Procesos radiativos Capítulo 5: Teoría cuántica de procesos radiativos

Alberto Carramiñana INAOE

Tonantzintla, 28 de noviembre de 2024

5. Teoría cuántica de procesos radiativos

- 5.1. Introducción. Formalismo Hamiltoniano en mecánica clásica
 §1. Introducción; §2. Coordenadas generalizadas y ecuaciones de Hamilton; §3. Hamiltoniano clásico y ejemplos; §4. Otros Hamiltonianos.
- 5.2. Elementos de mecánica cuántica
 - §1. Postulados; §2. Estados estacionarios; §3. Sistemas cuánticos básicos;
 - §4. Métodos aproximados.
- 5.3. Estructura cuántica de átomos y moléculas

§1. Átomos hidrogenoides; §2. Estructura fina e hiperfina; §3. Átomos con varios electrones; §4. Moléculas diatómicas.

5.4. Transiciones radiativas

§1. Método de perturbaciones dependientes del tiempo; §2. Hamiltoniano con campo electromagnético; §3. Aproximación dipolar; §4. Coeficientes de Einstein; §5. Reglas de selección; §6. Transiciones híbridas.

5. Teoría cuántica de procesos radiativos

- 5.1. Introducción. Formalismo Hamiltoniano en mecánica clásica
 - §1. Introducción; §2. Coordenadas generalizadas y ecuaciones de Hamilton;
 - §3. Hamiltoniano clásico y ejemplos; §4. Otros Hamiltonianos.
- 5.2. Elementos de mecánica cuántica

 $\S1.$ Formalismo; $\S2.$ Ecuación de Schrödinger; estados estacionarios; $\S3.$ Sistemas cuánticos; $\S4.$ Métodos aproximados

5.3. Sistemas hidrogenoides

 $\S1.$ Sistemas hidrogenoides; $\S2.$ Método de perturbaciones; $\S3.$ Estructura fina e hiperfina.

5.4. Transiciones radiativas

§1. Perturbaciones dependientes del tiempo; §2. Hamiltoniano con campo electromagnético; §3. Aproximación dipolar; §4. Coeficientes de Einstein;
§5. Reglas de selección; §6. Transiciones híbridas.

- 5.5. Estructura cuántica de átomos y moléculas
 - §1. Cálculo variacional; §2.Átomos con varios electrones; §3. Moléculas diatómicas.

5.1. El formalismo Hamiltoniano de la mecánica clásica

- 5.1.1. Introducción.
- 5.1.2. Formalismo Hamiltoniano
- 5.1.3. Hamiltonianos clásicos
- 5.1.4. Otros Hamiltonianos.

5.1.1. Introducción - motivaciones de la mecánica cuántica.

Las líneas espectrales

Observadas en emisión o absorción en el laboratorio y en el espectro solar (Fraunhofer). Las líneas identifican a los distintos elementos químicos.

El espectro de cuerpo negro

La interpretación estadística del espectro de cuerpo negro requiere la hipótesis $E = h\nu$ para la absorción y emisión de radiación.

La estabilidad de la materia

Electrones en órbita alrededor de un núcleo cargado, formando átomos, deberían emitir radiación, de acuerdo a la fórmula de Larmor, y caer en el núcleo en un tiempo muy corto.

5.1.1. Introducción - desarrollo de la mecánica cuántica.

- Problema de cuerpo negro \rightarrow hipótesis de Planck: $E = nh\nu$.
- Efecto foto-eléctrico: $h\nu > \chi$.
- Estabilidad de la materia \rightarrow átomo de Bohr: $L = n\hbar$.
- Difracción electrónica \rightarrow de Broglie: $\lambda \sim h/p$.
- ▶ Principio de incertidumbre → Heisenberg: $\Delta x \Delta p \gtrsim h$.
- Función de onda, formalismo Hamiltoniano \rightarrow ecuación de Schrödinger.
- Mecánica cuántica relativista (Dirac) \rightarrow anti-partículas y espín.

5.1.2. Formalismo Hamiltoniano - coordenadas generalizadas.

- ► La mecánica clásica describe el movimiento de partículas mediante trayectorias, $\vec{r}(t)$, conforme a las leyes de Newton.
- La descripción Newtoniana no es compatible con la mecánica cuántica, donde el concepto de trayectoria no está bien definido.
- ▶ El formalismo Hamiltoniano² es compatible con la mecánica cuántica.
- sistemas físicos se describen en el espacio fase = coordenadas y momentos, $\{r, p\}$.
- Las formulaciones Lagrangiana y Hamiltoniana usan *coordenadas generalizadas*, acordes con las restricciones del sistema.
- Cada coordenada generalizada es función de las coordenadas físicas: $q = q(\vec{r})$.
- A cada coordenada generalizada le corresponde un momento generalizado, definido a partir de la energía cinética del sistema,

$$p_k = \frac{\partial E_{cin}}{\partial \dot{q}_k} \,. \tag{2}$$

²Una referencia del formalismo Hamiltoniano clásico es el libro de Goldstein, cap<u>s</u> 1 a 8. « E » E » O « C

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の 0 0

5.1.2. Formalismo Hamiltoniano - ecuaciones de Hamilton.

- Para coordenadas cartesianas,

$$E_{cin} = \frac{1}{2}m\dot{x}^2 \quad \Rightarrow \quad p_x = \frac{\partial E_{cin}}{\partial \dot{x}} = m\dot{x} \quad \Rightarrow \quad E_{cin} = \frac{p_x^2}{2m}$$

 El Hamiltoniano H está dado por la energía total del sistema, cinética mas potencial, expresada en función de {qk, pk},

$$H = E_{cin} + U. \tag{3}$$

Para una partícula en tres dimensiones,

$$H = \frac{p^2}{2m} + U = \frac{p_x^2}{2m} + \frac{p_y^2}{2m} + \frac{p_z^2}{2m} + U.$$
(4)

 Las ecuaciones de Hamilton determinan el movimiento, de forma consistente con el formalismo Newtoniano,

$$\dot{q}_k = \frac{\partial H}{\partial p_k}, \qquad \dot{p}_k = -\frac{\partial H}{\partial q_k}.$$
 (5)

5.1.3. Hamiltonianos clásicos - partícula libre.

▶ El Hamiltoniano de la partícula libre (U = 0) en tres dimensiones es

$$H = \frac{p^2}{2m} = \frac{p_x^2}{2m} + \frac{p_y^2}{2m} + \frac{p_z^2}{2m}.$$
 (6)

- Las ecuaciones de Hamilton (5) para la componente x,

$$\dot{x} = rac{\partial H}{\partial p_x} = rac{p_x}{m}, \quad \dot{p}_x = -rac{\partial H}{\partial x} = 0,$$

- La solución es el movimiento rectilíneo uniforme,

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

5.1. Introducción; Hamiltonianos

5.2. Cuántica

5.1.3. Hamiltonianos clásicos - oscilador armónico.

> El Hamiltoniano de un oscilador armónico unidimensional,

$$H = \frac{p^2}{2m} + \frac{1}{2}kx^2.$$
 (7)

- Las ecuaciones de movimiento,

$$\dot{\mathbf{x}} = \frac{\partial H}{\partial p} = \frac{p}{m}, \quad \dot{p} = -\frac{\partial H}{\partial x} = -kx$$

- Derivando x se obtiene la ecuación del oscilador armónico,

$$\ddot{x} + \omega^2 x = 0, \qquad \omega = \sqrt{\frac{k}{m}}$$

- La solución general es de la forma,

$$x(t) = Ae^{i\omega t} + Be^{-i\omega t}, \quad p(t) = m\dot{x} = m\omega \left(Ae^{i\omega t} - Be^{-i\omega t}\right).$$

- Hay dos familias de soluciones independientes $(\exp(\pm i\omega t) \Leftrightarrow \{\cos \omega t, \sin \omega t\})$, con dos constantes de movimiento, $(A, B) \rightarrow$ condiciones iniciales, (x(0), p(0)).

5.1. Introducción; Hamiltonianos

5.1.3. Hamiltonianos clásicos - oscilador armónico 3D.

 El Hamiltoniano del oscilador armónico en tres dimensiones es la suma de tres Hamiltonianos, uno por coordenada,

$$H = \frac{p_x^2}{2m} + \frac{p_y^2}{2m} + \frac{p_z^2}{2m} + \frac{1}{2}k_xx^2 + \frac{1}{2}k_yy^2 + \frac{1}{2}k_zz^2.$$

- La ecuación de movimiento es superposición de tres osciladores, $\ddot{x}_i + \omega_i^2 x_i = 0$. La solución es,

$$\vec{r}(t) = \left(A_x e^{+i\omega_x t} + B_x e^{-i\omega_x t}\right) \hat{x} + \left(A_y e^{+i\omega_y t} + B_y e^{-i\omega_y t}\right) \hat{y} + \left(A_z e^{+i\omega_z t} + B_z e^{-i\omega_z t}\right) \hat{z},$$

con seis constantes, (\vec{A}, \vec{B}) , a determinar de las condiciones iniciales.

Si k_x = k_y = k_z ≡ k, el problema adquiere simetría esférica y puede tratarse como un potencial central, U(r) = kr²/2.

5.1.3. Hamiltonianos clásicos - potencial central.

- Un potencial central depende solamente de la coordenada radial: $U(\vec{r}) = U(r)$.
- Se describe convenientemente en coordenadas esféricas, (r, θ, ϕ) ,

$$x = r \sin \theta \cos \phi$$
, $y = r \sin \theta \sin \phi$, $z = r \cos \theta$.

- La derivada de la posición y la energía cinética,

$$\dot{\vec{r}} = \dot{r}\,\hat{r} + r\,\dot{\hat{r}} = \dot{r}\,\hat{r} + r(\dot{\theta}\,\hat{\theta} + \dot{\phi}\,\sin\theta\,\hat{\phi}),$$
$$E_{cin} = \frac{1}{2}m|\dot{\vec{r}}|^2 = \frac{1}{2}m\dot{r}^2 + \frac{1}{2}mr^2\dot{\theta}^2 + \frac{1}{2}mr^2\sin^2\theta\dot{\phi}^2$$

- Los momentos generalizados se obtienen de (2),

$$p_r = \frac{\partial E_{cin}}{\partial \dot{r}} = m\dot{r}, \quad p_\theta = \frac{\partial E_{cin}}{\partial \dot{\theta}} = mr^2\dot{\theta}, \quad p_\phi = \frac{\partial E_{cin}}{\partial \dot{\phi}} = mr^2\sin^2\theta\dot{\phi}.$$

- De donde el Hamiltoniano,

$$H = \frac{p_r^2}{2m} + \frac{p_{\theta}^2}{2mr^2} + \frac{p_{\phi}^2}{2mr^2\sin^2\theta} + U(r).$$
(8)

5.1.3. Hamiltonianos clásicos - potencial central.

Las ecuaciones de movimiento para (8) ,

$$\begin{cases} \dot{r} = p_r/m, & \dot{p}_r = p_{\theta}^2/mr^3 + p_{\phi}^2/mr^3 \sin^2 \theta - dU/dr, \\ \dot{\theta} = p_{\theta}/mr^2, & \dot{p}_{\theta} = p_{\phi}^2 \cos \theta/mr^2 \sin^3 \theta, \\ \dot{\phi} = p_{\phi}/mr^2 \sin^2 \theta, & \dot{p}_{\phi} = 0. \end{cases}$$
(9)

La magnitud del momento angular,

$$\vec{L} = \vec{r} \times \vec{p} = -\hat{\phi} \, p_{\theta} + \hat{\theta} \, p_{\phi} / \sin \theta \,, \tag{10}$$

es una constante de movimiento que permite expresar el Hamiltoniano como

$$H = \frac{p_r^2}{2m} + \frac{L^2}{2mr^2} + U(r).$$
 (11)

- También permite seleccionar la orientación,

$$heta=\pi/2 \,\Rightarrow\, \dot{p}_{ heta}=0, \; p_{ heta}=0 \;\Rightarrow\; \vec{L}=p_{\phi}\,\hat{ heta},$$

restringiendo el movimiento al plano $r\phi$.

| ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ● ●

5.1.3. Hamiltonianos clásicos - potencial central.

> La componente angular del movimiento está dictada por,

$$\dot{p}_{\phi} = 0 \quad \Rightarrow \quad L = p_{\phi} = mr^2 \dot{\phi} = \mathrm{cte} \,,$$

lo que da la segunda ley de Kepler: **"áreas iguales son barridas en tiempos iguales"**, para *cualquier* potencial central.

La componente radial de movimiento (9) se obtiene conociendo U(r),

$$\dot{r} = \frac{p_r}{m}, \ \dot{p}_r = \frac{L^2}{mr^3} - \frac{dU}{dr} \quad \Rightarrow \quad \ddot{r} = \frac{L^2}{m^2r^3} - \frac{1}{m}\frac{dU}{dr}.$$
(12)

- Ejemplos relevantes:
- la partícula libre, U = 0; el oscilador armónico tridimensional, $U(r) = kr^2/2$; el problema de Kepler, U(r) = -GMm/r.

▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 → の Q ()

5.1.3. Hamiltonianos clásicos - problema de Kepler

> Para el problema de Kepler conviene definir el potencial efectivo,

$$U_{eff}(r) = \frac{L^2}{2mr^2} - \frac{GMm}{r}, \qquad (13)$$

que se muestra en la figura 2 para tres valores de L (para GM = 1, m = 1).

- El potencial efectivo tiene límites:

$$r \rightarrow 0 \Rightarrow U_{eff} \rightarrow +\infty, \quad r \rightarrow \infty \Rightarrow U_{eff} \rightarrow 0,$$

y valor mínimo,

$$U_{eff}^{min} = -G^2 M^2 m^3 / 2L^2 = -GMm/2r_0 \quad \text{en} \quad r_0 = L^2 / GMm^2 \,.$$

- Según la energía de la partícula, se tiene:
 - $E = U_{eff}^{min} \Rightarrow$ órbita circular con radio r_0 ;
 - $U_{eff}^{min} < E < 0 \Rightarrow$ órbita elíptica; $r_{min} \leq r \leq r_{max}$;
 - $E = 0 \Rightarrow$ órbita parabólica, $r \ge r_{min} = r_0/2$;
 - $E > 0 \Rightarrow$, trayectoria hiperbólica.
- Se pueden obtener $r(\phi)$ y r(t), descrita de forma paramétrica.

