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Abstract

The complex physics involved in atmospheric turbulence makes it very difficult for ground-based astronomy to
build accurate scintillation models and develop efficient methodologies to remove this highly structured noise from
valuable astronomical observations. We argue that a deep-learning approach can bring a significant advance to treat
this problem because of deep neural networks’ inherent ability to abstract nonlinear patterns over a broad scale
range. We propose an architecture composed of long short-term memory cells and an incremental training strategy
inspired by transfer and curriculum learning. We develop a scintillation model and employ an empirical method to
generate a vast catalog of atmospheric-noise realizations and train the network with representative data. We face
two complexity axes: the signal-to-noise ratio (S/N) and the degree of structure in the noise. Hence, we train our
recurrent network to recognize simulated astrophysical pointlike sources embedded in three structured-noise levels,
with a raw-data S/N ranging from 3 to 0.1. We find that a slow and repetitive increase in complexity is crucial
during training to obtain a robust and stable learning rate that can transfer information through different data
contexts. We probe our recurrent model with synthetic observational data, designing alongside a calibration
methodology for flux measurements. Furthermore, we implement traditional matched filtering (MF) to compare its
performance with our neural network, finding that our final trained network can successfully clean structured noise
and significantly enhance the S/N compared to raw data and in a more robust way than traditional MF.

Unified Astronomy Thesaurus concepts: Millimeter astronomy (1061); Atmospheric scintillation (117); Diffuse
radiation (383); Humidity (764); Time series analysis (1916); Red noise (1956); Neural networks (1933);
Astronomy data modeling (1859); Astrostatistics techniques (1886)

1. Introduction

Millimeter waves offer a unique astronomical window to
study very far and dusty regions of the universe. Coinciden-
tally, millimeter waves suffer from absorption and reemission
of the water vapor molecules composing Earth’s atmosphere.
At millimeter waves, there are z 6 confirmed dusty star-
forming galaxies, and it is possible to observe farther sources if
dust is present (Blain et al. 2002; Casey et al. 2014; Zavala
et al. 2018). Meanwhile, atmospheric turbulence distorts these
far-traveling electromagnetic waves along their path through
Earth’s troposphere (10 km), before reaching their final
ground-based telescope destination. Nowadays, large-diameter
telescopes and large-format continuum cameras are operational
and on course to produce sky surveys with unprecedented
extent and depth (Holland et al. 2013; Brien et al. 2018; Bryan
et al. 2018; Montaña et al. 2019). However, the atmospheric
turbulence still represents a critical challenge for any ground-
based millimeter-astronomy campaign. The present situation
raises the question of whether recent advances in deep learning
can provide an attractive approach to deal with the highly
structured atmospheric noise recorded in millimeter-wave
continuum observations.

In the past two decades, observations in the far-infrared (IR)
wavelengths have attracted increasingly more interest from
different astronomy fields, probably due to two main
particularities: Due to the abundance of dust (especially in

rich star-forming regions) in the universe, UV and visible light
are likely to be absorbed by dust and reemitted at infrared and
millimeter wavelengths; nearly half the luminosity radiated
from astrophysical objects in the universe is only accessible at
millimeter-wave windows. Second, due to an observational
effect known as the negative k-correction, the expansion of the
universe does not dilute the thermal-dust energy flux observed
at millimeter and submillimeter waves; consequently, very
high-redshift galaxies can be accessible to millimeter astron-
omy with equal ease to lower-redshift sources. These two
unique advantages make the millimeter-wave window an
exciting opportunity to study the star formation history and
the evolution of large-scale structures of the universe.
To continue the far millimeter-universe exploration, we need

