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Cosmological Principle
“The Universe is homogeneous and isotropic on large-scales”

As can be seen by Cosmic Microwave Background (CMB) radiation

(From R. Bender’s notes)
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Taking into account  the movement 
around the MW, and the movement of 
the LG towards (l,b)≈(277o, 30o)
Signature of local attractors.

CMB spectrum: dipole anisotropy

(Following E. Wright’s CMB review paper)

Dipole anisotropy in COBE data can be 
explained as a Doppler effect between the 
frame of reference of the solar system and 
that at rest with the observable CMB. 

 

ν '= γ(1− β cosθ)ν,   with β ≡ v /c

 

and γ ≡1/ 1− β 2

 

T(θ) = T0 /γ(1− β cosθ) ≈ T0 + T0β cosθ

A fit to the image T0β=3353±24µK 
And with T0=2.735K
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Cosmological Principle
“The Universe is homogeneous and isotropic on large-scales”

As can be seen by the position of extragalactic radio-sources

(From R. Bender’s notes)



Cosmological Principle

(Bengaly, Maartens & Santos, 2018, JCAP)

“The Universe is homogeneous and isotropic on large-scales”

As can be seen by the position of extragalactic radio-sources: A critical requirement 
of statistical isotropy is that the Solar System rest frame seen in
the CMB and in the number counts of distant radio sources should be consistent.



Cosmological Principle
“The Universe is homogeneous and isotropic on large-scales”

As can be seen by the 2-point correlation function of galaxies, which are clustered 
in scales of few x h-1 Mpc.
Other LSS scales: supercluster associations ~ 100 h-1 Mpc

filaments                          ~ 100 –250 h-1 Mpc
voids                                ~ 60 h-1 Mpc

There is a characteristic scale  300 h-1 Mpc ≤ l ≤ cH0
-1 averaged over which the 

Universe can be considered homogeneous. (e.g. Ntelis et al. 2017, JCAP) 



Cosmological Principle
“The Universe is homogeneous and isotropic on large-scales”

But there are a few large-scale structures in the Universe that are posed as potential 
problems of anisotripies at ≥ 500 Mpc (comoving scale): e.g. Huge – Large Quasar 
Group at 1.17 < z <1.42,  composed of 73 QSOs in 
a 1240 x 640 x 370 Mpc structure (Clowes et al. 2013, 
MNRAS). 3D  calculations out of  sphericity are 
difficult to carry out but it seems consisten within a 
large volumen (Sheth + Diaferio 2011 MNRAS; 
Marinello et al. 2016, MNRAS )



The original Hubble diagram

Hubble (1929) in Proceedings of the National Academy of Sciences,
Lemaître had done a previous (1927) estimation of H0 based  on Hubble´s data



The original Hubble diagram

Hubble & Humason (1931) Astrophysical Journal



The value of H0:
H0=72±8 km/s/Mpc (Freedman et al. 2001, ApJ)



The origin of the Hubble “constant”
Can be deduced from an expanding homogeneous universe.

Let’s imagine a 1D Universe, on an expanding circle:
d(t) is the proper distance between two points P1P2 
R(t) is the scale factor or growth
χ is a comoving coordinate, that defines the distance 
between P1P2 (comoving with the expanding universe)
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The Friedmann-Lemaître-Robertson-Walker metric (1922-1936)

where (r,θ,φ) are spherical comoving coordinates, R is the scale factor, and k is a 
constant related to the curvature. 