5.1.3. Hamiltonianos clásicos - problema de Kepler

Figura 2: Potencial efectivo para el problema de Kepler, tomando GM = 1, m = 1 y con L = 0.5, 1.0, 1.5, en colores azul, verde y rojo, respectivamente.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の 0 0

5.1.4. Otros Hamiltonianos

▶ El Hamiltoniano clásico puede incorporar potenciales electromagnéticos, $\{\vec{A}, \Phi\}$,

$$H = \frac{1}{2m} \left(\vec{p} - \frac{q}{c} \vec{A} \right)^2 + q \Phi(\vec{x}) + U(\vec{x}).$$
 (14)

El Hamiltoniano relativista,

$$H = \left[\left(\vec{p}c - q\vec{A} \right)^2 + m^2 c^4 \right]^{1/2} + q \Phi(\vec{x}) + U(\vec{x}).$$
 (15)

> En mecánica cuántica H es un operador que actúa sobre una función de onda,

$$H |\psi(t)\rangle = \left[\frac{p^2}{2m} + U\right] |\psi(t)\rangle = i\hbar \frac{\partial}{\partial t} |\psi(t)\rangle .$$
 (16)

> La ecuación de Dirac el operador considera el caso cuántico y relativista,

$$H |\psi\rangle = \left[\vec{\alpha} \cdot \left(\vec{p}c - q\vec{A}\right) + \beta mc^2 + q\Phi + U\right] |\psi\rangle = i\hbar \frac{\partial}{\partial t} |\psi\rangle , \qquad (17)$$

con α, β matrices de 4 \times 4.

▲□▶▲圖▶▲圖▶▲圖▶ 圖 の�?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のくぐ

5.2. Elementos de mecánica cuántica

5.2.1. Formalismo:

función de onda; operadores, variables físicas, medición; representaciones.

- 5.2.2. La ecuación de Schrödinger; estados estacionarios.
- 5.2.3. Sistemas cuánticos; espín.
- 5.2.4. Métodos aproximados

5.2. Elementos de mecánica cuántica - formalismo.

- El formalismo de la mecánica cuántica difiere de manera fundamental del de la mecánica clásica.
- ► Este formalismo se puede plantear en términos de seis *postulados*.
- 1. El estado de un sistema físico queda definido por su función de onda.
- 2. Toda cantidad física medible está descrita por un operador que actúa sobre las funciones de onda.
- 3. La medición de la variable física es uno de los valores propios de su operador.
- 4. La probabilidad de una medición depende de la función de onda y del operador de la variable en cuestión.
- 5. La medición de una variable determina el estado del sistema.
- 6. El operador Hamiltoniano gobierna la evolución temporal de un sistema (ecuación de Schrödinger).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● ④ ● ●

5.2.1. Formalismo - funciones de onda.

Primer postulado - El estado de un sistema físico en un instante t está especificado por su función de onda, $|\psi(t)\rangle$.

- \blacktriangleright La funciones de onda pertenecen al espacio vectorial \mathcal{E} .
- Sus elementos y las operaciones entre ellos cumplen propiedades de linearidad, operador unitario, nulo e inversos, ...
- ► Al espacio *E* de vectores |ψ⟩, tipo "ket", le corresponde el *espacio dual E**, de vectores tipo "bra", ⟨ψ|.
- Los dos tipos de vectores se pueden combinar en un producto escalar, $\langle \psi | \varphi
 angle.$
- Los dos tipos de vectores se pueden combinar en operadores, $\tilde{O} = |\psi\rangle \langle \varphi|$, representables mediante matrices.
- ► Los sistemas físicos se representan (generalmente) con funciones normalizadas $\Rightarrow |\psi|^2 \equiv \langle \psi | \psi \rangle = 1.$
- Existen conjuntos de funciones de onda que forman bases ortonormales del espacio *E*. Las bases pueden ser *discretas* o *continuas*.

5.2.1. Formalismo - operadores.

- Sobre las funciones de onda actúan operadores:
- un operador A actuando sobre $|\psi
 angle\in\mathcal{E}$ genera otra función, $A\left|\psi
 ight
 angle=\left|\varphi
 ight
 angle$.
- Los operadores son lineales: dados dos números complejos λ_1, λ_2 se tiene,

$$A(\lambda_1 |\psi_1\rangle + \lambda_2 |\psi_2\rangle) = \lambda_1 A |\psi_1\rangle + \lambda_2 A |\psi_2\rangle.$$

- El producto de dos operadores es otro operador, tal que,

$$AB \ket{\psi} = A (B \ket{\psi}).$$

- Los operadores no necesariamente conmutan entre ellos. Se define el operador conmutador de A y B como,

$$[A,B] \equiv AB - BA.$$

► Operadores (y duales) satisfacen ecuaciones de valores propios,

$$A |\psi\rangle = \lambda |\psi\rangle \quad \Leftrightarrow \quad \langle \psi | A^{\dagger} = \langle \psi | \lambda^{*},$$

 λ valor propio, $|\psi\rangle$ vector propio, A^{\dagger} adjunto de A, λ^{*} complejo conjugado de λ .

5.2.1. Formalismo - operadores y variables físicas.

Segundo postulado - Toda cantidad física medible, A, está descrita por un operador observable, A, que actúa en el espacio \mathcal{E} .

- > Un operador asociado a una variable física observable cumple:
- (1) ser hermitiano: $A^{\dagger} = A$, $\lambda = \lambda^{*}$;
- (2) el conjunto de las soluciones $|\psi_n\rangle$ de la ecuación de valores propios,

$$A \left| \psi_n \right\rangle = a_n \left| \psi_n \right\rangle, \tag{18}$$

forma una base.

 Pueden existir estados degenerados: funciones de onda distintas con mismo valor propio,

$$A \left| \psi_{n}^{i} \right\rangle = a_{n} \left| \psi_{n}^{i} \right\rangle, \quad \text{con} \quad i = 1, \dots, g_{n}.$$
⁽¹⁹⁾

 g_n es el nivel de degeneración del estado.

5.2.1. Formalismo - espacios de representación.

► Las funciones de onda se representan en términos de coordenadas o de momentos,

$$\langle \vec{r} | \psi(t) \rangle = \psi(\vec{r}, t), \quad \langle \vec{\rho} | \psi(t) \rangle = \psi(\vec{\rho}, t).$$
 (20)

► Los operadores y vectores de representación cumplen relaciones de valores propios,

$$\tilde{x}\ket{\vec{r}} = x\ket{\vec{r}}, \ \tilde{p}_x\ket{\vec{p}} = p_x\ket{\vec{p}},$$

 $\Rightarrow \quad \langle \vec{r} | \tilde{x} | \psi(t) \rangle = x \, \langle \vec{r} | \psi(t) \rangle = x \, \psi(\vec{r}, t), \quad \langle \vec{p} | \tilde{p}_x | \psi(t) \rangle = p_x \, \psi(\vec{p}, t).$

> La proyección permite calcular el producto escalar de funciones,

$$\langle \psi | arphi
angle = \int \psi^*(ec{r},t) \, arphi(ec{r},t) \, d^3r = \int \psi^*(ec{p},t) \, arphi(ec{p},t) \, d^3p \, .$$

> La proyección permite calcular valores medios de observables,

$$\langle A \rangle = \langle \psi | A | \psi \rangle = \int \psi^*(\vec{r}, t) A \psi(\vec{r}, t) d^3r = \int \psi^*(\vec{p}, t) A \psi(\vec{p}, t) d^3p d^3r$$

con sus incertidumbres, $\Delta A \equiv \sqrt{\langle A^2 \rangle - \langle A \rangle^2}$.

5.2.1. Formalismo - representaciones.

Los operadores de coordenadas y momentos no conmutan:

$$[x_i, p_j] = i\hbar \,\delta_{ij} \quad \Rightarrow \quad [x, p_x] = [y, p_y] = [z, p_z] = i\hbar \,. \tag{22}$$

Los vectores de representación cumplen las siguientes relaciones:

$$\langle \vec{r_1} | \vec{r_2} \rangle = \delta \left(\vec{r_1} - \vec{r_2} \right) , \qquad \langle \vec{p_1} | \vec{p_2} \rangle = \delta \left(\vec{p_1} - \vec{p_2} \right) , \tag{23}$$

$$\langle \vec{r} | \vec{p} \rangle = (2\pi\hbar)^{-3/2} e^{i \vec{p} \cdot \vec{r}/\hbar}, \qquad \langle \vec{p} | \vec{r} \rangle = (2\pi\hbar)^{-3/2} e^{-i \vec{p} \cdot \vec{r}/\hbar}.$$
(24)

> Es posible cambiar de representación mediante transformadas de Fourier,

$$\psi(\vec{r}) = (2\pi\hbar)^{-3/2} \int \psi(\vec{p}) e^{i\vec{p}\cdot\vec{r}/\hbar} d^3p, \ \psi(\vec{p}) = (2\pi\hbar)^{-3/2} \int \psi(\vec{r}) e^{-i\vec{p}\cdot\vec{r}/\hbar} d^3r.$$
(25)

> La conexión mediante transformadas de Fourier resulta en las relaciones,

$$\langle \vec{r} | \boldsymbol{p} | \psi \rangle = -i\hbar \nabla \psi(\vec{r}), \quad \langle \vec{p} | r | \psi \rangle = i\hbar \nabla_{\boldsymbol{p}} \psi(\vec{p}).$$
⁽²⁶⁾

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ��

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のくぐ

5.2.1. Formalismo - representaciones y relación de incertidumbre.

 Los operadores de posición y momento se describen en las representaciones alternas como,

$$\vec{p} = -i\hbar \nabla, \qquad \vec{r} = i\hbar \nabla_p. \tag{27}$$

► Las relaciones entre representaciones llevan implícito el principio de incertidumbre,

$$\Delta x \Delta p \ge \frac{\hbar}{2} \,. \tag{28}$$

5.2.1. Formalismo - mediciones; tercer y cuarto postulado.

Tercer postulado - Toda medición de la variable física A resulta en uno de sus valores propios.

Cuarto postulado - La probabilidad de medir el valor propio a_n del operador A, en un sistema discreto **sin** degeneración, está dada por

$$\mathsf{P}(\mathsf{a}_{\mathsf{n}}) = \left| \langle \mathsf{a}_{\mathsf{n}} | \psi
angle
ight|^2$$
 .

- En sistemas con degeneración $g_n \neq 1$,

$$P(a_n) = \sum_{i=1}^{g_n} \left| \left\langle a_n^i | \psi \right\rangle \right|^2 \,.$$

- En sistemas continuos, la probabilidad de medir $\langle A \rangle = a$, está dada por,

$$dP(a) = |\langle a|\psi\rangle|^2 da$$
, con $|\langle a|\psi\rangle|^2 = \int a^*(\vec{r}) \psi(\vec{r}) d^3r$.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ��

5.2.1. Formalismo - mediciones; quinto postulado.

Quinto postulado - *La medición de una variable determina el estado del sistema.*

- ▶ Dado un sistema en estado $|\psi\rangle$ previo a la medición de *A*, si la medición resulta en el valor propio a_n , el sistema está descrito por $|\varphi\rangle = |a_n\rangle$ después de la medición.
- Para estados con degeneración, el estado resultante es la superposición,

$$\left|\varphi
ight
angle = \sum_{i=1}^{g_n} \left\langle a_n^i |\psi
ight
angle \left|a_n^i
ight
angle \left/\sqrt{\sum_{i=1}^{g_n} \left|\left\langle a_n^i |\psi
ight
angle \right|^2}
ight.$$

5.1. Introducción; Hamiltonianos

5.2. Cuántica

5.2.2. Ecuación de Schrödinger - postulado dinámico.

Sexto postulado - La evolución temporal de un sistema descrito por la función de onda $|\psi(t)\rangle$, está gobernada por la ecuación de Schrödinger,

$$H|\psi(t)\rangle = i\hbar \frac{\partial}{\partial t} |\psi(t)\rangle.$$
(29)

> El operador Hamiltoniano hereda la estructura de la mecánica clásica,

$$H=\frac{|\vec{p}|^2}{2m}+U.$$

- La ecuación de Schrödinger (29) vale en todas las representaciones.
- En el espacio de coordenadas, $\vec{p} = -i\hbar\nabla$, la ecuación adquiere la forma:

$$-\frac{\hbar^2}{2m}\nabla^2\psi(\vec{r},t) + U(\vec{r},t)\,\psi(\vec{r},t) = i\hbar\,\frac{\partial\psi(\vec{r},t)}{\partial t}\,.$$
(30)

5.2.2. Ecuación de Schrödinger - estados estacionarios.

Cuando el Hamiltoniano no depende explícitamente del tiempo³, se plantea

$$|\psi(t)\rangle = |\varphi\rangle \, e^{-iEt/\hbar},$$
(31)

con $|\varphi\rangle$ independiente de t, para obtener la forma estacionaria de la ecuación Schrödinger,

$$H |\varphi\rangle = E |\varphi\rangle . \tag{32}$$

- La función $|\varphi\rangle$ describe un *estado estacionario* del sistema.
- En general existe una familia de estados estacionarios, $H \ket{\varphi_n} = E_n \ket{\varphi_n}$.
- Las soluciones de (32) forman una base de \mathcal{E} : cualquier $|\psi
 angle$ se puede escribir,

$$|\psi(t)\rangle = \sum_{n} c_{n} |\varphi_{n}\rangle e^{-iE_{n}t/\hbar} \quad \Rightarrow \quad \psi(\vec{r},t) = \sum_{n} c_{n} \varphi_{n}(\vec{r}) e^{-iE_{n}t/\hbar}, \qquad (33)$$

con coeficientes independientes del tiempo: $c_k = \langle \varphi_k | \psi(t = 0) \rangle$.

- Normalización: $|\psi|^2 = 1 \Rightarrow \sum |c_n|^2 = 1.$

³en particular si $U \neq U(t)$.