to count on large-area, deep surveys, compounding a
representative sample of bright, dim, and high-redshift sources.
Very-large-area surveys assembled by space-based missions
like Spitzer, Planck, and Herschel (Aghanim et al. 2015; Ade
et al. 2016; Martinache et al. 2018) compose a vast catalog of
dusty star-forming galaxies that are being followed up by
spectroscopic measurements; however, they lack the resolution
to overcome source multiplicity, and, by design, they could
only select the brightest sources, thereby, biasing population
estimations. On the other hand, although ground-based
telescopes have much better sensitivity and resolution, they
are limited by comparatively lower mapping speeds than space-
based telescopes. Therefore, it is imperative to count on large-
aperture telescopes, which, coupled to multidetector instru-
ments, can realize large-area, high-sensitivity sky maps in
reduced scanning time.
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The Large Millimeter Telescope (LMT), which is the largest
millimeter-wave single-dish telescope, with an aperture
diameter of 50m, and a field of view of 4″, contributes to
this effort (Hughes et al. 2010). At 4600 m above sea level, on
the summit of Sierra Negra Volcano in Mexico, the dry weather
allows the LMT to perform high-quality astronomical observa-
tions, with winter 220 GHz opacities low as τ = 0.025 at
wavelengths of ∼1–3 mm. These excellent climate conditions
are particularly necessary for infrared and millimeter astronomy
to minimize water molecule absorption and anomalous
emission effects. One of the LMT’s key instruments is the
Aztronomical Thermal Emission Camera (AzTEC) (Wilson
et al. 2008), an array of 144 silicon nitride micromesh
bolometers distributed into a hexagonal close-packed geome-
try, designed to perform continuum measurements in the 1.1
mm atmospheric window. With an average mapping speed of
20 arcmin2 mJy−2 hr−1 (under favorable climate conditions),
during the years that it was operational, AzTEC was capable of
producing maps with ∼500 arcmin2 angular size and 0.2 mJy
per-beam depth, in ∼50 hr of total integration time.

A new generation of millimeter-wave continuum cameras is
currently scheduled to be installed on the LMT, with
significantly improved technologies, such as lumped-element
kinetic inductance detectors (LEKIDs) (Austermann et al.
2018; Castillo-Dominguez et al. 2018). The first camera is the
Mexico–UK Sub-millimeter Camera for Astronomy (MUS-
CAT), a large-format millimeter-wave camera made of 1600
horn-coupled LEKIDs cooled to an operating temperature of
100 mK (Castillo-Dominguez et al. 2018). This focal-plane
array is designed to observe in the 1.1 mm bandwidth and
cover the full 4′ of LMT’s field of view. With a design mapping
speed of 3 deg2 mJy−2 hr−1, MUSCAT on the LMT would
enable us to map in about 40 hr a 160 deg2 region, with a 6″
resolution and 1 mJy depth. The second camera is TolTEC, a
large-format millimeter-wave imaging polarimeter made of
∼7000 high-responsivity LEKIDs, arranged in three focal
planes for the 1.1, 1.4, and 2.0 mm bandwidths, and cooled to a
150 mK operating temperature (DeNigris et al. 2020). With 1.9
deg2 mJy−2 hr−1 as the design mapping speed for the 1.1 mm
bandwidth, TolTEC would require about 40 hr to produce a
100 deg2 multicolor map, with polarization information, 5″
resolution, and 1 mJy depth (at 1.1 mm).

These advanced instruments will produce valuable astro-
nomical surveys whose raw data will yet be dominated by
atmospheric emission. The first complication with the atmos-
phere is that it produces highly structured noise that, in some
cases, is up to four orders of magnitude brighter than the
astronomical emission of interest. The second complication, at
least for infrared and millimeter waves, is a model scarcity in
the literature—presumably due to the complex physics
involved—that could be useful to simulate atmospheric noise
in the time domain. The typical approach to clean atmospheric
noise is to compute templates of the common-mode signals
seen by all the detectors and then subtract them from the
original time streams (Kovács 2008; Sayers et al. 2010). An
equivalent approach is to perform principal component analysis
(PCA) to remove the common-mode signals, the standard
procedure in the AzTEC pipeline (Scott et al. 2008). However,
this procedure could be problematic because, in some cases, it
can remove astrophysical information too. Intrinsically, the
problem demands an adequate treatment of randomly varying

correlation lengths that cannot be easily handled by classical
methods.
Aiming to solve this problem, some of us implemented

independent component analysis in the map domain (Rodrí-
guez-Montoya et al. 2018), a methodology that utilizes high-
order statistical moments (negentropy) to exploit the richness of
atmospheric-noise structure. However, it would be better to
prevent (as much as possible) any contamination leakage to the
map domain in the first place; thus, the cleaning step is more
suitable at earlier stages in the domain of time. In this line of
thinking, we see that the challenge of structured noise in time
series does not pertain exclusively to millimeter astronomy;
other fields have addressed similar issues. For example, the
problem of noisy speech recognition has been addressed by
various machine-learning strategies (see Zhang et al 2018 for a
comprehensive review). Among a few examples in astrophy-
sics, neural network applications have been useful in optical
astronomy to correct atmospheric-turbulence-distorted images
(Gómez et al. 2019) and in variable stars classification (Jamal
& Bloom 2020) and have even succeeded in recovering
gravitational waves from structured-noisy temporal series
(George & Huerta 2018; Marulanda et al. 2020).
In this paper, we propose a deep-learning computational

