Proper distance

The proper distance is defined by the light-travel time along a null geodesic. If a light signal is emitted
at a galaxy £, at some time and received by an observer at £, at another time, then these events
are connected only by the light signal and since all observers must measure the same speed of light, it
defines a very fundamental concept of distance.

Using the Robertson — Walker metric a light signal emitted from the coordinate position (rq, #a, ¢o)
at time t = () will reach (rg,#o, @) in time t determined by:

for a given epoch ¢

ko wff g
f 7 ._1 — (125)

where r, is the dimensionless comoving coordinate distance and F(t) is the scale factor of the Universe.
The proper distance at time t is defined as:

R(t) sin~!r k=+1
3 O ) f R(t) ry k=0 (126)
P e
I ‘I‘T_ R(t) sinh™ ! ry k=1
(also called transverse comoving distance, Dy=d,,(z=0) e.g. Hogg 1999)

and therefore at time r; (present epocn):

IDM R(to)rs ; _1 dz (127)
=
where, with the R oc(1+ Z)_ll, we have: H, E(z)(1+z)
O edt I
e = z)dt = 12
n= [ w0 [ w e

(FromM Plionis’ notes)



Proper distance
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Figure 1: The dimensionless proper motion distanee Dhy/ Dy, The three curves are for the
three world models, Einstein-de Sitter (2,124} = (1,0), solid; low-density, (0.05,0), dotted;
and high lambda, (0.2, 0.8), dashed.

(Hogg 1999, astro-ph/9905116)



angular diameter distance D,/Dy

Figure 2: The dimensionless angular diameter distance Da /Dy, The three curves are for

the three world models, (S, 0240 = (1,0), solid; {(0.05,0), dotted; and (0.2, 0.8), dashed.

Angular distance

The onguler dinmeter distonce I, 08 defined as the ratio of an object’s physical transverse
size to its angular size (in radians). It is used to convert angular separations in telescope
mneges into proper separations at the sowrce. It 2 fomous for not Inereasing indefinitely as
z = oo it turns over at z ~ 1 and thereafter more distant objects actually appear larger in
angular size. Angular diameter distance 15 related to the transverse comoving distance by

Dy
1=

(Wemmberg, 1972, pp 421-424; Weedman, 19586, pp 6567, Peebles, 1993, pp 325-327). The

angular dismeter distance iz plotted in Figure 2.
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The distance between (r; 6, , ¢; ) and
(r;,0,+d0, , ¢; ) given by the FLRW metric:

ds® =—1?R*(t)d6} =T
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D,=1/d0=rR(t)=

(Hogg 1999, astro-ph/9905116)



Luminosity distance

If a photon is emitted at time ¢; from a source and received by us at time #; it will have energy at

emission F, = 2¢ and at detection E; = :—; =1 {hl’:'__w}. If the source emits n photons isotropically in

Al
time dty, it has a rate of emission n/dt; and a rate of received photons n/dty = n/dt; (14 z). The surface
area at time ty of the sphere passing through the origin (us) and centered on the source is: 4w R> (tﬂ)?‘%
(put t, r = constant in eq.( 1) — line element on the surface of a Euclidean sphere of radius r I?).

Now the flux [ of the source is the product of the rate of received photons, of the

photon energy at reception and of the (area) ':

ge ey 28
The total luminosity (at the frequency range 1) emitted by the source is:
iy = L (130)
at1 Ay
From eq.(119), (129) and (130) we have that the distance r, called the Luminosity distance is:
[ = L * e
4 2 dr =rmR(to)(1+2) = (1—1—2)/0 H(z)dz (131)

d, =(1+z)D,

(M. Plionis’ notes)



Luminosity distance
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Figure 3 The dimensionless luminosity distanee Dy /Dy, The three curves are for the three

world models, (£, 2,0 = (1,0, solid; (0.05,0), dotted; and (0.2, 0.8), dashed.

(Hogg 1999, astro-ph/9905116)



Luminosity distance

In order to express dp as a function of z we need to remove the explicit dependance of dp on
the coordinate distance r;. This is usually done by solving the Einstein field equations (see section
1.6). However, there is an easier way to obtain the value of r; without solving directly Einstein’s field
equations. This is by using a Taylor expansion of R(t) around #;:

R(t) = R(to) + (£ — o) Ir:'R‘| i _;UF |irif‘| (133)
—
) - =1-—(tx —t)H, - —(?‘ — 1) g H: +. (134)

R(ty) 1+z

where ¢, is the deceleration parameter, which defines the different cosmological models (see section 2.3).
Now inverting eq.(134) we obtain:

ty—t = = (1 +¢./2)z +..] (135)
H,
and introducing this into eq.(128) we get
r —;[ o ] (136)
ST AL :
and from eq.(131) we get:
¢ 1 ;
dr = 7 [z + E(l — )22 + ] (137)