5.2.3. Sistemas cuánticos - partícula libre

> La ecuación de Schrödinger para una partícula libre (U = 0) es,

$$-\frac{\hbar^2}{2m}\nabla^2\psi(\vec{r},t) = i\hbar\frac{\partial\psi(\vec{r},t)}{\partial t}.$$
(34)

> Para estados estacionarios (32) se obtiene una ecuación de onda con solución,

$$\psi(\vec{r},t) = \left(Ae^{i\vec{k}\cdot\vec{r}} + Be^{-i\vec{k}\cdot\vec{r}}\right) e^{-iEt/\hbar} \implies E = \frac{\hbar^2 k^2}{2m}, \quad (35)$$

las constantes A y B requieren (dos) condiciones iniciales.

> Las funciones no son normalizables. La solución estacionaria más general es,

$$\varphi(\vec{r}) = (2\pi)^{-3/2} \int A(\vec{k}) e^{i\vec{k}\cdot\vec{r}} d^3k , \qquad (36)$$

donde el factor $(2\pi)^{-3/2}$ asegura que $\varphi(\vec{r})$ y $A(\vec{k})$ tengan misma norma.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 ● のへぐ

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

5.2.3. Sistemas cuánticos - barrera de potencial, efecto túnel

- ► Una barrera de potencial se puede describir con U(x) = U₀ para |x| ≤ a y U = 0 para |x| > a.
- La solución para |x| > a es una partícula libre.
- Si |x| ≤ a uno tiene una partícula libre con p²/2m = E − U₀, si E > U₀; o una atenuación exponencial si E < U₀.
- ► En consecuencia, una partícula puede atravesar un potencial, incluso teniendo una energía cinética inferior a U₀.
- > El efecto túnel es relevante en el proceso de nucleosíntesis.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

5.2.3. Sistemas cuánticos - el oscilador armónico

El desarrollo de un potencial arbitrario alrededor de un punto de equilibrio, x_0 ,

$$U(x) = U(x_0) + \left(\frac{dU}{dx}\right)_0 (x - x_0) + \frac{1}{2!} \left(\frac{d^2U}{dx^2}\right)_0 (x - x_0)^2 + \dots$$
(38)

con mínimo $(dU/dx)_0 = 0$, da lugar a una aproximación de oscilador armónico.

> El potencial del oscilador armónico es cuadrático. Se expresa comúnmente como

$$U = \frac{1}{2}kx^2 = \frac{1}{2}m\omega^2 x^2, \quad \text{con } \omega = \sqrt{k/m}.$$

> Ec. de Schrödinger para estados estacionarios del oscilador armónico,

$$-\frac{\hbar^2}{2m}\frac{d^2\varphi(x)}{dx^2} + \frac{1}{2}m\omega^2 x^2\varphi(x) = E\,\varphi(x)\,. \tag{39}$$

► El Hamiltoniano tiene misma dependencia en p que en x ⇒ Las soluciones están formadas por la misma familia de funciones en ambas representaciones.

5.1. Introducción; Hamiltonianos

5.2.3. Sistemas cuánticos - el oscilador armónico

 Siendo que la transformada de Fourier de una Gaussiana es otra Gaussiana, se propone como primera solución

$$\varphi_0(x) = A_0 \exp(-\alpha x^2/2).$$

- Esta satisface (32) para

$$\alpha = m\omega/\hbar, E_0 = \hbar\omega/2; \quad |\varphi_0|^2 = 1 \Rightarrow A_0 = (m\omega/\pi\hbar)^{1/4}.$$

Las funciones de onda son productos de polinomios con la Gaussiana,

$$\langle x|n\rangle = \varphi_n(x) = \frac{1}{\sqrt{2^n n!}} \left(\frac{m\omega}{\pi\hbar}\right)^{1/4} H_n\left(\sqrt{\frac{m\omega}{\hbar}}x\right) e^{-m\omega x^2/2\hbar}, \qquad (40)$$

donde H_n es el polinomio de Hermite de grado n,

$$H_{n}(z) = (-1)^{n} e^{z^{2}} \frac{d^{n}(e^{-z^{2}})}{dz^{n}}; \quad H_{n+1}(x) = 2xH_{n}(x) - 2nH_{n-1}(x).$$
(41)
- $H_{0}(z) = 1, H_{1}(z) = 2z, H_{2}(z) = 4z^{2} - 2, H_{3}(z) = 8z^{3} - 12z, \dots$

5.2.3. Sistemas cuánticos - el oscilador armónico

 Las soluciones del oscilador armónico unidimensional forman un conjunto infinito numerable,

$$H|n\rangle = E_n|n\rangle$$
 con $E_n = \left(n + \frac{1}{2}\right)\hbar\omega.$ (42)

Primeras soluciones del oscilador armónico: n = 0, en azul; n = 1, en verde; n = 2 en rojo; n = 3 en azul claro. Las gráficas tienen misma escala, pero con un desplazamiento vertical para mostrarlas juntas.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

5.2.3. Sistemas cuánticos - el oscilador armónico 3D

El oscilador armónico isotrópico, U = U(r) = kr²/2, es superposición de tres osciladores,

$$H|n_{x},n_{y},n_{z}\rangle = E_{n_{x},n_{y},n_{z}}|n_{x},n_{y},n_{z}\rangle, \quad E_{n_{x},n_{y},n_{z}} = \left(n_{x}+n_{y}+n_{z}+\frac{3}{2}\right)\hbar\omega,$$
(43)

 $\operatorname{con} |n_x, n_y, n_z\rangle = |n_x\rangle |n_y\rangle |n_z\rangle.$

- ▶ El número $n \equiv n_x + n_y + n_z$ representa la energía del sistema.
- El sistema tiene degeneración $g_n = (n+1)(n+2)/2$ con:
- estados equivalentes (rotación): |1,1,0
 angle=|1,0,1
 angle=|0,1,1
 angle;
- estados distintos de misma energía: $|1,1,0\rangle \Leftrightarrow |2,0,0\rangle$.
- El oscilador armónico isotrópico es un potencial central y puede ser representado en términos de armónicos esféricos.

5.2.3. Sistemas cuánticos - potencial central

- Un potencial central describe una interacción entre dos cuerpos dependiente exclusivamente de la distancia entre estos.
- Al igual que el caso clásico, el potencial central se describe convenientemente en coordenadas esféricas, {r, θ, φ} → p_j = ∂E_{cin}/∂i_j, donde,

$$H = \frac{p_r^2}{2m} + \frac{p_{\theta}^2}{2mr^2} + \frac{p_{\phi}^2}{2mr^2\sin^2\theta} + U(r) = \frac{p_r^2}{2m} + \frac{L^2}{2mr^2} + U(r).$$
(47)

con el momento angular dado por,

$$\vec{L} = \vec{r} \times \vec{p} = -\hat{\phi} \, \rho_{\theta} + \hat{\theta} \, \rho_{\phi} / \sin \theta \,. \tag{48}$$

> El Hamiltoniano central conmuta con el momento angular y su cuadrado,

$$[H, \vec{L}] = 0, \quad [H, L^2] = 0,$$

indicando que \vec{L} y L^2 son constantes de movimiento.
5.2.3. Sistemas cuánticos - potencial central, momento angular

- El momento angular, $\vec{L} = \vec{r} \times \vec{p}$, tiene propiedades importantes:
- Sus componentes,

$$L_x = y p_z - z p_y, \quad L_y = z p_x - x p_z, \quad L_z = x p_y - y p_x,$$
 (49)

no conmutan entre sí,

$$[L_x, L_y] = i\hbar L_z, \quad [L_y, L_z] = i\hbar L_x, \quad [L_z, L_x] = i\hbar L_y.$$
(50)

- En consecuencia, no es posible la determinación conjunta de las tres componentes.
- Dado que $[L^2, L_z] = 0$, se eligen L^2 y L_z para la descripción de sistemas cuánticos.
- En coordenadas esféricas,

$$L^{2} = -\hbar^{2} \left\{ \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}} \right\}, \quad L_{z} = \frac{\hbar}{i} \frac{\partial}{\partial \phi}.$$
(51)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

5.2.3. Sistemas cuánticos - potencial central - soluciones

> La ecuación de Schrödinger para estados estacionarios de un potencial central,

$$\left[\frac{p_r^2}{2m} + \frac{L^2}{2mr^2} + U(r)\right] |\varphi\rangle = E |\varphi\rangle .$$
(55)

• Para $\langle \vec{r} | \varphi \rangle = \varphi(r, \theta, \phi)$,

$$-\frac{\hbar^2}{2m}\frac{1}{r}\frac{\partial^2}{\partial r^2}(r\varphi) - \frac{\hbar^2}{2mr^2}\left\{\frac{1}{\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial\varphi}{\partial\theta}\right) + \frac{1}{\sin^2\theta}\frac{\partial^2\varphi}{\partial\phi^2}\right\} + U(r)\varphi = E\varphi.$$
(56)

- Puede resolverse mediante separación de variables.
- Las soluciones son funciones propias de *H*, L^2 y L_z , descritas con armónicos esféricos, $Y_{\ell}^m(\theta, \phi)$, y dadas por tres números cuánticos, $|\varphi\rangle = |n \ell m\rangle$,

$$\langle \vec{r} | n\ell m \rangle = \varphi_{n\ell m}(r, \theta, \phi) = R_{n\ell}(r) Y_{\ell}^{m}(\theta, \phi).$$
(57)

5.2.3. Sistemas cuánticos - potencial central, armónicos esféricos

▶ Los armónicos esféricos, $Y_{\ell}^{m}(\theta, \phi)$, satisfacen las ecuaciones de valores propios

$$L^{2} Y_{\ell}^{m}(\theta,\phi) = \ell(\ell+1)\hbar^{2} Y_{\ell}^{m}(\theta,\phi), \quad L_{z} Y_{\ell}^{m}(\theta,\phi) = m\hbar Y_{\ell}^{m}(\theta,\phi), \quad (58)$$

con $\ell = 0, 1, ..., n - 1; m = -\ell, ..., 0, ..., +\ell$.

> Son funciones normalizadas sobre ángulo sólido dadas por,

$$Y_{\ell}^{m}(\theta,\phi) = (-1)^{m} \sqrt{\frac{(2\ell+1)}{4\pi} \frac{(\ell-m)!}{(\ell+m)!}} P_{\ell}^{m}(\cos\theta) e^{im\phi} \quad \text{si} \quad (m \ge 0),$$

$$Y_{\ell}^{m}(\theta,\phi) = \sqrt{\frac{(2\ell+1)}{4\pi} \frac{(\ell+m)!}{(\ell-m)!}} P_{\ell}^{-m}(\cos\theta) e^{im\phi} \quad \text{si} \quad (m < 0), \quad (59)$$

con P_{ℓ}^m funciones asociadas de Legrendre.

Se muestran los primeros armónicos esféricos en la tabla 1.

5.2.3. Sistemas cuánticos - potencial central

Tabla 1: Armónicos esféricos para $\ell = 0, 1, 2, 3$.

5.2.3. Sistemas cuánticos - armónicos esféricos

- ◆ □ ▶ → 個 ▶ → 画 ▶ → 画 → のへで

5.2.3. Sistemas cuánticos - potencial central hidrogenoide

► Conocida la parte angular y dado el potencial U(r), se puede resolver la ecuación para la función radial $R_{n\ell}(r)$,

$$-\frac{\hbar^2}{2m}\frac{1}{r^2}\frac{d}{dr}\left(r^2\frac{dR_{n\ell}}{dr}\right) + \left\{\frac{\ell(\ell+1)\hbar^2}{2mr^2} + U(r)\right\}R_{n\ell} = E_{n\ell}R_{n\ell}, \quad (60)$$

con soluciones para *n* natural, $0 \le \ell < n$.

- ► En general, los valores propios de la energía dependen de los dos números cuánticos {n, ℓ}: E = E_{nℓ}.
- > El ejemplo más relevante es el potencial hidrogenoide,

$$U(r) = -\frac{Ze^2}{r}.$$
 (61)

▶ Junto con la función $|n \ell m\rangle$ se debe considerar el **espín** del sistema.

・ロト ・母 ・ ・ キャ ・ ゆ ・ うへの

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

5.2.3. Sistemas cuánticos - espín.

 Experimento de Stern-Gerlach evidencia la existencia de un momento magnético permanente,

$$\vec{\mu} = \frac{q\vec{S}}{mc}, \quad |\vec{S}| = \frac{\hbar}{2}.$$
 (62)

con dos estados de espín \vec{S} , descritos con el número cuántico $m_s = \pm 1/2$, tal que $|\vec{S}| = \hbar/2$.

- Grado de libertad adicional en las funciones de onda.
- El operador de espín tiene mismas propiedades de conmutación que el momento angular.
- Aparece de manera natural en las soluciones de la ecuación de Dirac.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

5.2.4. Métodos aproximados

- En mecánica cuántica se emplean métodos de aproximaciones para cálculos específicos:
- El método de perturbaciones independiente del tiempo permite estudiar la estructura fina e hiperfina de sistemas cuánticos (§5.3).
- El método de perturbaciones dependiente del tiempo se emplea para el cálculo de transiciones radiativas (§5.4).
- El método variacional permite la determinación de estados base sistemas más complejos que el átomo de hidrógeno. Se puede aplicar al átomo de helio (§5.5).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のくぐ

5.3. Estructura de sistemas hidrogenoides

- 5.3.1. Sistemas hidrogenoides.
- 5.3.2. Perturbaciones independientes del tiempo.
- 5.3.3. Estructura fina e hiperfina.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

5.3.1. Sistemas hidrogenoides - función de onda

 El potencial en sistemas hidrogenoides es la atracción Coulombiana entre un núcleo, q₁ = Ze, y un electrón, q₂ = -e:

$$U(r) = \frac{q_1 q_2}{|\vec{r}_2 - \vec{r}_1|} = -\frac{Ze^2}{r} \,. \tag{63}$$

> El potencial es central, por lo que la función de onda es de la forma,

$$\varphi_{n\ell mm_s}(\vec{r}) = R_{n\ell}(r) \, Y_{\ell}^m(\theta, \phi) \, \chi_{m_s} \,, \tag{64}$$

incluido el término de espín, χ_{m_s} .