scheme to characterize the expected astronomical and atmo-
spheric signals in the time domain. Specifically, we propose a
structure made of long short-term memory units that can learn to
identify astrophysical sources embedded in time series domi-
nated by structured noise. To generate diverse sets of training
data, we need to develop a physical model of turbulence to
reproduce synthetic scintillation data. Moreover, we utilize real
data taken with AzTEC to generate mock observations that are
more representative of the kind of data to be produced by new-
generation instrumentation. Given the physical and statistical
complexity involved in this application and the inherently high
computational demands, in this paper we aim to present proof of
our concept by processing a single detector signal. Meanwhile,
the number of detectors’ scalability and map-making procedures
are deferred to a subsequent paper.
The following section introduces the main aspects of ground-

based millimeter-astronomy observations, which helps us to
contextualize the statistical properties of the time streams used
in our study. In Section 3, we review the deep-learning theory
used to describe the building blocks of our proposed recurrent
model. A more technical Section 4 is employed to detail our
data preparation procedures, hyperparameter selection, and
training strategies. We discuss most of our quantitative results
in Section 5. Finally, Section 6 summarizes our conclusions.

2. Properties of Millimeter-wavelength Continuum
Observations

In millimeter-continuum cameras, the detector’s array and
optical coupling are designed to match the angular size of the
telescope beam. Hence, the full array does not entirely sample
the sky brightness distribution at any given time. Consequently,
a scanning pattern is executed by the telescope to perform a
sequential integration recorded by all the detectors in temporal
series. Each detector records a stream of time-ordered data that
can be modeled as

( ) ( ) · ( ) ( ) ( ) ( )= + +d t P t s t A t N t , 1

where s is the astronomical brightness distribution, P the
telescope-pointing matrix, A the atmosphere emission, and N
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the instrumental noise. In the AzTEC architecture, each
bolometer couples to a negative temperature coefficient
thermistor; hence, it records the sky brightness as a power
decrease across the thermistor. The instrument electronics
front-end measures the power signals across the thermistor,
digitizes them at a 64 Hz sampling rate, and stores the time
streams in electrical power units (nW). These values are
converted later into radiation flux units,1 using observations of
calibration sources (planets and asteroids).

The data-reduction process is performed offline (after the
observation time); it usually includes removing large spikes
induced by cosmic rays, followed by an atmosphere-cleaning
process. The pointing calibration data are then used to construct
the pointing matrix and project the time streams into a map.
Thus, every pixel in the final map comprises all the detector’s
temporal sampling average. This clean, reduced map is ready
for astrophysical investigations. For an overview of data-
reduction techniques used in millimeter astronomy, see Mairs
et al. (2015), and for a complete description of the AzTEC
pipeline, see Scott et al. (2008) and Rodríguez-Montoya et al.
(2018).

In the following analysis, we consider only pointlike sources
as our astrophysical target. A pointlike source is an
astrophysical object with an angular extension significantly
smaller than the telescope resolution; hence, in the map
domain, they are imprinted as compact sources with the
telescope’s point-spread function morphology.

Considering typical observation parameters for AzTEC
during the 2018 observation campaign (a scanning speed tuned
to 50″ s−1 and an aperture diameter of 30 m), it leads to a
pointlike source maximum temporal width of ∼4.4 s, which we
will use in Section 4.1 as the expected signal width to generate
our synthetic data.

We can address two general types of millimeter observations:
The most frequent are pointing calibrations; these are typically
two-minute-long integrations on bright pointlike sources (a few
janskys) used to calibrate the telescope position accuracy. The
other type is science observations, consisting of integrations that
can last from a few to hundreds of minutes. In most cases,
science objects are much fainter than well-known calibration
sources. However, clean and quick pointing calibrations are
crucial to ensure the quality of scientific data and optimize the
telescope’s time. A successful deep-learning strategy can
potentially help to improve both the pointing-calibration
efficiency and science observations. Although intensive compu-
tational effort needs to be invested in the training stages, the
employed time for inferences is much shorter.