A more general expression, derived using Einsteins equations and valid for all cosmological models, is

given by:
goz + (go — 1) (a...a"l + 2zq, — 1)] (138)

(M. Plionis’ notes)

i
H.q:

dp =




Comoving volume

The comeowving volume Ve 18 the volume measure in which number densities of non-evolving
objects locked into Hubble flow are constant with redshift. It s the proper volume times
three factors of the relative scale factor now to then, or (1 4 z)}*. Since the derivative of
camoving distance with redshift is 1/E(z) defined in {14), the angular diameter distance
converts a solid angle di} into a proper area, and two factors of (1 4 z) convert & proper area
mto a comoving ares, the comoving volume element 1o solid angle g€ and redshift interval
dz 15

(142D} ,
dlo = Dy T dfddz (28]
where I, 1s the angular diameter distance at redshift z and F{z) is defined in (14) (Weinberg,
1972, p. 486; Peebles, 1993, pp 331-333). The comoving volume element is plotted in

Figure 5. The mntegral of the comoving volume element from the present to redshoft z gives

the total comoving volume, all-sky, out to redshift =z

r _I-.L"|T o --' [ 2 1 ' .'# s
( T ] ﬁ}"l- 1IIII.'1 i Eh.ﬁ‘:_i:— 71 wresinh |:1'|,- L %‘-:] for 3 >0
b for O, =0 (29)

furey n‘) [ ' z

| nz . /
L — Jf;ul. ‘l,."1 3 Eh.I—:,‘I_II— FEM(:EUL I{-,.,-|Fl.=r| %d'-"]l for £, < 0

(Carrol, Press & Turner, 1992), where I is sometimes called the Hubble volume. The
comoving volume element and its integral are both used frequently in predicting number
counts or luminosity densities,

(Hogg 1999, astro-ph/9905116)



Comoving volume
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Models with A=0

T k=0, =1- FLAT: THE UNIVERSE EXPANDS FOREVER BUT WITH A DECREASING RATE.

It is straightforward to solve eq.(12) with k& = (), to obtain _ 872G Ac’

R’ PR? + —R? —kc?
3 3
R(t) x ey (34)
and using eq.(16) and eq.(12) we obtain the behaviour of the density as a function of cosmic time:
me—3(l+w)
S— (33)
P 6nGEE(1 + w)?

IT dz 2

and finally differentiating eq.(34) we can get the age of the Universe?, = H, ) 1+ EG) =3 I,

v
]
e
]

-
c

=
[}

=

-
(]
L]

N

w

Future

(M. Plionis’ notes)



Einstein-de Sitter Universe

This is a universe with (1,, = 1, {14 = 0, i.e. the universe is Euclidean:
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R? =

which can be integrated and yields:

; 8rGon\ V*
RY24R = ( ”39“) dt

Using the definition of (2, (13.8) and considering that we assumed (2, = 1, we have
HE = (8n(Ggy)/3 and thus:
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(R. Benders’ notes)



Models with A=0

@ k=+1,02 > 1 - CLOSED: THE UNIVERSE EXPANDS UNTIL (87GpR*)/3 = ¢* (AT 2.), THERE-

AFTER IT STARTS CONTRACTING. 52 _ oy 6 2 /\c2
R2="7 pR?

From eq.(11) we have: 3

. [2AGM - E|R)]F
c=ke’/2 R= [ R (36)
Using

M M L

¥k ;El (1 —cose)) = (|TE| sin” E (37)

differentiating the above equation, inserting it in eq.(36) and then integrating, we obtain after
some algebra:

GM
t = oy (4 — sin ) (38)
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(M. Plionis’ notes)



Models with A=0

It is evident for this model that at some time, t,,. the universe reaches its maximum expansion

scale, Ry, after which it starts recontracting. This time corresponds to 1» = 7 as can be easily
seen from the above relations. We can therefore parametrize the solutions as

R 1 .

R 200 %Y (39)
f 1 - 3 {

= ;{1 sin ) (40)

Using the definitions (17) and (18) at the present time and eq.(24) we obtain

9 1/2
RD — |: |E|:I - ia
H, (0, -1)1/2

and putting this into eq.(36) we have

02, (2|£])3/2 1 _
M = — 41
G 2H, (01, —1)3/2 1
In order therefore to have i = K, we must have

(2|E)20, 1—costh, B (2|2
AH, (L, -1 H,

which then gives the present value of 1, which is:

r st 2-1
ity = CO8 0.

and therefore substituting this and eq.(41) into eq.(38) we can easily obtain the present age of
the universe.

1
(Tl — 1}1/72

(M. Plionis’ notes)



Models with A=0

@ k=-1,1 <1 - OPEN: UNIVERSE EXPANDS FOREVER SINCE R>0 Vi.