• La función radial, $R_{n\ell}(r)$, es solución de,

$$-\frac{\hbar^2}{2m}\frac{1}{r^2}\frac{d}{dr}\left(r^2\frac{dR_{n\ell}}{dr}\right) + \left\{\frac{\ell(\ell+1)\hbar^2}{2mr^2} - \frac{Ze^2}{r}\right\}R_{n\ell} = E_{n\ell}R_{n\ell}.$$
 (65)

5.1. Introducción; Hamiltonianos

5.3.1. Sistemas hidrogenoides - función de onda

La función de onda radial está dada por,

$$R_{n\ell}(r) = \left(\frac{2}{na_z}\right)^{3/2} \sqrt{\frac{(n-\ell-1)!}{2n(n+\ell)!}} \left(\frac{2r}{na_z}\right)^{\ell} L_{n-\ell-1}^{2\ell+1}\left(\frac{2r}{na_z}\right) e^{-r/na_z}, \quad (66)$$

con $L_k^n(x)$ polinomios generalizados de Laguerre.

- ▶ El valor propio de la energía depende sólo del número cuántico principal n.
- Está dado por,

$$E_n = -\frac{1}{2} \left(\frac{me^4}{\hbar^2} \right) \frac{Z^2}{n^2} = -\frac{Ze^2}{2a_z} \frac{1}{n^2} = -\frac{1}{2} \alpha^2 mc^2 \frac{Z^2}{n^2}, \qquad (67)$$

con $me^4/2\hbar^2 \simeq -13.6 \,\mathrm{eV}$, el radio de Bohr⁴, $a_0 = \hbar^2/me^2 \rightarrow a_z = a_0/Z$, y la constante de estructura fina, $\alpha = e^2/\hbar c \simeq 1/137$.

 $^4a_0 \simeq 5.292 \times 10^{-9} \, \mathrm{cm} \simeq 0.53 \, \mathrm{\AA}.$

・ロト・日本・モート ヨー シベウ

5.3.1. Sistemas hidrogenoides - función radial

 Los polinomios generalizados de Laguerre se calculan a través de los polinomios ordinarios de Laguerre, L_n, con las expresiones⁵,

$$L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} \left(x^n e^{-x} \right), \quad L_n^k(x) = (-1)^k \frac{d^k}{dx^k} \left(L_{n+k}(x) \right).$$
(68)

- La expresión para el cálculo directo,

$$L_n^k(x) = \sum_{m=0}^n \frac{(n+k)! \, (-x)^m}{(n-m)! (k+m)! \, m!} \,, \quad k > -1 \,. \tag{69}$$

- Primeras funciones L_n^k ,

$$\begin{array}{rcl} L_0^k(x) &=& 1\,,\\ L_1^k(x) &=& (k+1)-x\,,\\ L_2^k(x) &=& (k+1)(k+2)/2-(k+2)x+x^2/2\,,\\ L_3^k(x) &=& (k+1)(k+2)(k+3)/6-(k+2)(k+3)x/2-(k+3)x^2/2-x^3/6\,. \end{array}$$

⁵Arfken & Weber, 5^a edición, p. 830-835.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 - のへぐ

5.3.1. Sistemas hidrogenoides - funciones radiales

donde $r \rightarrow r/a_z$.

Probabilidad $\propto |R_{n\ell}|^2 \dots$

◆□ > ◆□ > ◆三 > ◆三 > 三 の へ @ >

5.3.1. Sistemas hidrogenoides - estados estacionarios

- ► Estados estacionarios $|\varphi\rangle = |n, \ell, m, m_s\rangle$ determinados con cuatro números cuánticos.
- El número cuántico principal, $n=1,2,\ldots$, indica la energía del sistema,

$$H |n, \ell, m, m_s \rangle = E_n |n, \ell, m, m_s \rangle , \quad E_n = -\frac{Ze^2}{2a_z} \frac{1}{n^2} .$$

- El número cuántico de momento angular, ℓ , entero $0 \le \ell < n$, que satisface la relación de valores propios,

$$L^2 \left| n, \ell, m, m_s
ight
angle = \ell (\ell+1) \hbar^2 \left| n, \ell, m, m_s
ight
angle.$$

- El número cuántico magnético, entero $|m| \leq \ell$, componente de $ec{L}$,

$$L_z |n, \ell, m, m_s \rangle = m\hbar |n, \ell, m, m_s \rangle$$

- El número cuántico de espín, incluido ad-hoc, $m_s=\pm 1/2.$
- ► Los niveles de energía pueden corresponder a distintos estados de momento angular y espín {ℓ, m, m_s}.
- La degeneración de los niveles de energía es $g_n = 2n^2$.

5.3.1. Sistemas hidrogenoides

Figura 4: Niveles de energía de un sistema hidrogenoide. Dependen a primer orden del número cuántico principal, $E_n = E_1/n^2$. La dependencia con los números cuánticos $\{\ell, m, m_s\}$ aparece al considerar la estructura fina. Estados energéticos con distinto momento angular se distinguen con la secuencia de letras "s, p, d, f".

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

5.1. Introducción; Hamiltonianos

5.3.1. Sistemas hidrogenoides - escala; Rydberg

► Los niveles de energía se escalan con la constante de Rydberg,

$$R_{\infty} = \frac{1}{hc} \left(\frac{m_e e^4}{2\hbar^2} \right) \simeq 1.097\,373\,156\,852\,5(73) \times 10^{-5}\,\mathrm{cm}^{-1}. \tag{70}$$

Las escalas de energía y longitud de onda correspondientes son,

$$R_\infty hc \simeq 13.605\,691\,72\,{
m eV}\,, \quad R_\infty^{-1} \simeq 911.267\,050\,550\,{
m \AA}\,.$$

En sistemas con carga nuclear Z y masa atómica M, las líneas se sitúan en,

$$\lambda_{n_1 \to n_2} = \frac{1 + m_e/M}{Z^2 R_\infty} \left(\frac{1}{n_2^2} - \frac{1}{n_1^2}\right)^{-1} \,. \tag{72}$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = ∽ へ ⊙

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

5.3.1. Sistemas hidrogenoides - el hidrógeno

▶ Hidrógeno: Z = 1, $m/m_e = 1/(1 + m_e/m_p) \simeq 1 + 1/1836$. Estado base:

$$E_1 = -rac{R_\infty hc}{1+m_p/m_e} \simeq -13.598\,296\,\mathrm{eV} \quad \Rightarrow \quad \lambda_{1
ightarrow\infty} \simeq 911.763\,342\,\mathrm{\AA}.$$

- Series espectroscópicas definidas por transiciones a niveles determinados:
- Serie de Lyman: $n \rightarrow 1$.

Lylpha (2 ightarrow 1) λ 1216Å; Lyeta (3 ightarrow 1) λ 1026Å; Ly γ (4 ightarrow 1) λ 973Å, \ldots

Transiciones en el ultravioleta, observables sólo desde el espacio.

- Serie de Balmer: $n \rightarrow 2$. H α (3 \rightarrow 2) λ 6564Å; H β (4 \rightarrow 2) λ 4863Å; H γ (5 \rightarrow 2) λ 4342Å; ... Líneas en el visible y ultravioleta cercano, observables desde la Tierra.
- Series de Paschen ($n \rightarrow 3$), Brackett ($n \rightarrow 4$), Pfund ($n \rightarrow 5$); en el IR cercano.
- Líneas de recombinación: entre niveles con $n \gg 1$. Por ejemplo, 109α = transición $110 \rightarrow 109$, a una frecuencia de 5.009 GHz.

5.3.1. Sistemas hidrogenoides - series espectrocópicas del H

Lyman	Ly α (2 \rightarrow 1)	Lyβ (3→1)	Ly γ (4 $ ightarrow$ 1)	Ly δ (5 $ ightarrow$ 1)	Ly ϵ (6 \rightarrow 1)
λ (Å)	1215.684	1025.734	972.548	949.753	937.814
Balmer	Hα (3→2)	Hβ (4→2)	H γ (5 \rightarrow 2)	Hδ (6→2)	H ϵ (7 \rightarrow 2)
λ (Å)	6564.696	4862.738	4341.730	4102.935	3971.236
Deuterio	6562.910	4861.415	4340.549	4101.819	3970.156
Paschen (μ m)	Pa α (4 \rightarrow 3)	Pa β (5 \rightarrow 3)	Pa γ (6 $ ightarrow$ 3)	Pa δ (7 $ ightarrow$ 3)	
λ (μ m)	1.8756	1.2821	1.0941	1.0052	
Brackett	Brα (5→4)	Brβ (6→4)	Br γ (7 \rightarrow 4)	Brδ (8→4)	
λ (μ m)	4.0522	2.6258	2.1661	1.9450	1.8179
Pfund	6 ightarrow 5	$7 \rightarrow 5$	8 ightarrow 5	$9 \rightarrow 5$	
λ (μ m)	7.4598	4.6537	3.7405	3.2970	

Tabla 2: Series espectroscópicas del hidrógeno

5.3.1. Sistemas hidrogenoides - otros sistemas

Deuterio:

Isótopo de H con $Z = 1, A = 2 \Rightarrow M = 2.013553 \text{ uma} = 3,670.5 m_e$. Estado base en $-13.609340 \text{ eV} \Rightarrow \lambda_{1 \to \infty} \simeq 911.515320 \text{ Å}$. Líneas desplazadas hacia el azul con respecto al H; diferencia en H $\alpha \sim 1.8 \text{ Å}$.

Helio ionizado (He⁺, HeII):

 $Z = 2, A = 4, M = 7294.3 m_e \rightarrow \lambda_{1 \rightarrow \infty} = 227.848 \text{ Å}.$

El primer potencial de ionización del helio es 24.6 eV. Estado base de He⁺ en $E_1 \simeq -54.415 \,\mathrm{eV}$, $\lambda_{1 \to \infty} \simeq 227.848 \,\mathrm{\AA}$. Tres de sus series producen líneas en el óptico, algunas cercanas a las de hidrógeno.

► FeXXVI:

relevante en rayos X; serie de Lyman en $h\nu_{21} \simeq 6.38 \text{ keV}.$

- En núcleos altamente ionizados con carga efectiva Z_e , el déficit en el número de electrones, el estado base está a una energía $E_1 \sim 13.6 Z_e^2 \,\mathrm{eV}$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

5.3.1. Sistemas hidrogenoides - series espectroscópicas

Transición	$2 \rightarrow 1$	$3 \rightarrow 1$	$4 \rightarrow 1$	$5 { ightarrow} 1$	$6 \rightarrow 1$
	303.8	256.3	243.0	237.3	234.4
Transición	3→2	4→2	$5 \rightarrow 2$	6→2	7→2
	1640.5	1215.2	1085.0	1025.3	992.4
Transición	4→3	$5 \rightarrow 3$	6→3	7→3	8 ightarrow 3
	4687	3204.	2734.	2512.	2386.
Transición	$5 \rightarrow 4$	6→4	7→4	8→4	9 ightarrow 4
	10126	6562	5413	4860	4542

Tabla 3: Series espectroscópicas del HeII (λ /Å)

5.3.2. Métodos aproximados para la ecuación de Schrödinger

- En mecánica cuántican se emplean métodos de aproximaciones para ciertos estudios específicos:
- El método de perturbaciones independiente del tiempo permite estudiar la estructura fina e hiperfina de sistemas atómicos o moleculares (§5.3.3).
- El método variacional permite la determinación de estados base sistemas más complejos que el átomo de hidrógeno. Se puede aplicar al átomo de helio (§5.3.4).
- El método de perturbaciones dependiente del tiempo se emplea para el cálculo de transiciones radiativas (§5.4).

5.3.2. Métodos aproximados para la ecuación de Schrödinger

- Método de perturbaciones independiente del tiempo
- El método de perturbaciones permite calcular correcciones a energías y funciones de onda en Hamiltonianos separables en una parte soluble, $\mathcal{H}^{(0)}$, y un término perturbativo, $\mathcal{H}^{(1)}$, tales que $E^{(1)} \ll E^{(0)}$.
- Sea $\mathcal{H} = \mathcal{H}^{(0)} + \mathcal{H}^{(1)}$ con funciones propias $|k\rangle = |k^{(0)}\rangle + |k^{(1)}\rangle$, valores propios $E_k = E_k^{(0)} + E_k^{(1)}$. Suponemos conocidas las soluciones

$$\mathcal{H}^{(0)} \left| k^{(0)} \right\rangle = E^{(0)} \left| k^{(0)} \right\rangle.$$
 (73)

- Se desarrolla $\mathcal{H} \ket{k} = E \ket{k}$, eliminando (73) para obtener

$$\mathcal{H}^{(0)}\left|k^{(1)}\right\rangle + \mathcal{H}^{(1)}\left|k^{(0)}\right\rangle + \mathcal{H}^{(1)}\left|k^{(1)}\right\rangle = E_{k}^{(0)}\left|k^{(1)}\right\rangle + E_{k}^{(1)}\left|k^{(0)}\right\rangle + E_{k}^{(1)}\left|k^{(1)}\right\rangle.$$
(74)

- Al aplicar $\langle k^{(0)} |$ se obtiene la corrección en la energía debida a la perturbación,

$$E_{k}^{(1)} \simeq \left\langle k^{(0)} \left| \mathcal{H}^{(1)} \right| k^{(0)} \right\rangle. \tag{75}$$

5.3.2. Métodos aproximados para la ecuación de Schrödinger

- Método de perturbaciones independiente del tiempo
- Las funciones perturbativas se desarrollan en términos de funciones base,

$$\left|k^{(1)}\right\rangle = \sum_{\ell} c_{k\ell} \left|\ell^{(0)}\right\rangle, \quad \text{con} \quad |c_{k\ell}| \ll 1.$$
 (76)

 Al multiplicar (74) por (*j*⁽⁰⁾), con *j* ≠ *k*, e integrar, se obtienen los coeficientes de la parte perturbativa de la función de onda,

$$c_{kj} \simeq \frac{\left\langle j^{(0)} \left| \mathcal{H}^{(1)} \right| k^{(0)} \right\rangle}{E_k^{(0)} - E_j^{(0)}}, \quad c_{kk} = \left\langle k^{(0)} | k^{(1)} \right\rangle \simeq 0.$$
(77)

- Este método permite estudiar la estructura fina de sistemas cuánticos, como correcciones relativistas al Hamiltoniano clásico y los efectos de espín.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

5.3.3. Estructura fina e hiperfina

- La descripción de la estructura atómica mediante la ecuación de Schrödinger es incompleta.
- Al desarrollar la ecuación de Dirac se obtienen correcciones a la función de onda y niveles energéticos, que se pueden cuantificar mediante el método de perturbaciones.