2.1. Physical Modeling of Scintillation Noise in Millimeter
Astronomy

To obtain theoretical predictions for the atmospheric noise
typically recorded by continuum cameras, in the Appendix, we
develop the physics of electromagnetic waves propagating
through the turbulent atmosphere. We are particularly inter-
ested in the random variations of the log-amplitude

( )c º E Elog 1 0 , where E1 represents a small fluctuation
around the electric mean-field value E0, which in turn relates
to the observed intensity as (I− I0)/I0= |E1|

2/|E0|
2= e2χ

(Tatarskii 1961, 1971). We can see that χ is very useful in

quantifying the intensity variations induced by the turbulent
atmosphere, also known as scintillation.
In the wet atmosphere, millimeter waves’ scintillation is

caused by refraction and absorption turbulent fluctuations,
which are caused by temperature, humidity, and pressure
fluctuations. For infrared and millimeter wavelengths, refrac-
tion and absorption processes are respectively effectively
captured by the real (nR) and imaginary (nI) parts of the
refractive index. Consequently, the scintillation spectral
density, Pχ(ω), defined by

( ) ( )òc w wá ñ = cd P , 22

is given by Pχ(ω)≈ PR(ω)+ PI(ω), where PR is the contrib-
ution from nR and PI corresponds to nI. Here ω is the Fourier
temporal frequency. The cross-correlated spectral density PIR

appearing in Equation (A23) is typically much smaller than the
previous two, and so, we ignore it. Considering a telescope
with a circular-aperture radius ar, observing at zenith angle ϑ,
the explicit expressions are
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where k= 2π/λ is the electromagnetic wavenumber, and
κ= 2π/l is the wavenumber associated with the atmosphere
fluctuations. The functions CR and CI are the structure
parameters related, respectively, to nR and nI; Φ0(κ) is the
turbulence spectrum as in Equation (A12); υ is the transverse
wind speed; and J1 is the first-order spherical Bessel function.
The integration variable is the altitude, and it goes from the
observatory altitude above sea level hmin to the troposphere’s
end »h 10max km.
The qualitative behavior of each spectrum is as follows. The

scintillation spectrum due to the real part of the refractive index
behaves as a ω−8/3 power-law for high frequencies, but the
power depicts a plateau over lower frequencies (see Figure 12).
Experimentally, CI

2 has been found to be from 10−3 to 10−7

times smaller than CR
2 (see the Appendix). One might have

naively implied that PI ought to be negligible compared to PR,
but that is only true for higher frequencies. Indeed, the
imaginary part dominates the lower-frequency power. It is
essential to understand the physics involved in these two
frequency domains, especially to plan technological strategies.
For instance, a more sensitive camera with lower thermal noise
or a larger telescope with higher aperture efficiency will
significantly reduce the high-frequency scintillation noise.
However, none of these two technological improvements1 1 Jy = 10−26 W m−2 Hz−1.
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would dramatically reduce the low-frequency scintillation noise
caused by the millimeter waves’ anomalous dispersion.

Early attempts to introduce a model for the atmospheric-
noise temporal power spectrum (Church 1995; Lay 1997)
included explicitly only the refractive-index real-part fluctua-
tions (equivalent to PR), missing the most dominant structure
caused by water molecules, and encoded in the PI spectrum,
corresponding to the imaginary part of the refractive-index
fluctuations. A useful advantage of the IR scintillation spectrum
in Equations (3) and (4) is that they are profile-generic
expressions, i.e., different turbulence models Φ0(κ), structure
parameters ( )C zR

2 , ( )C zI
2 , or wind-velocity profiles υ(z) can be

tested. Consequently, the IR scintillation spectrum can be
ideally adapted by physically motivated parametric approaches
(Errard et al. 2015) to study the atmospheric effects on
astronomical observations.

2.2. Simulation of Atmospheric Temporal Series

If we know the noise spectral density beforehand, we can
generate random realizations of structured atmospheric noise.
Our model in Equations (3) and (4) allows us to generate
simulations based on fundamental physics with the appeal of
clearly interpreted parameters that are under control. However,
in real observations, there can be many systematic effects
introducing several structured-noise levels that are not always
under control. Thus, we need a methodology to regard more
representative observational conditions, such as the site’s
weather and instrumentation.