In this case we can rewrite eq.(10) as:

. [GM +|¢|R]?
= 42
= | SR (12)
and, similarly with the & = 1 case, we find the parametric solutions:
GM GM
R= (coshg — 1) t = ————=(sinh ¢ — ¢} (43)
2] e

from which we find that the present day value of ¢ is:

2 -1,
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¢, = cosh™* [
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Models with A=0

Summary
a) k=-1 q<% 0<1 Curvature of the space-time continuum k:
open, hyperbolic Universe
b) k=0 qg="% Q=1 k>0 k=0 k<0
open, flat Universe
c) k=1 qg>% O 1 positive Zero negative

closed, spherical Universe curvature curvature curvature
r

R A a)

b

sum of angles sum of angles sum of angles
= 180° = 180° < 1807

Big Bang Time



The role of A and %

Due to the recent interest in the A > (), &k = (0 Universes, it is important to investigate the dynamical
effects that this term may have in the evolution of the Universe and thus also in the structure formation
processes (see Fig.2). We realize these effects by inspecting the magnitudes of the two terms in the
right hand side of {12). We have the density term:

H= HO3 +Qk(1+z)2@2

By equating the above two terms we can find the redshift at which they have equal contributions to
the dynamics of the Universe. Evidently this happens only in the very recent past:

0\ L
z{,=(ﬂ—*‘) 1 (30)

Observations suggest that Oy, ~ 0.3 and 4 ~ 0.7, and therefore we have z, ~ 0.3, which implies that
the present dynamics of the universe are dominated by the A-term, although for the largest part of the
history of the Universe the determining factor in shaping its dvnamical evolution is the matter content.

(29)
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Models with A#0 186

From {12) we see that if & < 0, then B? is always nonnegative for A > 0, and thus the universe
expands for ever, while it A < () then the universe can expand and then recontract again (as in the
k=1, A =0 case).

The recent SNIa observations (see section 3.2) and the CMB power-spectrum results (see section
3.1) have shown that the Standaerd Cosmological paradigm should be considered that of a flat, {2y = 0.7,
O == 0.3 model. Thus we will consider such a model in the following discussion. Evaluating (12) at the

. : : 3/ : g p—3/2 o
present epoch. changing successively variables: z = R32, y = #(Qu /242 B2%° and # = sinh™! y

and then integrating, we obtain:
OuNT F BAE
ilp
——5inh"~ —_ — 46
" 3H, w’ﬂ! [(ﬂm) (Rc) } Ho)

VIR
R=R, (:i“) sinh ¥ (w 1) (47)

A

Y R + A3C R —ke?

and

It is interesting to note that in this model there is an epoch which corresponds to a value of i = Ry,
where the expansion slows down and remains in a quasi-stationary phase for some time, expanding with
It > 0 thereafter (see Fig.2). At the quasi-stationary epoch, called the inflection point, we have R=10
and thus from (12) by differentiation we have:

1

o= (2m N R (48)
: IR °

(M. Plionis’ notes)




Models with A#0

Now from (46) and (48) we have that the age of the universe at the inflection point is:

2 T
1 = —— ginl - . 49
L= O T (\/;) (49)

H. /Ty

SH,
Hitr) = H, /{1y coth ( >

The Hubble function at t; is:

E|) = Hj = H,+/381,

o if £, > 17 we must have H, < H;.

This is an important result because it indicates that introducing an Qa-term, and if we live at a
time that fulfils the condition £, > f;, we can increase the age of the universe to comfortably fit the
globular cluster ages while keeping the value of 2, < 1 and also a flat (2, = () space geometry. From
(49) and (28) and for the preferred values {14 = (.7 and €2, = 0.3 we indeed obtain ¢, /t; ~ 1.84 (see
also Fig.2), which implies that we live in the accelerated phase of the Universe. Note that in order for
the present time (f.) to be in the accelerated phase of the expansion we must have: {1, > 1/3.

(M. Plionis’ notes)



Models with A#0

2.5 I_I 1 I | I ] | | ] | | | ] | 1 I o
. o z
2 :——Qﬂ=0.?, Q_=0.3 -
D:°1.5 — fff""’;:
T B e e ]
8. S — ]
L o
E . 2
n = 1
05 =7 E
| == ti :

0 1 1 | | I 1 | 1 1 l | 1 1 | | 1 | | 1
0 0.5 1 1.5 a

£/,

Figure 2: The expansion of the Universe in an Einstein de-Sitter (EdS) and in the preferred A model.
We indicate the inflection point bevond which the expansion accelerates. It is evident that in this model
we live in the accelerated regime and thus the age of the Universe is larger than the Hubble time (H').
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