Correcciones

- 1. Término relativista de segundo orden (α^2).
- 2. Acoplamiento espín-órbita (α^2); efecto Zeeman.
- 3. El desplazamiento de Lamb (α^3).
- 4. Estructura hiperfina ($\alpha^2 m/m_p$).

5.3.3. Estructura fina e hiperfina - corrección relativista

> La corrección relativista a la energía resulta del desarrollo del término cinético,

$$E_{\rm cin} = (\gamma - 1)mc^2 \approx \frac{p^2}{2m} - \frac{3p^4}{8m^3c^2} + \dots$$
 (78)

- La primera corrección es de orden $(p/mc)^2 \sim \alpha^2 Z \simeq Z/137^2 \ll 1$.
- El cálculo de perturbaciones da

$$\Delta E_{\rm rel} = \left\langle n\ell m m_s \left| -\frac{3p^4}{8m^3c^2} \right| n\ell m m_s \right\rangle = E_n \left(\frac{Z^2 \alpha^2}{n^2} \right) \left(\frac{n}{\ell+1/2} - \frac{3}{4} \right) , \quad (79)$$

con $E_n = -(e^2/2a_0)(Z^2/n^2)$, la energía del nivel *n* a orden cero bajo una carga central +*Ze*.

5.3.3. Estructura fina e hiperfina - espín

- El espín es una propiedad de las partículas elementales que se manifiesta como momentos angulares y magnéticos intrínsecos.
- ▶ El espín, \vec{S} , tiene dos estados con $|\vec{S}| = \hbar/2$ y números cuánticos $m_s = \pm 1/2$.
- ► Aparece de forma natural en la ecuación de Dirac. En la descripción no relativista se agrega el número cuántico correspondiente, m_s, al espacio de estados.
- > El momento dipolar magnético asociado al espín es,

$$\vec{\mu}_s = -\frac{e}{mc} \vec{S} \,. \tag{80}$$

- Contribuye al Hamiltoniano mediante los acoplamientos espín-órbita y entre espines.
- ► En presencia de campos magnéticos externos, el espín electrónico origina una contribución al Hamiltoniano, $\Delta H = -\vec{\mu}_s \cdot \vec{B}$, conocida como efecto Zeeman.

5.3.3. Estructura fina e hiperfina - acoplamiento espín-órbita

 El electrón percibe un campo magnético debido al movimiento relativo del campo de Coulomb,

$$\vec{B}' = -\frac{e\vec{L}}{mcr^3}.$$
(81)

- El espín se acopla con este campo magnético, según $\Delta H_{eo} = -\vec{\mu}_s \cdot \vec{B'}$.
- La contribución a los niveles de energía incluye un factor (1/2) al realizar la expansión de la ecuación de Dirac, es decir,

$$\Delta E_{\rm eo} = \left\langle n\ell m m_s \left| \frac{1}{2} \frac{e^2 \vec{L} \cdot \vec{S}}{m^2 c^2 r^3} \right| n\ell m m_s \right\rangle = E_n \left(\frac{Z^2 \alpha^2}{2n} \right) \left\{ \frac{j(j+1) - \ell(\ell+1) - 3/4}{\ell(\ell+1/2)(\ell+1)} \right\}$$
(82)

► Se usa el momento angular total, $\vec{J} = \vec{L} + \vec{S}$, de número cuántico $j = \ell + m_s = \ell \pm 1/2$, con el signo determinado por la orientación entre \vec{L} y \vec{S} .

5.3.3. Estructura fina e hiperfina - relativista + espín-órbita

• Con el número cuántico $j = \ell + m_s$, se obtiene una expresión análoga a (79),

$$\Delta E_{\rm rel} + \Delta E_{eo} = E_n \left(\frac{Z^2 \alpha^2}{n^2}\right) \left(\frac{n}{j+1/2} - \frac{3}{4}\right) \,. \tag{83}$$

▶ Existen degeneraciones de j con m_s . Por ejemplo, los estados

$$2s_{1/2}$$
: $|n = 2, \ell = 0, m_s = +1/2 \rangle$, $2p_{1/2}$: $|n = 2, \ell = 1, m_s = -1/2 \rangle$,

tienen ambos j=1/2 y, por tanto, misma energía.

► La corrección total para n = 1, j = 1/2, es $\Delta E/E = \alpha^2/4 \simeq 1.3 \times 10^{-5}$.

5.3.3. Estructura fina e hiperfina - desplazamiento de Lamb

- El desplazamiento de Lamb es una corrección radiativa debida a la *polarización del vacío*, efecto de la cuantización del campo electromagnético en un conjunto de fotones virtuales que pueden crear pares e[±] y provocar una distribución espacial de "carga virtual".
- La corrección es,

$$\Delta E_{\text{lamb}} = \alpha^3 \, \frac{E_{1z}}{2n^3} \left\{ K(n,\ell) \pm \frac{1 - \delta_{\ell=0}}{\pi (j+1/2)(\ell+1/2)} \right\} \,, \tag{84}$$

con K(n,0) una función creciente de n, que va de $K(1,0) \approx 12.7$ a $K(\infty,0) \approx 13.7$, con $K(n, \ell \neq 0) \sim 0.05$.

- Para el estado base es $\Delta E/E_1\simeq 6\,lpha^3\simeq 2 imes 10^{-6}.$
- Sin relevancia astrofísica (que yo sepa...).

5.3.3. Estructura fina e hiperfina: efecto Zeeman

- ► El efecto Zeeman se da en presencia de campos magnéticos externos.
- ► La contribución del momento magnético del átomo, $\vec{J} = \vec{L} + \vec{S}$, orbital más espín, es $\Delta \mathcal{H}_z = e\vec{B} \cdot \vec{J}/2mc$.
- > Los niveles se desdoblan proporcionalmente al campo magnético externo,

$$\Delta E_z = m_j \left\{ 1 + \frac{j(j+1) + s(s+1) - \ell(\ell+1)}{2j(j+1)} \right\} \frac{e\hbar B}{2mc} \,. \tag{85}$$

- Un nivel (j, ℓ) se desdobla en tres, generando transiciones Δm_j = 0, ±1, respecto a la frecuencia central ω₀ → ω_± = ω₀ ± eB/2mc.
- ► La observación del desdoblamiento se complica por la dependencia en j, ℓ y s de ΔE_z , dando lugar al *efecto Zeeman anómalo*.
- A principios del siglo XX, Hale aprovechó el efecto Zeeman para medir campos magnéticos de miles de Gauss en manchas solares.
- Las estructuras hiperfinas del HI (21 cm) y del OH (18 cm) permiten estimar campos magnéticos en nubes interestelares.

5.3.3. Estructura fina e hiperfina - estructura hiperfina: espín nuclear

El protón posee un momento magnético asociado al espín \vec{S}_p ,

$$\vec{\mu}_{\rho} = \gamma_{\rho} \, \frac{e\vec{S}_{\rho}}{m_{\rho}c} \,, \tag{86}$$

con el factor $\gamma_{\it p}\approx 2.7928$ indicando la estructura interna del protón.

- Se dan dos tipos de acoplamientos.
 - (1) espín órbita, $\Delta H_{no} = -\vec{\mu}_p \cdot e\vec{L}/mcr^3$; (2) espín núcleo - electrón, $\Delta H_{ne} = -\vec{\mu}_p \cdot \vec{\mu}_e/r^3$.
- ▶ Se describen juntos con el momento angular total, $\vec{F} = \vec{J} + \vec{S}_p = \vec{L} + \vec{S}_e + \vec{S}_p$, de número cuántico $f = \ell + m_s + m_{sp} = \ell \pm 1/2 \pm 1/2$.
- ▶ Para $\ell = 0$, la corrección a niveles de energía es,

$$\Delta E_{nf} = E_n 2\alpha^2 \left(\frac{m}{m_p}\right) \left(\frac{4\gamma_p}{3n^3}\right) \left(f(f+1) - \frac{3}{2}\right).$$
(87)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

5.3.3. Estructura fina e hiperfina - estructura hiperfina: 21 cm

> Para el estado base del hidrógeno se tiene:

$$\Delta E_{n=1,f=1\to 0} = 16\gamma_p \alpha^2 E_1\left(\frac{m}{3m_p}\right) \Rightarrow \Delta E_{n=1,f=1\to 0}/h \simeq 1420.406 \text{ MHz},$$

es decir $\lambda = hc/\Delta E_{n=1,f=1\rightarrow 0} \simeq 21.106$ cm.

La detección de la línea de 21 cm en radio es una herramienta fundamental en astronomía, permitiendo la observación directa de hidrógeno neutro.

5.4. Transiciones radiativas

- 5.4.1. Método de perturbaciones dependientes del tiempo.
- 5.4.2. Hamiltoniano con campo electromagnético.
- 5.4.3. Aproximación dipolar.
- 5.4.4. Coeficientes de Einstein.
- 5.4.5. Reglas de selección.
- 5.4.6. Transiciones híbridas

・ロト ・ 日 ・ モート ・ 田 ・ うへの

5.4. Transiciones radiativas

- > Un sistema cuántico puede modificarse por la absorción o emisión de radiación.
- Las transiciones radiativas se describen incorporando el campo electromagnético al Hamiltoniano, para calcular la evolución del sistema.
- El desarrollo de perturbaciones con dependencia temporal permite estudiar la evolución de sistemas cuánticos ante campos de radiación.
- Se separa el Hamiltoniano en una parte soluble estacionaria y un término perturbativo,

$$\mathcal{H} = \mathcal{H}^{(0)} + \mathcal{H}^{(1)},$$

donde se conocen los estados estacionarios, soluciones de $\mathcal{H}^{(0)}\ket{k} = E_k\ket{k}$.

 Los estados estacionarios constituyen una base que permite desarrollar cualquier función de onda dependiente del tiempo,

$$|\psi(t)\rangle = \sum_{k=0}^{\infty} c_k(t) |k\rangle e^{-iE_k t/\hbar}, \qquad (118)$$

donde los coeficientes c_k tienen dependencia temporal.

5.4.1. Método de perturbaciones dependientes del tiempo

► Se desarrolla (118) en la ecuación de Schrödinger dependiente del tiempo, eliminando la parte en H⁽⁰⁾ con sus valores propios,

$$\left[\mathcal{H}^{(0)} + \mathcal{H}^{(1)}\right] |\psi\rangle = i\hbar \frac{\partial}{\partial t} |\psi\rangle \Rightarrow \sum_{k} c_{k} \mathcal{H}^{(1)} |k\rangle e^{-iE_{k}t/\hbar} = i\hbar \sum_{k} \dot{c}_{k} |k\rangle e^{-iE_{k}t/\hbar},$$
(119)

y al hacer el producto con $\langle f | e^{+iE_f t/\hbar}$,

$$i\hbar \dot{c}_f(t) = \sum_k c_k \left\langle f \left| \mathcal{H}^{(1)} \right| k \right\rangle e^{i(E_f - E_k)t/\hbar}.$$
 (120)

> Si se considera un estado estacionario inicial¹⁰ $|i\rangle$, se obtiene

$$c_f(t) = -\frac{i}{\hbar} \int_0^t \left\langle f \left| \mathcal{H}^{(1)} \right| i \right\rangle e^{i\omega_{f_i}t'} dt', \qquad (121)$$

donde $\omega_{f_i} = (E_f - E_i)/\hbar$ es la frecuencia del fotón emitido o absorbido.

¹⁰es decir $c_k(t=0) = \delta_{ik}$.

5.4.1. Método de perturbaciones dependientes del tiempo

- El término H⁽¹⁾ representa la perturbación al estado inicial |i>, modificándolo a |f> = H⁽¹⁾ |i>.
- ▶ La probabilidad de que $\mathcal{H}^{(1)}$ de lugar a la transición $|i\rangle \rightarrow |f\rangle$ es $\propto |c_f|^2$.
- La probabilidad por unidad de tiempo es,

$$\chi_{f_i} = \frac{1}{T} \left| \frac{1}{\hbar} \int_0^T \langle f | \mathcal{H}^{(1)} | i \rangle e^{i\omega_{f_i}t'} dt' \right|^2.$$
(122)

- Esta es la tasa de transición y se calcula conociendo $\mathcal{H}^{(1)}$.
- Para describir transiciones radiativas, el operador H⁽¹⁾ debe representar un campo electromagnético.
5.1. Introducción; Hamiltonianos

5.4.2. Hamiltoniano con campo electromagnético

 El campo electromagnético se incorpora al Hamiltoniano con los potenciales electromagnéticos, (A, φ), de forma que las ecuaciones de Hamilton contengan la fuerza de Lorentz,

$$\mathcal{H} = \frac{1}{2m} \left| \vec{p} - \frac{q}{c} \vec{\mathcal{A}}(\vec{x}, t) \right|^2 + q\phi(\vec{x}, t), \qquad (123)$$

► Distinguimos dos componentes del Hamiltoniano, $H = H_{est} + H_{int}$:

(i) la parte estática representa al sistema en estado estacionario,

$$\mathcal{H}_{est} = \frac{|\vec{p}|^2}{2m} - e\phi(\vec{x}).$$
(124)

(ii) la parte interactiva del campo electromagnético con el sistema,

$$\mathcal{H}_{int} = \frac{e}{2mc} \left(\vec{p} \cdot \vec{A} + \vec{A} \cdot \vec{p} \right) + \frac{e^2}{2mc^2} \left(\vec{A} \cdot \vec{A} \right), \qquad (125)$$

notando que los operadores \vec{A} y \vec{p} no necesariamente conmutan.