White Gaussian noise is the simplest example of unstructured
noise, characterized by a constant (or flat) power spectrum,
which implies stationary uncorrelated temporal series (Boyat &
Joshi 2015). One consequence is that the white-noise standard
deviation (std) remains approximately equal regardless of the
temporal location and sample size. Atmospheric noise, on the
other hand, is structured with a characteristic Brownian or 1/f-
like power spectrum (Milotti 2002). Structured noise is not
necessarily stationary; it implies that the global std in a stream
may significantly differ from local values within data patches
(see e.g., Kirchgässner et al. 2012). The simplest way to classify
the complexity of 1/f-like noise is through the negative slope in
log–log scale—the steeper the spectrum, the more complex the
structure. Astronomical observations in millimeter waves
contain both structured noise from the atmosphere and white
noise from instrumentation.

In the presence of structured random noise, it is a common
practice to use a whitening filter to enhance the signal detection
(see, e.g., Cuoco et al. 2004; Allen et al. 2012; Abbott et al.
2016). Conversely, we implement an inverse-whitening trans-
form to generate structured-noise time series, similar to the
atmosphere emission at millimeter wavelengths. For the
following analysis, we simulate sky observations employing
a methodology described by Rodríguez-Montoya et al. (2018)
using a spectral density, either from theoretical considerations
or from observational calibrated data.

Let us assume that  denotes a target spectral density
(derived theoretically or inferred from observations). Likewise,
i denotes a white-noise flat power spectrum. Then, the ith
simulated noisy realization i can be generated by

    {( ) } ( )= +- , 5i i i
1 1 2

where -1 denotes the inverse-Fourier transform operator and
i is a Fourier-transformed random-Gaussian sequence with the

same length as the time stream. Effectively, i allows us to
model small power shifts from the average power spectrum.
Notice that i follows a Gaussian distribution, with correlation
scales that depend on the random combination of  , i,
and i.

2

Thus, the power-spectrum shape (either flat or 1/f-like)
determines the degree of structure in our atmospheric-noise
simulations, and we can generate three levels of structured
noise: (i) the simplest white Gaussian noise is generated with
 = 0, (ii) the IR scintillation noise with  given by
Equations (3) and (4) with added white instrumental noise,
and (iii) mock observational noise generated from an empirical
spectral density. Rather than just picking a single one, we
exploit these three incremental structure levels to train our
neural network and improve overall learning performance.
Figure 1 shows examples of the three types of simulated
structured-noise inputs that we use throughout the neural
network training.

3. Deep-learning and Recurrent Networks

3.1. Neural Networks and Recurrent Connections

Recurrent neural networks (RNNs) are a particularly
attractive deep-learning architecture for applications involving
ordered data. We can understand an RNN cell as a function that
exploits recursiveness to find the current state of a dynamical
variable. Keeping correlations among spaced events is indeed a
powerful learning tool to handle long-standing structures. An
RNN cell morphology is similar to the most basic cell but with
a self-connected loop—namely, a hidden state—that feeds its
own output back a number of times, turning the cell into a
dynamical system that correlates the information between
individual inputs (Cho et al. 2014). The simplest example is the
Jordan RNN cell (Jordan 1997), which is composed of two
units; the first one is a hidden state representing the memory of
the cell,

( ) ( )= + +-h f U x W y b , 6t h h t h t h1

where xt is the current input state and Uh is an input-to-hidden
weight matrix. By the same token, yt−1 is the previous output
state, Wh is an output-to-hidden weight matrix, and bh is a bias
parameter. The function fh is a nonlinear transformation that
produces the current hidden state ht. The second component of
the Jordan RNN cell is in itself the most basic unit used in deep
learning (also called the dense cell), and it produces the output
state in this case,

( ) ( )= +y f V h b , 7t y y t y

in which a hidden-to-output weight matrix Vy multiplies the
hidden state ht, with the addition of a bias parameter by and
nonlinearly transformed by the function fy. The output state yt
can either be fed back to the cell, or delivered to other cells as
their input. The nonlinear transformations fh and fy are called
activation functions and help to assigns relevance to the cell’s
information output. The RNN cell abstracts features of the
temporal sequence in its weight matrices, where Uh is more

2 Non-Gaussianities are expected in actual atmospheric data, and thus, the
spectral density may not contain all relevant information. Nonetheless, our
scintillation model could be combined with iterative techniques like the
Johnson translator system (see, e.g., Wang et al. 2018, 2021) to simulate
atmospheric series with a given skewness and kurtosis.
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sensitive to new external data, and Wt keeps a memory of the
previous state. Because the only purpose of the hidden state ht
is to abstract the sequence’s temporal behavior, the hidden state
ht may have arbitrary dimensions.