It can be deduced purely from symmetry alone for a homogeneous universe
For a 2D universe on the surface of a sphere, the proper distance P1P2

where K=1/R2 is the curvature at t
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For space-time, introducing a time-independent 
curvature K≡k/R2, and the comoving coordinate
r, such that b=Rr, the geodesic is given by

 

(ds)2 = (cdt)2 − (dl)2 = (cdt)2 − R2 dr
1− kr2
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The cosmological origin of redshift
z≡(λ−λrep)/λrep

It can be deduced from the FLRW metric

Light travels along null geodesics ds=0. If we follow the path of light from r1 to 
r=0, the null geodesic follows constant (θ,φ), and dθ=dφ=0.
Hence, the RW metric ⇒

Two consecutive crests leave at t1 and t1+∆t1 and are received at t0 and t0+∆t0

 

cdt
R

= ±
dr

1− kr2





The cosmological origin of redshift
z≡(λ−λrep)/λrep

It can be deduced from the FLRW metric

Light travels along null geodesics ds=0. If we follow the path of light from r1 to 
r=0, the null geodesic follows constant (θ,φ), and dθ=dφ=0.
Hence, the RW metric ⇒ ⇒

It is not a Doppler effect, but rather a property of the expanding non-Euclidean 
space-time.

The wavelength of light shifts to the red λ∝R(t)
The energy carried by the wave decreases as the Universe expands E=hc/λ∝1/R(t)

In general, every single quantity has to be converted

You might find z≥~1 interpreted as recession velocity, using the relativistic Doppler 
effect formula:
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1+ z =
λ0

λ1

=
R(t0)
R(t1)

⇒ R ∝ (1+ z)−1

 

1+ z =
1+ v /c
1− v /c



Friedmann’s Equation (1922)

Although it was deduced from Einstein’s field equations, it can also be deduced 
from Newtonian gravity.
Consider a sphere about some arbitrary point, such that the radius is R(t).

homogeneity ⇒ ∇ρ=0
Isotropy ⇒

From Newton’s equation of motion  
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Friedmann’s Acceleration Equation (1922)

Deriving 

Conservation of energy 
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(following M. Plionis’ notes or Peacock 1999)

 

d(ρc 2R3) = −pd(R3)
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Friedmann’s Equation (1922)

(from R. Bender’s notes)



Friedmann’s Equation (1922)

(from R. Bender’s notes)



Friedmann’s Equation (1922)

(from R. Bender’s notes)



Cosmological Parameters 1

(following M. Plionis’ notes or Peacock 1999)
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For a flat Universe k=0 with no cosmological parameter Λ=0

 

ρc =
3H0

2

8πG
=1.88 ×10−29 h2 gcm-3

where h≡H0/100 km/s/Mpc. The critical density is the density necessary to have a 
flat Universe. 

The density of the Universe is often expressed as the density parameter

 

Ω =
ρ
ρc



(R. Benders’ notes)

Einstein-de Sitter Universe (1932)

R
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ρ = ρ0R
−3



Equations of state

(following M. Plionis’ notes or Peacock 1999)

In general p=w<v2>ρ

For a matter dominated universe:  ρ∝R-3 , p=0, w=0 (dust approximation)

For a radiation dominated universe (photons have the E reduced by R-1):               
ρ∝R-4, p=1/3 ρc2, w=1/3

For a vacuum dominated universe ρ=constant, w=–1

 

ρ ∝ R−3(1+w )

Friedmann’s Equation rewritten: parameters 2 
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H(z) = H0E(z)

 

 and ΩΛ + Ωk + Ωm + Ωr =1



Cosmological Parameters 3

(following M. Plionis’ notes or Peacock 1999)

For a matter dominated Λ=0 universe the deceleration constant is another classical 
cosmological parameter.
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From a Taylor’s expansion
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R(t) /R0 =1+ H0(t − t0) −
q0

2
H0

2(t − t0)2 + ...



The age of the Universe

(following M. Plionis’ notes)

 

R ∝ (1+ z)−1 ⇒

 

H(z) = H0E(z)

 

⇒ dt =
−1
H0

dz
E(z)(1+ z)



The age of the Universe

(Hogg 1999, astro-ph/9905116)

tH≡1/H0 Hubble time =

3.09×1017 h-1 s =        
9.80×109 h-1 yr 

 

tL = tH
dz

(1+ z)E(z)∫
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