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OUTLINE:

- History of observations

- Nomenclature of circumstellar envelopes

- Brief description of the stellar evolution

- Circumstellar formation and evolution

- Mass loss

- Physical properties of circumstellar envelopes

- Formation of molecules and dust

- Maser and thermal (molecular) emission

- Analysis of the emission: population diagrams, circumstellar 

chemistry and radiative transfer applied to a spherical CSE

 



History of observations: first discoveries

- First discovered variable star (s.XVI-XVII): o Ceti (Mira)

- Light curves to classify variable stars

MIRA



History of observations: spectral classification

- After earlier classification of stellar spectra: M-type and a 

sub-group called “carbon stars” (s. XIX-XX)

M-type: cool stars with strong absorption bands  

Carbon stars: similarity of their spectra to light in C arcs 

 



History of observations: infrared

- The IR wavelength range made them “famous”: (s.XX)

- Two-micron sky survey: IRC (Neugerbauer & Leighton, 1969)

- IRAS satellite: 8-23μm (spectroscopy) 12, 25, 60 and 100μm    

(photometry) 

 



History of observations: millimeter domain

- First observations of CO J=1-0 in a CSE by Solomon, 1971 :

NRAO 36-foot (~11m) 
antenna in Kitt Peak

CO J=1-0 emission line 
toward IRC+10216

 



History of observations: recent years

- Great technological advances: (check this and other lectures)

 

GTM VLA

HSO

ISO

ALMA

SOFIA

IRAM-30m

Effelsberg 100m



Nomenclature of CSEs: how do we refer to them?

CSEs are named accordingly to the central star:
● IRAS: sources observed with this satellite followed by their R.A. and Dec. in abbreviated J1950.0 

coordinates (e.g. IRAS09425-6040)

● IRC: Objects from the IRC followed by the declination (in deg. rounded to a multiple of 10) and an 

ordinal numer that indicates their order in that declination band (e.g. IRC+10216) 

● OH: maser emission of OH, and galactic coordinates (e.g. OH231.8+4.2) or the abbreviated R.A. 

and Dec. (OH739-14)

● CRL or AFGL: Cambridge Research Laboratory/Air Force Geophysics Laboratory revised 

catalogue, balloons flights  (e.g. CRL618)

● General Catalogue of varible stars: letter code + constellation (e.g. CW Leo)

● Original names: the shape (Calabash Nebula), the discoverer (Westbrook Nebula) ... 



Stellar evolution: HR diagram, from main sequence to white dwarf

Evolutionary track of a 2Msun star with Z=Zsun:

 
Herwig, (2005)



Stellar evolution: inside a red giant star

 

Dredge-up processes may 
turn a M-type (O-rich) star 

into a Carbon star

TP-AGB phase alternates 
active H-burning shell and 

He-burning shell

RED GIANT: 
R* increases x 1000
L* increases x 10000
T*  from ~6000 to ~2500 K

Busso (1999)

Remember: 
This occurs for low-mass 
stars (0.8-8 Msun)



Stellar evolution: physical processes

 Proton-proton chain: (main sequence H-core and H-burning shells) 

 



Stellar evolution: physical processes

 Triple-alpha process: (He-core and He-burning shell)

… also this secondary process may occur:

 Also CNO cycle and neutron capture processes are important:

Neutron source reactions:

a13 C+4 He→16O+n
A heavier element 

captures that neutron and 
a new element is formed 

after β-decay



Mass loss in AGB stars: mass loss mechanism 

Radiation pressure acts on dust grains, which
drag gas molecules             Expanding envelope 

Additional processes at work:

Radiation pressure on molecules (Jorgensen & Johnson, 1992)

Sound waves (Pijpers & Hearn, 1989)

Alfven waves (Airapetian et al., 2000)

Alternate H, He-shell burning:

Stellar wind (shockwaves)

Observed mass loss rates: ~10-8-10-4 [Msun / year]



Mass loss in AGB stars: how to estimate the mass loss rate 

 Mass loss rate for a spherical expanding CSE at constant velocity:

Ṁ=4π r 2<m>vexpn(r )

 We need to estimate vexp and n(r)

We use emission lines of abundant 
molecules that trace the whole 
envelope (e.g. CO).