As a drawback of recurrent networks, the amount of
information that can be abstracted into a simple RNN unit is
typically short range. Also known as the vanishing gradient
effect (Hochreiter et al. 2001), there is always the risk of
inducing learning degradation over extended time intervals.
Closely related is the problem of exploding gradients (Pascanu
et al. 2013), when cumulative losses increase excessively
and lead to unstable or impossible learning. A better practice
is to use long short-term memory (LSTM) (Hochreiter &
Schmidhuber 1997) to avoid the vanishing and exploding
gradient effects.

The LSTM cell is a discriminating mechanism to either
preserve or discard long-term information. The LSTM cell’s
ability to forget unnecessary information enables itself to keep
temporal correlations for more extended periods. Intuitively, an
LSTM unit internal structure is made up of two hidden
mechanisms that act as pipelines for the information of distinct
temporal scales. The first mechanism performs the operations
of a single recurrent cell, compiling a representation of a few
past data inputs. This hidden state is interpreted as a short-term
memory unit, due to its limited ability to abstract small-extent
behavior. The second mechanism encodes the sequence’s
global behavior, acting as a filter for the most significant long-
term features. This new memory state allows the network to
keep important information that would otherwise be over-
written by new data entries in a short-term memory unit.

In the vanilla LSTM layer (Hochreiter & Schmidhuber 1997),
depicted on the right-hand side of Figure 2, the information
flows through a system of logic gates whose parameters are
trained to learn what information should be preserved or

missed. The forget ft and input it gates can be written as

( )
( ) ( )

= + +
= + +

-

-

f U x W h b

i U x W h b

Sig ,

Sig . 8
t f t f t f

t i t i t i

1

1

Notice that each logic gate has a simple recurrent cell structure,
with the only distinction of their performed task for the LSTM.
The forget gate ft uses the sigmoid activation function to
evaluate the data input xt and the previous hidden state ht−1

(along with their respective weight matrices) and returns
numerical labels between 0 and 1. A label close to zero means
that a specific memory entry is not relevant for the global
understanding of the sequence, and hence, it will be likely
ignored in subsequent iterations. Conversely, a label close to 1
means that the state is relevant and is likely to be preserved.
The second task is to evaluate how relevant the new input data
are, which is done by the input gate it, also using the sigmoid
function and the respective weight matrices. Both ft and it are
then combined to produce a new long-term memory called the
cell state,

◦ ◦ ( ) ( )= + +- -c f c i U x W htanh . 9t t t t c t c t1 1

The Hadamard (or element-wise) product ft◦ct−1 suppresses the
irrelevant features of the past cell state ct−1 and prevents them
from persisting into the new cell state ct. The tanh gate is an
additional recurrent operation used to complement the input
gate it to create a list of candidates integrated into the long-term
memory ct. Finally, the output gate has the role of actually
selecting from the feature candidates contained in the new cell
state ct those that will be transferred to the new hidden state ht.
This operation is just a filtered version of ct, with a simple

Figure 1. The left panel shows noise-realization examples of white Gaussian, IR scintillation, and mock observations in the time domain. The right panel shows a
power spectra average of 200 noise realizations in the frequency domain. Mock observations show higher energy at low frequencies, with an average negative slope
near 1 in log–log space. White noise resembles a flat spectrum with log–log zero slope. IR scintillation noise represents an intermediate complexity used in our training
strategy, with a log–log slope of approximately −1/2. See Sections 4.1 and 4.3 for more details.
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The output state ht can be either used as a hidden state fed back
to the cell or delivered to the next LSTM layer as an input state.

The fact that each network logic gate can (be trained to)
decide what information is more or less relevant (to describe
the data of interest) is a remarkable advantage of the LSTM
cell. In the family of recurrent architectures, the LSTM indeed
represents the state of the art in modeling complex systems that
require large scales of temporal understanding. For a
comprehensive explanation of the LSTM cell internal structure
and its variations, we refer the reader to Hochreiter &
Schmidhuber (1997) and Greff et al. (2017).