5.4.2. Hamiltoniano con campo electromagnético

> La interacción del campo electromagnético con el sistema contiene dos partes,

$$\mathcal{H}_{int} = rac{e}{2mc} \left(ec{p} \cdot ec{A} + ec{A} \cdot ec{p}
ight) + rac{e^2}{2mc^2} ec{A} \cdot ec{A} \, .$$

- El término $(\vec{p} \cdot \vec{A} + \vec{A} \cdot \vec{p})$ representa la interacción del sistema con un fotón. Usando la norma de Coulomb: $\nabla \cdot \vec{A} = 0 \Rightarrow \vec{p} \cdot \vec{A} = 0$.
- El término $\vec{A} \cdot \vec{A}$ describe la emisión o absorción de dos fotones. Normalmente se desprecia este término en entornos astrofísicos.
- ► La relación entre los términos radiativos, \mathcal{H}_{int} , y estructural, \mathcal{H}_{est} , se deduce de $|\vec{A}| \sim |\vec{B}|/k \sim |\vec{E}|/k$, con $e|\vec{E}|/k \sim \hbar\omega \Rightarrow e|\vec{A}| \sim \hbar\omega \sim \alpha^2 mc^2$.
- Al ser el momento de los electrones $p\sim lpha \textit{mc}$, se tiene,

$$\frac{\mathcal{H}_{int}}{\mathcal{H}_{est}} \sim \frac{|(e/2mc)\vec{A}\cdot\vec{p}|}{|p^2/2m|} \sim \frac{|(e^2/2mc^2)(\vec{A}\cdot\vec{A})|}{|(e/2mc)\vec{A}\cdot\vec{p}\,|} \sim \frac{eA}{pc} \sim \frac{\hbar\omega}{\alpha mc^2} \sim \alpha \ll 1\,.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

5.4.2. Hamiltoniano con campo electromagnético

> Para calcular el efecto del término principal en \mathcal{H}_{int} ,

$$\mathcal{H}_{int}^{(1)} = \frac{e}{2mc} \vec{A} \cdot \vec{p} \,, \tag{126}$$

expresamos el potencial $ec{A}(ec{x},t)=A(t)e^{iec{k}\cdotec{x}}\,\hat{e}_{lpha}$, con \hat{e}_{lpha} vector de polarización.

▶ De donde la integral en (122),

$$c_{f}(\omega) \equiv -\frac{i}{\hbar} \int_{0}^{T} \left\langle f \left| \frac{e}{2mc} \vec{A} \cdot \vec{p} \right| i \right\rangle e^{i\omega_{f_{i}}t'} dt' = -i \frac{2\pi}{\hbar} A(\omega_{f_{i}}) \left(\frac{e}{2mc} \right) \left\langle f \left| e^{i\vec{k}\cdot\vec{x}} \hat{e}_{\alpha} \cdot \vec{p} \right| i \right\rangle,$$
(127)

con $A(\omega)$ la transformada de Fourier de A(t).

Las probabilidades de transición están dadas por la matriz

$$\left\langle f \left| e^{i\vec{k}\cdot\vec{x}} \hat{e}_{\alpha}\cdot\vec{p} \right| i \right\rangle,$$

que se calcula con desarrollo multipolar.

- Primer orden: aproximación dipolar eléctrica.

5.4.3. Aproximación dipolar

> La aproximación dipolar considera sólo el primer término en la expansión,

$${
m e}^{iec k\cdotec x}=1+iec k\cdotec x-\ldots \quad {
m con} \quad kx\sim (2\pi/\lambda)x\sim {
m a}_0/\lambda\ll 1\,,$$

siendo primer término en (127): $\langle f | \hat{e}_{\alpha} \cdot \vec{p} | i \rangle = \hat{e}_{\alpha} \cdot \langle f | \vec{p} | i \rangle.$

Escribimos (Shu §23),

$$\vec{p} = i \frac{m}{\hbar} (\mathcal{H}_0 \vec{x} - \vec{x} \, \mathcal{H}_0) \quad \Rightarrow \quad \langle f \mid -e\vec{p} \mid i \rangle = im \, \omega_{fi} \, \vec{d}_{fi} \,, \tag{128}$$

con $\vec{d}_{f_i} \equiv \langle f | \vec{d} | i \rangle$ la matriz de dipolo eléctrico, $\vec{d} = -e\vec{x}$. > Para radiación no polarizada se promedia sobre las posibles orientaciones de \hat{e}_{α} ,

$$\left| \hat{e}_lpha \cdot \left\langle f \left| ec{d}
ight| \imath
ight
angle
ight|^2 = rac{1}{3} |ec{d}_{f\imath}|^2.$$

> La tasa de transición, probabilidad de transición por unidad de tiempo, es,

$$\chi_{f_i} = \frac{4\pi^2}{3\hbar^2 c^2 T} \,\omega_{f_i}^2 |\vec{A}(\omega_{f_i})|^2 \left| \left\langle f \left| \vec{d} \right| i \right\rangle \right|^2 \,. \tag{129}$$

5.4.4. Los coeficientes de Einstein

- ► Los coeficientes de Einstein se relacionan directamente con las tasas de transición.
- > Para absorción o emisión estimulada tenemos,

$$\langle \chi_{f_i} \rangle = B_{f_i} J_{\nu} , \qquad (130)$$

con B_{fi} el coeficiente de Einstein respectivo y J_{ν} la intensidad media del campo. En términos del potencial vectorial:

$$J_{\nu} = \frac{\omega^2 |\vec{A}(\omega)|^2}{2 \, c T} \,. \tag{131}$$

 Coeficientes de Einstein para transiciones dipolares eléctricas entre estados definidos,

$$B_{f_{i}} = \frac{8\pi^{2}}{3\hbar^{2}c} \left| \vec{d}_{f_{i}} \right|^{2} = B_{if}, \qquad A_{f_{i}} = \frac{4\omega_{f_{i}}^{3}}{3\hbar c^{3}} \left| \vec{d}_{f_{i}} \right|^{2}.$$
(132)

En el caso general se debe sumar sobre estados degenerados.

(*Rybicki* §10.3).

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

5.4.5. Reglas de selección

- ► Al evaluar los coeficientes (127) mediante una expansión multipolar se obtienen las **reglas de selección**, las cuales indican qué transiciones pueden existir.
- > En muchos casos los coeficientes son nulos y las transiciones son prohibidas.
- Hay reglas de selección particulares para
- transiciones dipolares eléctricas,
- transiciones cuadrupolares eléctricas,
- transiciones dipolares magnéticas.
- > Existen también transiciones estrictamente prohibidas.

5.4.5. Reglas de selección - transiciones dipolares eléctricas

- ► Las transiciones dipolares eléctricas consideran la interacción de un dipolo, \vec{d} , con ondas electromagnéticas de polarización \hat{e}_{α} , evaluando $\langle f | \hat{e}_{\alpha} \cdot \vec{x} | i \rangle$.
- Se distinguen las ondas con:
- polarización lineal, $\langle f|z|i\rangle$, con $z = r\cos heta$,
- polarización circular, $\langle f | x \pm iy | i \rangle$, con $x \pm iy = r \sin \theta e^{\pm i\phi}$.
- > Se aprovecha la descripción de átomos o moléculas con armónicos esféricos,

- La integral sobre armónicos esféricos es distinta a cero para $\Delta \ell = \ell' \ell = \pm 1$:
- polarización lineal: $\Delta \ell = \pm 1, \Delta m = 0;$
- polarización circular: $\left\langle f \left| r \sin \theta \; e^{\pm i \phi} \right| i \right\rangle \neq 0 \; \Rightarrow \; \Delta \ell = \pm 1, \; \Delta m = \pm 1.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 - のへぐ

- configuración de niveles energía

Figura 10: Niveles de energía de un sistema hidrogenoide. Dependen a primer orden del número cuántico principal, $E_n = E_1/n^2$. La dependencia con los números cuánticos $\{\ell, m, m_s\}$ aparece al considerar la estructura fina. Estados energéticos con distinto momento angular se distinguen con la secuencia de letras "s, p, d, f".

5.4.5. Reglas de selección - órdenes superiores

- Transiciones cuadrupolares eléctricas:
- Importantes cuando las transiciones dipolares no son posibles.
- Se evalúan los términos cuadrupolares, $\langle f | Q_{\alpha\beta} | i \rangle$, con $Q_{\alpha\beta} = -e(3x_{\alpha}x_{\beta} r^2\delta_{\alpha\beta})$.
- Permitidas entre estados con $\Delta \ell = 0$; y $\Delta \ell = \pm 2, \ \Delta m = 0, \pm 1, \pm 2.$
- Transiciones dipolares magnéticas:
- Relacionadas con la distribución de corrientes: $\longrightarrow \langle f | \vec{x} \vec{p} | i \rangle$.
- Permitidas para $\Delta \ell = 0, \, \Delta m = 0, \pm 1.$
- Transiciones estrictamente prohibidas:
- Aquellas en las que $\left\langle f \left| e^{i \vec{k} \cdot \vec{x}} \hat{e}_{\alpha}(\vec{k}) \cdot \vec{p} \right| i \right\rangle = 0.$
- Puede intervenir en (125) el termino de dos fotones, $e^2 \vec{A} \cdot \vec{A}/2mc^2$.
- Ejemplo notable es la transición Ly α $2s \rightarrow 1s$ del hidrógeno. El coeficiente de emisión espontánea es mucho menor que el de la transición $2p \rightarrow 1s$ por un fotón,

$$A_{2s \to 1s} = 8.2 \,\mathrm{s}^{-1} \ll A_{2p \to 1s} = 6.2 \times 10^8 \,\mathrm{s}^{-1}.$$

5.4.6. Transiciones híbridas

- Transiciones entre estados libres y ligados, foto-ionización y recombinación: un fotón libera un electrón, descrito como un estado en el continuo¹¹.
- Para un átomo hidrogenoide en estado base y un electrón de energía cinética $E_f = \hbar \omega_{f_2} - Z e^2 / 2 a_z$

$$\varphi_i = \pi^{-1/2} a_z^{-3/2} e^{-r/a_z} \longrightarrow \varphi_f = V^{-1/2} e^{-i\vec{k}_e \cdot \vec{x}}, \qquad (134)$$

con $k_e = \sqrt{2m_e E_f}/\hbar$. - Del cálculo $\left\langle f|e^{iec{k}\cdotec{x}}\hat{e}_{lpha}\cdotec{p}|\imath
ight
angle$ se obtiene la sección eficaz de fotoionización,

$$\sigma_{bf}(\omega) \simeq \frac{8\pi}{3\sqrt{3}} \frac{m_e e^{10}}{c\hbar^3} \frac{Z^4}{n^5} \frac{1}{(\hbar\omega)^3} g_{bf}(\omega) \,. \tag{135}$$

- La función de Gaunt, $g_{bf}(\omega)$ contiene discontinuidades por bordes de ionización.
- Entre bordes $\sigma(\omega) \propto \omega^{-3}$, lo que permite estimar la densidad de columna en la línea de visión.

¹¹Aproximación de Born.

5.4.6. Transiciones híbridas

Figura 11: Sección eficaz para transiciones entre estados ligados y libres expresión (135). Los máximos en $\sigma(\omega)$ corresponden al acceso a las distintas capas de la configuración electrónica, K, L, M, en un átomo.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の 0 0

▲□▶ ▲□▶ ★ □▶ ★ □▶ = 三 の へ ()

5.5. Estructura de átomos y moléculas

- 5.5.1. Cálculo variacional
- 5.5.2. Átomos con varios electrones.
- 5.5.3. Moléculas diatómicas.

5.5.1. Métodos aproximados para la ecuación de Schrödinger Método variacional

- El método variacional permite aproximar la energía del estado base cuando no se conoce la función de onda.
- Dado un Hamiltoniano, sus soluciones

$$\mathcal{H} |\varphi_{j}\rangle = E_{j} |\varphi_{j}\rangle , \quad j = 0, \dots$$
(136)

son linealmente independientes y forman una base.

• Cualquier función $|\Phi\rangle$ puede escribirse como una combinación lineal de ellas,

$$|\Phi
angle = \sum_{j=0}^{\infty} c_j |\varphi_j
angle ,$$
 (137)

con los coeficientes unívocamente determinados; $\sum |c_j|^2 = 1$ para Φ normalizada.

5.5.1. Métodos aproximados para la ecuación de Schrödinger Método variacional

El método variacional consiste en calcular

$$\langle \Phi | \mathcal{H} | \Phi \rangle = \sum_{j,k} c_j^* \langle \varphi_j | \mathcal{H} | \varphi_k \rangle c_k = \sum_{j,k} c_j^* c_k E_k \langle \varphi_j | \varphi_k \rangle = \sum_j |c_j^2| E_j.$$
(138)

- ► Al ser cualquier promedio de valores de E_j mayor o igual al valor mínimo, se cumple necesariamente $\langle \Phi | \mathcal{H} | \Phi \rangle \geq E_0$,
- ▶ Qué tan buena aproximación es $\langle \Phi | \mathcal{H} | \Phi \rangle$ de E_0 depende de la selección de la funcion Φ , que determina que tan cercano está $|c_0|^2$ de 1.
- Una estrategia común consiste en seleccionar una función Φ(α), con α un parámetro libre, y minimizar (Φ(α)|H|Φ(α)). La precisión de la aproximación recae en seleccionar adecuadamente la forma funcional de Φ.

5.1. Introducción; Hamiltonianos

5.5.4. Átomos con varios electrones - el átomo de helio

- El helio no puede ser descrito de manera exacta, debido al término de interacción electrónica. Siendo el primer átomo con varios electrones, su estudio es ilustrativo.
- ► La energía medida para el estado base¹² es $E = -79.02 \text{ eV} \simeq 5.807 \mathcal{E}_{\mathcal{H}}$, con $\mathcal{E}_{\mathcal{H}} = -e^2/2a_0 = -13.6 \text{ eV}$.
- El Hamiltoniano es,

$$H = \frac{p_1^2}{2m} + \frac{p_2^2}{2m} - \frac{Ze^2}{r_1} - \frac{Ze^2}{r_2} + \frac{e^2}{r_{12}} = H_1 + H_2 + \frac{e^2}{r_{12}},$$
 (139)

con $H_i = p_i^2/2m - Ze^2/r_i$, carga nuclear Z = 2 y $r_{12} = |\vec{r_1} - \vec{r_2}|$ la separación entre los electrones.

► Cada término H_i contribuye en Z²E_H, con Z = 2. Debido a la interacción entre electrones se tiene E > 8 E_H = −108.8 eV.

¹²Experimentalmente se mide el primer potencial de ionización del helio, igual a 24.59 eV. Si agregamos el potencial de ionización del HeII obtenemos 79.02 eV.

