: zenith + pwv variation

-   -  ALMA (h~5000m):

 Increase ZA = Increase air mass  Increase pwv



Observational strategies: water vapor 

The effect of water vapor in our observations:

H2O (325.1 GHz)



Observational strategies

Winter or summer?   Daytime or night?

Altitude (astronomical)? Altitude (geographical)?



Pause to summarise

- The atmosphere causes absorption of incoming astronomical 

radiation

- High contents of water vapor in the atmosphere are bad for 

mm and submm observations

- High altitude and dry conditions improve the detection of 

astronomical signals

What else can we do?



Calibration – single-dish: basics

- Review of concepts that we will use:

Nyquist theorem:

Planck's law:

Radiation temperature:

Radiative transfer:

Optical depth: 

 

Antenna 

temperature 



Calibration – single-dish: signal from empty sky

- Goal: obtain the net astronomical signal 

- What are we really measuring? (Empty sky):  

TA(z): Antenna temperature at an elevation z 
Trx: receiver temperature
Tatm: effective temperature of the atmosphere
ηL: feed/forward efficiency (~0.9)
τo: zenith optical depth
X(z): air mass at zenith distance z
Tamb: ambient temperature

  



Calibration – single-dish: chopper wheel method (Trx )

- Goal: obtain a Kelvin per Volt conversion factor

Pout, Vout: power detector

g: gain factor (slope)

Tinput: calibrated loads

Trx: receiver temperature   

Pout∝V out=g(T input+T rx) y=mx+b

Tcold: ~77K (He, N2)

Thot: room temp.  

T rx=
T hot−YT cold

Y −1
Y =

V rx+V hot

V rx+V cold

g[V / K ]=
(V rx+V hot )−(V rx+V cold)

T hot+T cold



Calibration – single-dish: skydip

ηL: forward efficiency (aka Feff~0.9) is measured with a skydip

1) Obtain different pairs of (TA, z) measures:

  

2) Least squares fitting of:

  

Observe at different zenith distances with 

almost equal weather conditions (same 

noise from other sources) 

  

This is usually done by the observatory staff 

  



Calibration – single-dish: atmospheric effects

The atmosphere is a complex system, how do we simplify it?

SIMPLE MODEL:

Static, 1-D plane parallel, LTE, ideal gas



Calibration – single-dish: simple model of the atmosphere

Equation of state:

Scale height:

Hydrostatic equilibrium:

Temperature gradient:

LTE:                                           

H=
RT
μg

≈7998m.

P=
ρ

M
RT

dP
dz

=−ρg P(z )=Po e
−z /H

dT
dz

=−6.5 [K /km ] ,(z<11km)

220<T <320 K

1020<P<0.0015mb(z<90km.)

N u

N l

=
gu

gl

exp (−Δ E /kT )

Boltzmann's distribution



Calibration – single-dish: Atmospheric Transmission Model

  Atmospheric transmission model (Cernicharo, 1985, IRAM report): 

                                        

I ν(s)=I ν(0)e−τ(0, s)+∫
0

s

Sν(s ')e−τ(s ' ,s )κν(s ' )ds '

-  Radiative transport in a plane parallel atmosphere:

 

- Estimate the integrated opacity along the line of sight:

- Abundance distribution of all the species: Ni(s)  

- Spectroscopic parameters: transition probabilities...

- Species: H2
16O, H2

18O, H2
17O, HDO, 16O2, 16O18O, 16O17O, 16O3, 

16O16O18O, 16O18O16O, 16O16O17O, 16O17O16O, N2O, CO, SO2, H2S, NO2 

- Integrate for all the spectrum (all frequencies)

 



Calibration – single-dish: ATM line profiles

 

Line profile:

Natural broadening: negligible (~10-6 Hz)

Pressure broadening: dominates at h<50km. (~2.5 Mhz/mbar)

Doppler broadening: low pressure (density) 

Van Vleck-Weisskopf profile:
Collisional broadening 
Approximation: tcol<<1/Aul 

Gaussian profile:



Calibration – single-dish: ATM pseudo-continuum

 

Continuum-like absorption:

Empirical law proportional to:

1) (water vapor partial pressure)2

2) product of water vapor and foreign-gas partial pressure 



Calibration – single-dish: ATM results

 

Example: Variation with alitude 



Calibration – single-dish: results

- Atmospheric calibration procedure is done automatically 

(chopper wheel method to obtain counts for: SKY-HOT LOAD-

COLD LOAD) you only need to include this procedure in your 

observing run

- Result:

Astronomical data

ready for the 

analysis



Calibration – interferometry: phase delay

- We have seen that fluctuating atmosphere causes anomalous 

refraction or “radio-seeing”

- Refractive effects cause phase delays when using long baseline 

interferometry: tropospheric variability of H2O

Alma goal: ~0.001'' angular resolution 

Alma baselines: up to ~10 km.

