Contents

Chapter 1 Heat Capacities: Introduction, Concepts and Selected Applications
Emmerich Wilhelm

1.1 Introduction
1
1.2 Thermodynamics: Fundamentals and Applications
4
1.3 Concluding Remarks
21
References
22

Chapter 2 Calorimetric Methods for Measuring Heat Capacities of Liquids and Liquid Solutions
Lee D. Hansen and Donald J. Russell

2.1 Introduction
28
2.2 Methods
29
2.3 Comparison of Methods
34
2.4 Test Compounds
38
References
38

Chapter 3 An Analysis of Conductive Heat Losses in a Flow Calorimeter for Heat Capacity Measurement
J. David Raal

3.1 Introduction
41
3.2 Flow Calorimetry for \( c_p \) Measurement
42
3.3 Mathematical Formulation for a Model Flow Calorimeter
43
3.4 Solutions to the Governing Equation
44
3.5 Computational Results
45
3.6 Experimental Measurements
45

Heat Capacities: Liquids, Solutions and Vapours
Edited by Emmerich Wilhelm and Trevor M. Letcher
© The Royal Society of Chemistry 2010
Published by the Royal Society of Chemistry, www.rsc.org

ix
Chapter 8  Scanning Transiometry and its Use to Determine Heat Capacities of Liquids at High Pressures

Stanislaw L. Randzio

8.1 Introduction 153
8.2 Scanning Transiometry 154
8.3 Heat Capacities of Liquids under High Pressures 160
8.4 Conclusions 180
References 182

Chapter 9  Speed of Sound Measurements and Heat Capacities of Gases

Anthony R. H. Goodwin and J. P. Martin Trusler

9.1 Introduction 185
9.2 Heat Capacity 186
9.3 Measurement of the Speed of Sound 191
9.4 Fixed Cavity Resonators 196
9.5 Summary 209
References 209

Chapter 10  Speed-of-Sound Measurements and Heat Capacities of Liquid Systems at High Pressure

Toshiharu Takagi and Emmerich Wilhelm

10.1 Introduction 218
10.2 Apparatus for the Speed-of-Sound Measurement in the Liquid Phase at High Pressure 220
10.3 Temperature and Pressure Dependences of the Speed of Ultrasound in Liquids 224
10.4 Speed of Sound and Thermodynamic Properties 228
References 233

Chapter 11  Heat Capacities and Brillouin Scattering in Liquids

Emmerich Wilhelm and Augustinus Asenbaum

11.1 Introduction 238
11.2 Experiment 242
11.3 Theory 244
### Chapter 12 Photothermal Techniques for Heat Capacities

*Jan Thoen and Christ Glorieux*

12.1 Introduction  
12.2 Photoacoustic Technique  
12.3 Photopyroelectric Technique  
References  

### Chapter 13 High Resolution Adiabatic Scanning Calorimetry and Heat Capacities

*Jan Thoen*

13.1 Introduction  
13.2 Modes of Operation of an ASC  
13.3 Design and Operational Implementation  
13.4 Phase Transition Studies in Binary and Ternary Liquid Mixtures  
13.5 Phase Transition Studies in Liquid Crystals  
References  

### Chapter 14 Heat Capacities in the Critical Region

*Mikhail Anisimov and Jan Thoen*

14.1 Introduction  
14.2 Isochoric Heat Capacity Near the Gas-Liquid Critical Point  
14.3 The Nature of the Heat Capacity Anomaly in the Critical Region  
14.4 Isobaric Heat Capacity Near the Gas-Liquid Critical Point  
14.5 Isobaric and Isochoric Heat Capacities of Binary Fluids Near the Liquid-Liquid Critical Point  
14.6 Effects of Impurities and Confinement on the Heat Capacity Anomalies in the Critical Region  
Acknowledgements  
References  

### Chapter 15 Heat Capacity of Polymeric Systems

*Marek Pyda*

15.1 Introduction  
15.2 Instrumentation and Measurements  

### Chapter 16 Protein Heat Capacities

*Werner W. Streleche*

16.1 Introduction  
16.2 Definition of Heat Capacity  
16.3 Experimental Heat Capacities  
References  

### Chapter 17 Heat Capacity in L Crystals, and Ionic Systems

*M. Marinelli, F. M.*

17.1 Brief Introduction  
17.2 The Nematic Phase  
17.3 The Smectic Phase  
17.4 The Smectic Phase  
17.5 The Smectic Phase  
17.6 Phase Transition Experiments  
References  

### Chapter 18 Heat Capacities in Chemical Systems: Organic Liquids, and Ionic Liquids

*Gennady Kabo, Eu*

18.1 Introduction  
18.2 Practical Ca Methods  
18.3 Heat Capacities of Organic Liquids  
18.4 Heat Capacities of Ionic Liquids  
References
CHAPTER 1

Heat Capacities: Concepts and Applications

EMMERICH WILHELM

Institute of Physical Chemistry, A-1090, Wien (Vienna), Austria

Once the fabric is woven it may l
Nero Wolfe in The Golden Spide
NY, 1955.

1.1 Introduction

Heat capacities belong to the r
matter: they are intimately rela-
tmental thermodynamic function
with great accuracy; and they
dynamics with microscopic fluid
contributions to this book. They
well as in chemical engineering,
the standard entropies of liquid
experimental heat capacities at
298.15 K and entropies of phase