5.5.4. Átomos con varios electrones - el átomo de helio

- El método variacional permite estimar la energía del estado base¹³.
- ► Se propone,

$$\Psi(\vec{r}_1, \vec{r}_2) = \psi_{1s}(\vec{r}_1)\psi_{1s}(\vec{r}_2), \qquad (140)$$

con $\psi_{1s}(\vec{r_i}) = \pi^{-1/2} a_z^{-3/2} e^{-r/a_z}$ función del estado base (1s) hidrogenoide.

- Se reemplaza (140) por Ψ(r₁, r₂) = π⁻¹a_z⁻³e^{-α(r₁+r₂)/a₀, con α parámetro de optimización asociado a la carga efectiva percibida por los electrones.}
- El valor óptimo de α se obtiene minimizando,

$$E(\alpha) = \langle H_1 \rangle + \langle H_2 \rangle + \left\langle \frac{e^2}{r_{12}} \right\rangle \longrightarrow E(\alpha_{opt}) = 2\left(Z - \frac{5}{16}\right)^2 \mathcal{E}_{\mathcal{H}}.$$
 (141)

► La diferencia entre $\alpha_{opt}^2 = (Z - 5/16)^2 \simeq 5.696$ y el valor experimental (5.807) es 2%.

 $^{^{13}} http://www.umich.edu/{\sim}chem461/QMChap8.pdf$

5.5.4. Átomos con varios electrones - el átomo de helio - espines

- > El helio da un primer ejemplo del papel que juegan los espines electrónicos.
- La función de onda se puede separar en la parte orbital (ψ) y la de espín (σ), lo que no es posible para átomos con más de dos electrones.
- Así el estado base se puede escribir como,

$$\Psi_{1s1s}(1,2) = \psi_{1s}(1)\psi_{1s}(2)\sigma_{0,0}(1,2).$$

Los sub-índices en σ indican que el estado corresponde con S = 0, m_s = 0. La función de espín es superposición anti-simétrica¹⁴ de las componentes individuales, χ_±(i).

$$\sigma_{0,0}(1,2) = rac{1}{\sqrt{2}} \left[\chi_+(1) \chi_-(2) - \chi_-(1) \chi_+(2)
ight] \, .$$

¹⁴como corresponde a fermiones.

5.5.4. Átomos con varios electrones - el átomo de helio - espines

> El primer estado excitado es superposición de estados indistinguibles,

$$\Psi_{1s2s}^{+}(1,2) = \frac{1}{\sqrt{2}} \left[\psi_{1s}(1)\psi_{2s}(2) - \psi_{1s}(2)\psi_{2s}(1) \right] \sigma_{0,0}(1,2).$$

• El estado 1s2s puede tener también una configuración de triplete S = 1,

$$\Psi^{-}_{1s2s}(1,2) = rac{1}{\sqrt{2}} \left[\psi_{1s}(1) \psi_{2s}(2) - \psi_{1s}(2) \psi_{2s}(1)
ight] \left\{ egin{array}{l} \sigma_{1,+1}(1,2) = \chi_{+}(1) \chi_{+}(2) \ \sigma_{1,0}(1,2) \ \sigma_{1,-1}(1,2) = \chi_{-}(1) \chi_{-}(2) \end{array}
ight. ,$$

con

$$\sigma_{1,0}(1,2) = \left[\chi_{+}(1)\chi_{-}(2) + \chi_{+}(1)\chi_{-}(2) \right] / \sqrt{2},$$

siendo Ψ anti-simétrica.

La energía del siguiente estado, 1s2p, es mayor que la de 1s2s, ya que la función de onda penetra menos el potencial. La energía ya no depende sólo de los números cuánticos principales. 5.1. Introducción; Hamiltonianos

5.5.4. Átomos con varios electrones - aproximación de campo central

► El Hamiltoniano de un átomo con carga Z está dado por la energía cinética de Z electrones, la atracción del núcleo de carga +Ze, y (~ Z²) términos de repulsión entre electrones,

$$H = \sum_{j=1}^{Z} \left[\frac{p_j^2}{2m} - \frac{Ze^2}{r_j} \right] + \sum_{j=1}^{Z-1} \sum_{i=j+1}^{Z} \frac{e^2}{|\vec{r_i} - \vec{r_j}|}.$$
 (142)

 Ignorando el término repulsivo, el Hamiltoniano es suma de Z hidrogenoides, la función de onda el producto de Z funciones y la energía la suma de las energías individuales,

$$\varphi = \prod_{j=1}^{Z} R_{n_j \ell_j} Y_{\ell_j}^{m_j} \chi_{m_{s,j}}, \quad E = \sum_{j=1}^{Z} E_{n_j, \ell_j} = \sum_{j=1}^{Z} \frac{E_{1z}}{n_j^2}, \quad (143)$$

con $\chi_{m_{s,j}}$ el espín del electrón j.

▶ El estado quedaría determinado con los 4Z números cuánticos,

$$\{|n_{j},\ell_{j},m_{j},m_{s,j}\rangle\,,\,\,j=1,\ldots,Z\}.$$

5.5.4. Átomos con varios electrones - aproximación de campo central

 En sistemas atómicos con muchos electrones el término de repulsión contiene una doble sumatoria y no puede ser despreciado¹⁵,

$$\left(\sum \sum e^2/r_{ij}\right)/\left(\sum Ze^2/r_i\right) \simeq Z(Z-1)/2Z^2 \rightarrow 1/2 \quad \text{para} \quad Z \gg 1.$$
 (144)

- El método de perturbaciones sólo aporta una descripción cualitativa para átomos con varios electrones.
- Por otro lado, es posible retener la función de onda (143) bajo la aproximación de campo central.
- ► Se considera que cada electrón siente un "potencial central", $V_c(r_j)$, con un término residual que puede tratarse como perturbación,

$$H = \sum_{j}^{Z} \left[\frac{p_{j}^{2}}{2m} + V_{c}(r_{j}) \right] + W. \qquad (145)$$

¹⁵abreviamos $r_{ij} = |\vec{r_i} - \vec{r_j}|$.

5.5.4. Átomos con varios electrones - aproximación de campo central

> La dificultad reside en elegir adecuadamente V_c , de forma a minimizar

$$W = -\sum_{j=1}^{Z} \frac{Ze^2}{r_j} + \sum_{j=1}^{Z-1} \sum_{i=j+1}^{Z} \frac{e^2}{r_{ij}} - \sum_{j=1}^{Z} V_c(r_j).$$
(146)

> Se pueden inferir las principales propiedades de V_c . En partícular

$$V_c(r) pprox \left\{ egin{array}{c} -Ze^2/r & ext{para} & r o 0, \ -e^2/r & ext{para} & r o \infty. \end{array}
ight.$$
 (147)

 El potencial central debe tener una forma similar a la ilustrada en la figura 12: para un electrón está cerca del núcleo, el potencial de los demás electrones puede ser despreciado, de manera que V_c(r) ≈ -Ze²/r; para un electrón a mayor distancia, la carga nuclear es apantallada por los demás Z - 1 electrones, resultando en una carga neta ≃ +e ⇒ V_c(r) ≈ -e²/r.

5.5.4. Átomos con varios electrones

Figura 12: Potencial central que cumple con los límites asintóticos, indicados por las líneas punteadas: $V_c \rightarrow -1/r$ para $r \ll 1, V_c \rightarrow -Z/r$ para $r \gg 1$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の 0 0

5.1. Introducción; Hamiltonianos

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

5.5.4. Átomos con varios electrones - aproximación de campo central

 La aproximación de campo central permite describir la función de onda como un producto de Z funciones centrales,

$$\varphi = \prod_{j=1}^{Z} \varphi_{n_j \ell_j m_j m_{s,j}} = \prod_{j=1}^{Z} R_{n_j \ell_j}(r_j) Y_{\ell_j}^{m_j}(\theta_j, \phi_j) \chi_{m_{s,j}}, \qquad (148)$$

con la parte angular dada por armónicos esféricos con $|m_j| \le \ell_j < n_j$.

- ► El potencial no es Coulombiano, por lo que la parte radial no corresponde con un sistema hidrogenoide, Los niveles de energía dependen del momento angular, $E_{n\ell}$, manteniendo la degeneración en m.
- ► La jerarquía de los niveles de energía con *n* se mantiene, junto con una relación similar con el momento angular,

$$E_{n\ell} > E_{n'\ell}$$
 para $n > n'$, $E_{n\ell} > E_{n\ell'}$ para $\ell > \ell'$. (149)

La secuencia de estados base:

1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d.

5.5.4. Átomos con varios electrones

Figura 13: Esquema de niveles energéticos de distintos átomos de acuerdo a un modelo de potencial central. Entre paréntesis se indica la degeneración de cada nivel, $g_{\ell} = 2(2\ell + 1)$. La posición relativa de los niveles superiores puede variar entre diferentes átomos. Basada en Cohen-Tannoudji, \S XIV.

5.1. Introducción; Hamiltonianos

5.5.4. Átomos con varios electrones - configuración electrónica

- La configuración base de un átomo se especifica con la ocupación de estados escrita como nℓ^x, donde x electrones ocupan el estado definido por {n, ℓ}, con x menor o igual a 2(2ℓ + 1), la degeneración del estado de momento angular ℓ.
- ► Las configuraciones de los estados base de los primeros elementos se muestran en la tabla 10 y en la figura 13, transcrita de *Cohen-Tannoudji*. El llenado de las capas superiores pierde la secuencia con n a partir de $n \ge 3$.
- En general el nivel 4s se ocupa antes que el 3d.
- El potencial de primera ionización se muestra también en la tabla 10: un potencial de ionización bajo se relaciona con la presencia de líneas espectrales en el visible; por ejemplo Na y Mg.

Cohen-Tannoudji §XIV; Shu §27; Rybicki §9.3.

Ζ	nℓ	Configuración	χ (I)	χ (II)	χ (III)	χ (IV)
1 H	10	ls	13.595	-	-	-
2 He	10	1s ²	24.581	54.405	-	-
3 Li	20	[He] 2s	5.390	75.662	122.427	-
4 Be	20	[He] 2s ²	9.321	18.207	153.85	217.617
5 B	21	[He] 2s ² 2p	8.296	25.119	37.921	259.31
6 C	21	[He] 2s ² 2p ²	11.265	24.377	47.866	64.478
7 N	21	[He] 2s ² 2p ³	14.545	29.606	47.609	77.4
8 O	21	[He] 2s ² 2p ⁴	13.615	35.082	55.118	77.28
9 F	21	[He] 2s ² 2p ⁵	17.422	34.979	62.647	87.142
10 Ne	21	[He] 2s ² 2p ⁶	21.559	40.958	63.427	96.897
11 Na	30	[Ne] 3s	5.138	47.292	71.650	-
12 Mg	30	[Ne] 3s ²	7.645	15.032	80.119	109.533
13 AI	31	[Ne] 3s ² 3p	5.985	18.824	28.442	119.961
14 Si	31	[Ne] 3s ² 3p ²	8.149	16.339	33.489	45.131
15 P	31	[Ne] 3s ² 3p ³	10.977	19.653	30.157	51.356
16 S	31	[Ne] 3s ² 3p ⁴	10.357	23.405	35.048	47.294
17 CI	31	[Ne] 3s ² 3p ⁵	12.959	23.799	39.905	54.452
18 Ar	31	[Ne] 3s ² 3p ⁶	15.756	27.619	40.68	~ 61
19 K	40	[Ar] 4s	4.340	31.811	45.7	-
20 Ca	40	[Ar] 4s ²	6.112	11.868	51.209	67.2

Tabla 10: Configuración base y potenciales de ionización (χ , eV) de los 20 primeros elementos.

5.5.5. Moléculas diatómicas

- En las moléculas diatómicas, formadas por dos núcleos y varios electrones, los niveles de energía se separan en tres componentes de forma jerárquica:
- (i) **niveles electrónicos**: los electrones dan cohesión a la molécula, que tiende al estado de mínima energía. La escala está dictada el radio de Bohr, $a = \hbar^2/me^2$,

$$E_{
m el} \sim e^2/a \sim 10\,{
m eV}$$
 .

(ii) **los niveles vibracionales**: la distancia de equilibrio entre los núcleos determina el modo vibracional de la molécula,

$$Ma^2\omega^2 \sim e^2/a \ \Rightarrow \ \omega \sim \left(e^2/Ma^3\right)^{1/2} \ \Rightarrow \ E_{
m vib} = \hbar\omega \sim \left(\frac{m}{M}\right)^{1/2} E_{
m el} \sim 0.1\,{
m eV}\,.$$

(iii) **los niveles rotacionales**: la rotación de la molécula da lugar a sub-niveles energéticos dentro de la estructura vibracional,

$$E_{
m rot} \sim \hbar^2/I \sim \hbar^2/\mathit{Ma}^2 \sim (\mathit{m}/\mathit{M}) \, E_{
m el} \sim 0.001 \, {
m eV}$$
 .

- Las transiciones electrónicas, vibracionales y rotacionales caen alrededor del óptico-UV, infrarrojo y milimétrico, respectivamente.

5.5.5. Moléculas diatómicas

- ► La molécula de H₂ está formada por dos núcleos A y B, separados por una distancia R = |x_A x_B|, y dos electrones, 1 y 2.
- ▶ Otras moléculas diatómicas de interés (CO, OH, ...) tienen estructura similar.

Figura 14: Esquema de moléculas de H₂ y CO.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

5.5.5. Moléculas diatómicas - hidrógeno molecular H₂

 \blacktriangleright El Hamiltoniano del H_2 puede separarse en dos partes, $\mathcal{H}=\mathcal{H}_{AB}+\mathcal{H}_{el},$ donde

$$\mathcal{H}_{AB} = \frac{p_A^2}{2M_A} + \frac{p_B^2}{2M_B} \,, \tag{152}$$

describe la componente cinética de los núcleos de la molécula,

- \mathcal{H}_{AB} contiene el movimiento del centro de masa de la molécula, la rotación como cuerpo rígido y las vibraciones moleculares.
- ▶ *H_{el}* incluye la energía cinética de los electrones y los términos electrostáticos,

$$\mathcal{H}_{el} = \frac{p_1^2}{2m_e} + \frac{p_2^2}{2m_e} - \frac{Z_A e^2}{r_{1A}} - \frac{Z_B e^2}{r_{1B}} - \frac{Z_A e^2}{r_{2A}} - \frac{Z_B e^2}{r_{2B}} + \frac{Z_A Z_B e^2}{R} + \frac{e^2}{r_{12}}, \quad (153)$$

siendo $r_{iA} = |\vec{x}_i - \vec{x}_A|$ la separación entre electrones y núcleos, $r_{12} = |\vec{x}_1 - \vec{x}_2|$ la distancia entre electrones.