3.2. LSTM Network for Time-domain Astronomical Cleaning

Even though the atmosphere evolution is chaotic, inside the
universal inertial regime (see the Appendix), it is possible to
find a timescale in which the fluctuations are coherent and well
described by the spectral density in Equations (3). Conse-
quently, the LSTM cell seems to be a natural choice for
discerning between atmospheric and astrophysical behaviors.
Below, we describe our recurrent architecture implementation
to handle temporal astronomical data.

Given that the astronomical data-reduction process is
performed offline (i.e., after the observation time), we can
modify the LSTM structure to benefit not only from past events
but also from future information. Thus, we choose a many-to-
many input/output configuration: A sliding window replaces

each time segment in the series with a fixed number of past and
future neighbors. We feed every temporal window into the
network with the aim to abstract the neighboring correlations.
Taking even more advantage of future temporal information,

we implement a bidirectional approach (Schuster & Paliwal
1997; Graves & Schmidhuber 2005) that combines two
identical recurrent units into a single layer: one processing
the input series in a right-wise direction, and another
processing the same time series left-wise.3 Recalling the
notation used in Equations (9) and (10), each bidirectional
LSTM layer computes two independent cell states


ct and ¬ct

that encode the long-term memory in the right-wise and left-
wise directions, respectively. Likewise, each bidirectional
LSTM layer produces two hidden states,


ht and

¬
ht . In our

implementation (see the M modules in Figure 2), the merger of
these two states creates the bidirectional LSTM layer output,

( ) ( )


=
¬

y M h h, . 11t t t

The function M is a concatenation operation that ties the states
into a unique output yt, which becomes in turn the input for the
next bidirectional LSTM layer  ¢y xt t.
According to Figure 2, the information flows through our

architecture as follows. A time segment of a data stream xt is
fed into the first bidirectional LSTM layer. The forward layer
sees the sequence in the causal temporal sense, from left to

Figure 2. Visual representation of our deep recurrent model, mainly built up of LSTM units deployed in bidirectional layers. Left: At each training iteration t, a noisy
input window xt is processed by the first LSTM forward and backward layers. The forward LSTM sublayer learns the temporal structure from left to right, while its

twin backward sublayer learns in the opposite direction. An intermediate module M performs a merge of forward

ht and backward

¬
ht hidden states. This operation

yields a new state ¢x with augmented information to feed the upper bidirectional LSTM layer. As a final processing step, a linear dense layer transforms the last layer
output into an object Yt with the predefined output shape. On the right-hand side, the LSTM cell internal structure is exposed. The cell state ct or long-term memory
and the hidden state ht or short-term memory both preserve an internal representation of distinctive temporal scales. The information shared between these two states is
carried out by the forget ft, input it, and output ot logic gates. See Section 3.1 for more details.

3 During the preliminary stages of our model, we explored a recurrent
encoder–decoder configuration (Cho et al. 2014). Yet, the implied high
computational costs did not pair with a meaningful learning loss value
improvement (for our purposes).
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right. The backward layer processes the window simulta-
neously in the reverse direction. The cell states


-ct 1,

¬
+ct 1, and

the hidden states

-ht 1,

¬
+ht 1 are initialized with the outputs from

the preceding and following temporal windows. The forward
and backward LSTM cells produce two hidden states


ht and

¬
ht

that are joined by a merge module M and then delivered as the
input ¢x t to the next bidirectional layer. In this way, the
information obtained from both temporal analyzes is packed
into a new single matrix representation. The process continues
up to the deepest bidirectional LSTM layer contained in the
network. At the last processing stage, there is a simple dense
layer (without any recurrent connection; see Equation (7)),
which acts just as a parametric point-wise operation to map the
LSTM output into the user-defined temporal size (we choose
this hyperparameter value in Section 4.2).

4. Numerical Experiments

In the previous sections, we explained our expected signal’s
physical and statistical properties, connected to the deep-learning
theoretical framework for our architecture’s design. In this
section, we describe the data preparation to train the network, the
choices for hyperparameter values, and the training strategy that
we adopt to produce the results discussed in the next section.