1mm of pwv is equivalent to 
7mm pathlength delay

ALMA shortest wavelength is 
~0.3mm (delay~20λ)



Calibration – interferometry: phase delay effects

Phase fluctuations measured with the Very 
Large Array at 22 GHz as a function of the 
baseline

Simulated images of a 2 Jy 
point-source observed 
with ALMA with the 
presence of uncorrected 
phase fluctuations



Calibration – interferometry: radiometers

- Solution: 

1) Fast switching: observe well-known source

2) Radiometers: predict pathlength variations due to 

H2O vapor using radiometers+ATM and correct the delay

Scheme of an ALMA Radiometer 
operating at 183 GHz 
(p-H2O 3,1,3 - 2,2,0 line)

The beam enters through the 
window, and goes to the horn 
after succesive reflections in M2 
and M3.

The chopper wheel deflects the 
beam following the sequence:

Sky-Cold-Sky-Hot



Calibration – interferometry: radiometers

- Performance of an ALMA radiometer tested at the SMA: 

Red curve: fluctuating atmospheric path measured by the interferometer 
Blue curve: estimated by the radiometer 



Calibration – interferometry: ALMA radiometers

- Each 12 m antenna has its own radiometer which measures the 

Tb of the sky on timescales ~1 s.  

- On timescales longer than 3 min.: phase calibrators

- These data are stored for phase-correction (Nikolic et al. 2013) 

Red curve: brightness 
temperature model of the 183 
GHz line of water with 1 mm of 
pwv.

The eight channels of the 
radiometer are shown 
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 Check EMIR for astronomers Wiki (internal reports): 

http://www.iram.es/IRAMES/mainWiki/EmirforAstronomers

http://www.iram.es/IRAMES/mainWiki/CalibrationPapers

 Play with it: 

https://almascience.eso.org/about-alma/atmosphere-model

https://www.mrao.cam.ac.uk/~bn204/alma/atmomodel.html

http://www.iram.es/IRAMES/mainWiki/EmirforAstronomers
https://almascience.eso.org/about-alma/atmosphere-model


Additional slide: Calibration method equations

Loads are considered black bodies and their physical temperatures are equivalent to their 

Rayleigh-Jeans radiation temperature (hν<<kT):     TB = 77 K                  Jν (TB , 345 GHz)= 70 K

This is equivalent to a 10% higher Trx                                          acceptable approximation

How to convert counts into antenna temperature (when measuring the sky):

Tsky and τ  are calculated by fitting the emission of both receiver sidebands with ATM (pwv)

Spectral line calibration: difference of counts between the source and the blank sky (off 

position) is related to the difference of counts between the hot load and the blank sky:

T hot−T A
sky

Chot−Catm

=
T hot−T cold

Chot−C cold

T A
sky

=ηlT sky+(1−ηl)Tcab
with

T cab=0.8T hot+0.2T amb

T A
*
=Tcal

C source−Catm

Chot−Catm

=
1+Gi

ηl exp(−τsig A )
(T hot−T A

sky
)

A: airmass= 1/sin(elev.)
Gi: gain ratio of the two
sidebands= Gima/Gsig 

(IRAM-30m)



Additional slide: Calibration method equations

Counts for the hot load:

Counts for the blank sky:

For each sideband:

where we assumed:

Difference of counts between source and blank sky: 

Chot=g [G sig J (νsig ,T hot )+Gima J (νsig ,T hot )+T rx]

Catm=g (Gsig [ηl J (νsig ,T sky )+(1−ηl)J (νsig , Tcab)]+Gima [ηl J (νima ,T sky )+(1−ηl)J (νima , Tcab)]T rx)

J (ν , T sky)=J (ν ,T atm)(1−exp(−τ A ))+J (ν , T bg)exp(−τ A )

J (νsig ,T )=J (νima , T )=J (T )

C source−Catm=g G sigηlexp (−τsig A)T A
*

See “Calibration of spectral line data at the IRAM-30m radio telescope” C. 
Kramer, 1997 (Bilbiography: Calibration Papers). 
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