The expansion velocity is 
estimated from the linewidths:

vexp~FWZL/2
 
The density radial profile is 
estimated by using radiative 
transfer models which are 
compared with the observations



Mass loss in AGB stars: circumstellar envelope 

 The mass loss creates a spherical envelope of dust and gas:

 The mass loss is episodic:

Images of IRC+10216:
Left: V-band (550nm)
Right: CO J=2-1 (230 GHz) emission 

Left: CO J=1-0 (115GHz) TT Cyg
Right: CO J=2-1 (230 GHz) 
IRC+10216 



Mass loss in AGB stars: evolution of the CSE 

 The mass loss stops and the CSE begins to detach from the star:

 Break of the spherical symmetry in the post-AGB phase. Different shapes in PNe:

 The star will increase its temperature and its UV radiation will dissociate molecules

As the mass loss stop and the former CSE continues 
expanding, a cavity begins to form in the innermost 
regions of the CSE  

Unknown mechanism: 
fast collimated jet + AGB 
wind (binary stars?, 
magnetic fields?)  



Mass loss in AGB stars: cicle of life

 Eventually, the material will be injected into the ISM: ISM enrichment



Physical properties of CSEs: density  

 Density: continuity equation, conservation of mass

 Deviations in the innermost regions: hydrostatic equilibrium and shocks

Close to the stellar surface: 
hydrostatic equilibrium  

Dynamic atmosphere: 
shocks  

γ=
vshock

vexp

Scale-height:



Physical properties of CSEs: temperature  

 First law of thermodynamics:

Mass cons.

Heating sources:
- Gas-dust collisions  

Cooling sources:
- Expansion
- Line emission  



Physical properties of CSEs: expansion velocity  

 Expansion velocity of dust:

 Expansion velocity of gas:

 Solution:

Expansion condition:  

Gas-grain coupling:  

Grain density const.  

Terminal vexp



Physical properties of CSEs: size and photodissociation  

 Size is different for each molecule as it depends on dissociation energy (UV ISRF):

 Self-shielding (H2, CO, and N2):

Abundant molecules can protect themselves (the innermost regions of their shells) 

against UV ISRF: photodissociation through lines, which are saturated

For example:
CO photodissociation energy: 11.1 eV
H2 photodissocitation energy: 4.5 eV  



Formation of molecules and dust: CSE sketch  

 Molecules are initially formed in the atmosphere of the star under TE:



Formation of molecules and dust: dust grains 

 First dust seeds will be formed of refractory species:

 Dust grain growth (condensation):

C-rich: 
Carbonaceus material
(e.g. SiC)
 

O-rich:
Oxides and silicates
(e.g. Mg2SiO4, Al2O3)



Molecular emission: observing at mm wavelengths 

 We will observe emission lines of molecules in the CSE:

- Mainly rotational lines in the ground vibrational state but also in vib. excited states

- Thermal emission

- Maser emission



Molecular emission: maser emission

 Maser emission:

Under TE n1>n2 : thermal emission
If n2>n1: maser emission 
A pumping mechanism is required to invert
populations

 Excitation temperature and optical depth (two-level system):

Water 22 GHz
Why such a high Tb cannot be interpreted as Tkin ?

Tb ~ 1012K

Molecules would not exist at such high 
temperatures



Molecular emission: maser emission

 Maser emission:

Population inversion: n2>n1 , maser emission
Excitation temperature: negative
Optical depth: negative

Amplified (stimulated) 
emission 

e-τ

 Frequently seen in (but not only) CSEs (e.g. SiO, H2O, and OH):

- Low densities (to avoid normal populations)

- Long distances (large column densities)

Physical conditions 
given in some distant 
objects 

 They probe certain regions of the CSEs:



Molecular emission: thermal emission

 Thermal emission: rotational emission lines due to changes in the rotational state of 

molecules



Molecular emission: thermal emission

 Each molecule traces different regions of CSEs:

CH3CN

SiC2



Molecular emission: thermal emission – line profiles

 Gaussian profile VS Shell profile:

 Shape of the lines (spatially resolved? optically thin?):

U-shape: spatially resolved + opt. thin
Flat-topped: spatially unresolved + opt. thin
Parabolic: spatially unresolved + opt. thick 
Gaussian: not fully acceleated gas (r<rdust.cond.)

ResolvedUnresolved



Analysis techniques: population diagram

 Diagnostic to estimate the excitation temperature and column density of a molecule:

Valid under LTE, and for optically thin emission.
Although, we can obtain information even when these 
approximations do not apply (Goldsmith & Langer, 
1999)



Analysis techniques: radiative transfer for a spherical CSE

 Just a few notes about RT applied to a CSE:

Multi-shell CSE:

Ray-tracing



Analysis techniques: chemical models

 Circumstellar chemistry review in the following lecture:
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Additional slide: radiative transfer formulas
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