

11. V.G. Veselago, The electrodynamics of substances with simultaneously negative values of ε and μ, Sov Phys Usp 10 (1968), 509–514.

© 2007 Wiley Periodicals, Inc.

NOVEL SUSPENDED-LINE MICROSTRIP COUPLER USING BCB AS SUPPORTING LAYER

A. Corona-Chavez,1 I. Llamas-Garro,1 Jung-Mu Kim,2 and Yong-Kweon Kim2

1 Instituto Nacional de Astrofísica, Optica y Electronica, Luis Enrique Erro 1, Tonantz., Puebla 72840, Mexico
2 School of EECS, Seoul National University, Korea

Received 23 January 2007

ABSTRACT: In this letter a novel λ/4 micromachined directional coupler is presented with a 10 μm benzocyclobutene (BCB) layer used to suspend one transmission line over another one in order to achieve a 3-dB coupling. The coupler is centered at a frequency of 24 GHz. Nevertheless, this configuration is larger than a single coupler as more than one coupler is needed.

In [4] a CPW suspended air-bridge coupler is presented at a center frequency of 30 GHz. However, if large microstrips are suspended over an air bridge, residual stress will limit the size of the structure. In this letter we propose a microstrip-suspended line coupler where benzocyclobutene (BCB) is used to support the top coupled-line, giving good mechanical strength. The main advantages of using BCB as the supportive structure are that relatively thick layers can be manufactured [5], it has low loss tangent (0.008), and it requires simple manufacturing process [6].

2. DESIGN

The coupler was designed on a 125-mm-thick quartz substrate with a permittivity εr = 3.8. The loss tangent is about tan δ = 0.00033. The top layer was suspended over a 10-μm-thick BCB layer (εr = 2.6) as shown in Figure 1. To achieve the correct coupling the top line overlaps L = 20 μm the bottom line as shown in Figure 1 (larger overlappings correspond to tighter couplings). At the center of the structure the top line is crossed to the opposite side to realize a codirectional coupler. The meandered transmission lines were optimized to 56% miter for best performance (see Fig. 2).

3. FABRICATION

First a Cr/Au seed layer is thermally evaporated on a 125-μm-thick quartz substrate. A photoresistive mold is then formed over the seed layer to pattern the coupler bottom layer which is formed by electroplating techniques. Then the mold and seed layer is removed and a 10-μm BCB layer formed by UV lithography at a curing temperature of 150°C. The top layer of the coupler is formed by the same process starting with the seed layers, mold, and electroplating described at the beginning of this paragraph. All metal layers are 3-μm thick. Finally, the coupler is placed inside a test housing, where the coupler is fixed to the gold-coated brass

1813
housing using silver paste. K connectors are used to interface the circuit with the measurement equipment.

4. SIMULATION AND EXPERIMENTAL RESULTS

The simulation results using a full wave simulator (Ansoft HFSS v. 9) are shown in Figure 3(a). A coupling of $3 \text{ dB} \pm 0.4 \text{ dB}$ is achieved for 50% bandwidth for the ideal coupler. The phase response shows $90^\circ \pm 0.7^\circ$ for the 50% bandwidth. The return loss and isolation are better than -25 dB all over the band.

The experimental response is shown in Figure 3(b). An overcoupling of about 0.6 dB is observed at the center frequency. For a coupling unbalance of $\pm 0.8 \text{ dB}$ the bandwidth is about 25%. For this bandwidth, the phase difference was $90^\circ \pm 4^\circ$. The power losses are close to 1 dB. The return loss and isolated responses are lower than -15 dB throughout the band.

To understand the effect of the differences between the experimental and previously simulated results [7] the structure was measured using a profiler. It was found that the top and bottom transmission lines were 1-μm thicker than expected. Also, the BCB layer was found to be about 9.2 μm. With these new measured values a full wave simulation was carried out giving a coupling unbalance of $\pm 0.8 \text{ dB}$, very similar to the measured response. The results of the overcoupling are shown in Figure 3(a).

This results are summarized in Table 1.

5. CONCLUSION

In this letter a novel type of $\frac{1}{4}$ coupled line couplers was presented at a center frequency of 24 GHz. This novel structure consists of a bottom transmission line patterned on quartz substrate coupled to a line suspended on a BCB supportive layer. The BCB allows thick structures with low losses. Experimental and simulated results were presented.

REFERENCES

6. C.K. Lin, W.K. Wang, and Y.J. Chan, BCB bridged Ka band MMICs using In0.5Al0.5As/In0.5Ga0.5As metamorphic HEMTs, Proceedings of the International Conference on compound semiconductor manufacturing technology, 2005.

© 2007 Wiley Periodicals, Inc.

<table>
<thead>
<tr>
<th>Structure</th>
<th>Overcoupling at Center Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulated with original dimensions</td>
<td>$\pm 0 \text{ dB}$</td>
</tr>
<tr>
<td>Simulated with measured dimensions</td>
<td>$\pm 0.7 \text{ dB}$</td>
</tr>
<tr>
<td>Experimental</td>
<td>$\pm 0.6 \text{ dB}$</td>
</tr>
</tbody>
</table>

The first simulation assumes the original dimensions, whereas the second one assumes the measured transmission lines plus BCB dimensions.