- \mathcal{H}_{el} representa la configuración electrónica de la molécula.

5.5.5. Moléculas diatómicas - Aproximación de Born-Oppenheimer

 La aproximación de Born-Oppenheimer consiste en separar la función de onda en configuraciones nuclear y electrónica,

$$\varphi \approx \varphi_{el}(\vec{x}_1, \vec{x}_2, R) \varphi_{AB}(\vec{x}_A, \vec{x}_B).$$
(154)

 La función (154) permite separar el problema en dos partes, una de configuración nuclear y otra de configuración electrónica,

$$\mathcal{H}\varphi = E\varphi \quad \Rightarrow \quad \begin{cases} \mathcal{H}_{AB} \varphi_{AB} + E_{el}(R)\varphi_{AB} = E_{nuc} \varphi_{AB}, \\ \mathcal{H}_{el} \varphi_{el} = E_{el}(R) \varphi_{el}. \end{cases}$$
(155)

- Ambas configuraciones se relacionan mediante la distancia internuclear, *R*, que varía en escalas de tiempo largas comparadas con el movimiento de los electrones.

5.5.5. Moléculas diatómicas - configuración nuclear

 La configuración nuclear se separa en términos de centro de masa y masa total, distancia relativa y masa reducida (nuclear), con definiciones estándar,

> La configuración nuclear se separa en centro de masa y parte interna,

$$\varphi_{AB} = \varphi_{cm}(\vec{X}_{cm}) \varphi_{int}(\vec{R}) \rightarrow E_{nuc} = E_{cm} + E_{int}$$

- La parte traslacional obedece una ecuación de partícula libre.
- La estructura interna contiene un término central que queda en términos de armónicos esféricos,

$$-\frac{\hbar^2}{2M}\nabla_R^2\varphi_{int} + E_{el}(R)\varphi_{int} = E_{int}\varphi_{int} \Rightarrow \varphi_{int}(\vec{R}) = \frac{1}{R}Z_{int}(R)Y_j^m(\theta,\phi).$$
(157)

5.5.5. Moléculas diatómicas - estados rotacionales

La función de onda interna se separa en componentes radial y esférica,

$$\varphi_{int} = rac{1}{R} Z_{int}(R) Y_j^m(\theta,\phi) \,,$$

donde

$$L^2 Y_j^m = j(j+1)\hbar^2 Y_j^m, \quad L_z Y_j^m = m\hbar Y_j^m.$$

 La rotación de la molécula queda descrita por los armónicos esféricos y los niveles de energía correspondientes,

$$E_{\rm rot}(j) = j(j+1)\frac{\hbar^2}{2MR^2}.$$
(158)

La estructura interna nuclear se separa posteriormente en rotacional y vibracional,

$$E_{int} = E_{rot}(j) + E_{vib}.$$
 (159)

La parte vibracional proveniente del desarrollo de $E_{el}(R)$ alrededor de un equilibrio.

・ロト ・ 日 ・ ・ 田 ・ ・ 田 ・ ・ 日 ・ うへぐ

5.5.5. Moléculas diatómicas - estados vibracionales

> La ecuación de Schrödinger para la función radial interna,

$$-\frac{\hbar^2}{2M}\frac{d^2Z}{dR^2} + E_{el}(R)Z(R) = E_{vib}Z(R), \qquad (160)$$

con $E_{vib} = E_{int} - E_{rot}(j)$, se desarrolla alrededor de un mínimo de $E_{el}(R)$.

$$E_{el}(R) = E_{el}(R_0) + \frac{1}{2}M\omega_0^2(R - R_0)^2 + \dots$$
(161)

- Se obtiene una ecuación de oscilador armónico para $ho=R-R_0$,

$$-\frac{\hbar^2}{2M}\frac{d^2 Z(\rho)}{d\rho^2} + \frac{1}{2}M\omega_0^2\rho^2 Z(\rho) = E_{vib}Z(\rho).$$
(162)

donde $M\omega_0^2 = (d^2 E_{el}/dR^2)_0$.

La configuración de energía queda como,

$$E_{int} = E_{rot}(j) + E_{vib}(v) + E_{el}(R_0) \quad \text{con} \quad E_{vib}(v) = \left(v + \frac{1}{2}\right)\hbar\omega_0, \ v = 0, 1, 2, \dots$$
(163)

5.5.5. Moléculas diatómicas - estructura nuclear: recapitulación

- La estructura de la molécula se separa en una parte electrónica y una parte nuclear gracias a la aproximación de Born - Oppenheimer.
- ► La parte nuclear se separa en traslacional, correspondiente al centro de masa como partícula libre, e interna, $E_{nuc} = E_{cm} + E_{int}$.
- ► La parte nuclear interna es vibracional y rotacional, $E_{int} = E_{vib} + E_{rot}$.
- La estructura rotacional está dada por los armónicos esféricos con niveles de energía de la forma $E_{rot}(j) = j(j+1)(\hbar^2/2MR_0)$.
- La estructura vibracional surge al considerar oscilaciones armónicas alrededor de un estado de equilibrio de la estructura electrónica, con $E_{vib}(v) = (v + 1/2)\hbar\omega_0$.
- ► Las estructuras vibracional y rotacional de la molécula dependen finalmente de los parámetros R_0 y $d^2 E_{el}/dR_0^2$, determinados por la estructura electrónica, $E_{el}(R)$.

5.5.5. Moléculas diatómicas - estructura electrónica (H₂)

- Incluso bajo la aproximación de Born-Oppenheimer, la estructura electrónica de una molécula diatómica no tiene solución analítica.
- ▶ Un caso tratable es el hidrógeno molecular, con $\varphi_{el} = \varphi_{el}(\vec{x}_1, \vec{x}_2, R)$ en (152,155).
- ► Siguiendo a Shu §29, normalizamos la ecuación al radio de Bohr y proponemos,

$$\varphi_{el} = c_1 \, u(r_{1A}) u(r_{2B}) + c_2 \, u(r_{1B}) u(r_{2A}) \,, \tag{164}$$

con u(r) = π^{-1/2}e^{-r} estado base del H (1s) y coeficientes {c₁, c₂} a determinar.
Dos soluciones: c₁ = 1/√2, c₂ = ±1/√2 ⇒ simétrica o antisimétrica, que representan en dos átomos H (-e²/a₀), más una energía de enlace, E[±]_{mol} (fig. 15),

$$E_{el}^{\pm}(R) = -\left(\frac{e^2}{a_0}\right) + E_{mol}^{\pm} = \left(\frac{e^2}{a_0}\right) \left\{-1 + 2\left(\frac{\alpha \pm \beta}{1 \pm \Delta}\right) - \frac{1}{R}\right\},\qquad(165)$$

con α , β y Δ funciones de R:

$$\alpha = e^{-2R} \left(1 + \frac{1}{R} \right), \quad \beta = \frac{\Delta}{R} - e^{-R} \left(1 + R \right), \quad \Delta = e^{-R} \left(1 + R + \frac{R^2}{3} \right).$$
5.5.5. Moléculas diatómicas

Figura 15: Energía de enlace en el modelo de la molécula H₂. Las dos curvas corresponden a E_{mol}^{\pm} , una de ellas representando un sistema no ligado, el otro un enlace molecular con equilibrio en $R \simeq \dots a_0$. (Gráfica pendiente de revisión...)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の 0 0

<u>3.4. Sistemas cuánticos</u> - moléculas diatómicas

- Los niveles de energía quedan estructurados en <u>bandas</u> de niveles rotacionales alrededor de niveles vibracionales; y <u>grupos de bandas</u> vibra-rotacionales alrededor de niveles electrónicos.
- En la atmósfera las bandas se entremezclan mas por el efecto de ensanchamiento por presión.

Nivel / banda	energía		λ	$\bar{ u}$
Electrónico	$E_{ m el} \sim e^2/a$	10 eV	100 nm	$10^5{ m cm^{-1}}$
Vibracional	$(m/M)^{1/2}E_{ m el}$	0.1 eV	$10\mu{ m m}$	$10^3{ m cm}^{-1}$
Rotacional	$(m/M)E_{ m el}$	0.001 eV	$1{\sf mm}$	$10{ m cm^{-1}}$

Tabla 13: Estructura energética de una molécula diatómica. A temperatura ambiente $(kT \simeq 0.025 \text{ eV})$, las estructuras electrónicas tienden a estar en el nivel base, mientras que las rotacionales ocupan varios niveles y las vibracionales son activas. Los niveles vibracional ensanchados por los rotacionales pueden dar lugar a bandas roto-vibracionales.

3.4. Sistemas cuánticos - niveles energéticos en moléculas

Figura 16: La estructura eléctronica de la molécula define un equilibrio, alrededor del cual se presentan vibraciones. Los niveles vibracionales se subdividen en niveles rotacionales. formando una estructura roto-vibracional (fig. 3.4 de Liou).

Figure 3.4 Illustrative potential energy curves for two electronic states of a diatomic molecule. The horizontal lines in the potential well represent vibrational energy levels.

<u>3.4. Sistemas cuánticos</u> - moléculas diatómicas

- ► Moléculas diatómicas homonucleares: N₂ (N \equiv N), O₂ (O=O); trazas de H₂...
- tienen un sólo modo vibracional por estado electrónico: 2330 cm⁻¹ para N₂, 1556 cm⁻¹ para O₂ estados base.¹⁶.
- Carecen de momento dipolar \rightarrow no son interactivas en la banda térmica.
- Absorben radiación UV y visible en la alta atmósfera.
- Su foto-ionización y disociación UV promueve la actividad química @ estratósfera.
- Moléculas diatómicas heteronucleares: CO, OH.
- un modo vibracional por estado electrónico (2143 cm⁻¹ CO; 3570 cm⁻¹ OH; en el estado base).
- ambas tienen momento dipolar importante¹⁷: 0.112 Debye CO; 1.668 Debye OH.
- son poco abundantes pero químicamente activos.

¹⁶cccbdb.nist.gov

 17 1Debye = 10^{-18} statC cm $\simeq 3.336 \times 10^{-30}$ C m $\simeq 0.393430$ e a₀.

< □ > < □ > < Ξ > < Ξ > < Ξ > < Ξ > < □ >

3.4. Sistemas cuánticos - moléculas triatómicas lineales: el CO2

- Moléculas triatómicas lineales: como CO₂ (O=C=O, 1.16Å), tienen seis modos normales de oscilación, tres de ellos vibracionales: (c), (e) y (f) en la figura.
- modo simétrico (e; 1388 cm⁻¹) inactivo. Los modos antisimétrico (c) y de flexión¹⁸ (f) inducen momento dipolar y son activos; bandas en 2349 cm⁻¹, 667 cm⁻¹.
- contribuyen también isótopos (¹³C, ¹⁷O, ¹⁸O) en bandas cercanas.

5.5. Átomos y moléculas

3.4. Sistemas cuánticos - moléculas triatómicas lineales: el CO2

Figure 4.2 The most important vibrational transitions that produce the $15 \,\mu m \text{CO}_2$ band, including the ν_2 fundamental, the hot bands, and the combination bands (data taken from Lopez-Puertas *et al.*, 1986). The rotational bands in this vibrational mode are the $P(\Delta J = -1)$, $Q(\Delta J = 0)$, and $R(\Delta J = +1)$ branches. The isotopes include ¹⁶O¹²Cl⁶O, ¹⁶O¹³Cl⁶O, and ¹⁶O¹²Cl⁸O.

Niveles de energía relacionados con las bandas vibracionales del CO₂, en 2350 y 667 cm⁻¹ (4.3, 15 μ m). Nótese la participación del modo inactivo a 1388 cm⁻¹.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三重 - 釣�?

3.4. Sistemas cuánticos - moléculas triatómicas no lineales

- ► Moléculas triatómicas no lineales: H₂O, O₃.
- con momento dipolar intrínseco (1.85 D, 0.53 D).
- modos vibracionales del H₂O: flexión (bending) 1595 cm⁻¹, con armónico a 3161 cm⁻¹; dos bandas centradas en 3657, 3756 cm⁻¹, y combinaciones de los distintos modos; también participan activamente los isótopos ²D, ¹⁸O, junto con los modos rotacionales en tres ejes (B = 14.5 cm⁻¹).
- modos vibracionales de O_3 : 705, 1042, 1110 cm⁻¹, con contribuciones del isótopo ¹⁸O.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ●

3.4. Sistemas cuánticos - moléculas triatómicas no lineales

3.4. Sistemas cuánticos - moléculas complejas

- Metano (CH₄), amoniaco (NH₃)...: estructura 3D (tetraedro, pirámide). Modos vibracionales activos del CH₄ a 3020 y 1306 cm⁻¹ - relevante para el efecto invernadero.
- Clorofluorocarbonos (CFCs) y estructuradas... modos torsionales...

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

3.4. Sistemas cuánticos - moléculas y radiación

- ► Moléculas diatómicas homonucleares (N₂, O₂, ...)
- tienen un sólo modo vibracional, carecen de momento dipolar, poco interactivas en el IR térmico.
- niveles electrónicos interaccionan con radiación UV y visible en la alta atmósfera. UV foto-ioniza y disocia, en particular O_3 (\rightarrow química de la estratósfera).
- Moléculas triatómicas lineales (CO₂, N₂O)
- tres modos vibracionales, carecen de momento dipolar intrínseco, pero tienen momento dipolar inducido.
- Moléculas triatómicas no lineales (H₂O, O₃)
- tres modos fundamentales de vibración y momento dipolar intrínseco.
- Moléculas 3D (metano CH₄, amoniaco NH₃)
- simetría semi-esférica (tetraedro), cuatro modos vibracionales, sin dipolo permanente, pero sí inducido.