4.1. Data Preparation

The effectiveness of deep-learning algorithms relies on the
quality of training: the more massive and accurate the data sets,
the higher are the expectations for improvement. These two
conditions are obviously uncommon in many real-world
applications and particularly for unexplored astronomical sources,
for which the underlying brightness is a priori unknown and

always mixed with foregrounds and instrumental noise. Notwith-
standing these, it is possible to train the network with synthetic
data created on the basis of physical models, intending to transfer
the gained learning to more realistic applications. Provided that
the mock and real data domains are closely related, it has been
extensively documented that the knowledge can be transferred
from the former to the latter domain (Pan & Yang 2009).
We generate temporal series with pointlike source random

insertions, choosing their statistical properties according to
instrumental and observation specifications, as described in
Section 2. The network processes a single-bolometer recording
as an independent input. As Figures 1 and 3 exemplify, we
consider three types of structured noise with increasing
complexity: (i) White Gaussian noise is the less structured
noise under consideration. Despite its unrealistic simplicity,
this noise distribution works as a handy starting point for our
training strategy. (ii) IR scintillation noise samples represent a
complexity midway point. We choose an intermediate value of
10−5 for the ratio PI/PR in our simulations (also see the
Appendix). (iii) Mock observations synthesized from real data
are our closest approximations to the observed atmospheric
foreground and expected instrumental features.
We perform a few preprocessing steps for the real AzTEC

temporal series to make them numerically more treatable. We
utilize the 2018 season real AzTEC observations with a 0.17
opacity, representing remarkably bad weather nights. We apply
PCA to a 110 time-stream set and then subtract the first two
principal components. This process removes typically the
longest correlations linked mainly to bad weather conditions.4

Figure 3. Examples of three levels of the structured noise and target signals (see Sections 2.2 and 4.1 for details on data preparation) filtered by our recurrent neural
network. The gray lines are noisy inputs, the three of them with an initial signal-to-noise ratio of 0.8; black lines represent a simulated astronomical signal dubbed as
the target; the light turquoise lines are the network inferences of the underlying astronomical signal, which are detected after the cleaning process with a signal-to-noise
ratio above 3. For comparison, a matched-filtered (MF, Section 4.4) sequence is shown (orange line), failing to detect any source at this very low feeding S/N. (See
Figure 6 for a zoom-in of the source detection windows.)

4 PCA can partially remove astronomical emission, too. Thus, a more
accurate preprocessing methodology or a flux calibration (as in Downes et al.
2012) could be employed in the future with real-time observations.
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Meanwhile, the remaining noise is still considerably more
structured than the IR scintillation and white Gaussian
simulations (see Figure 1). Finally, we pick a detector located
at the edge of the array; because it is off source most of the
time, the atmospheric flux dominates this detector’s time
stream, and we can conveniently use it for further simulation
steps. Training the neural network with realistic simulations
allows us to build any features from other systematic effects
(e.g.,, the faint confusion background) into the LSTM
parameters, helping the network to recognize the embedded
targets.

Next, for the three types of noise, we fit and subtract a third-
degree polynomial that allows us to work with centered data
and filters out the larger scales. We proceed to insert pointlike
source signals into the simulated noisy time streams. Due to
long-range nonstationarity in some structured-noise samples,5

we should avoid interpreting the global std as the relevant level
of noise. The time-stream size is chosen from technical
limitations such as computational memory or the telescope’s
time so there is nothing special about the global std. Instead, we
choose the full pointlike source extent (4.4 s at 6σ) to compute
the local std as the reference noise. We adopt the following
procedure: We randomly select a time segment that matches the
pointlike source; then, we measure the noise std inside 4.4 s
and adjust the pointlike source amplitude to meet the desired
signal-to-noise ratio (S/N). We name this induced complexity
feeding S/N, calculated as the maximum signal’s amplitude
ratio to the local noise level. This procedure allows us to
control the complexity presented to the deep neural network at
every training stage.

By construction, for any of the three types of noise, the
source brightness relative to the local noise is the only relevant
independent variable to classify the sources according to
complexity. Thus, as a final preprocessing step, we scale the
temporal series to have the same standard deviation. It means
that our simulations could be interpreted either as bright
calibration sources immersed in very noisy data or as dim
sources in moderate noise.

We stress that our time-stream simulator feeds the network
with unique random realizations of structured noise. This
aspect is especially relevant because deep neural networks are
vulnerable to overfitting when training is performed over long
periods using a finite data set. In our case, however, we can
generate virtually as many random realizations as the training
procedure may require, while each noise pattern passes through
the network only once.

4.2. Hyperparameters

Before designing the neural network architecture, we first
need to choose the batch dimensions, i.e., the number of time
steps feeding the LSTM. Then, the network uses each target
stream and its corresponding inference to compute the relative
loss function that serves as a reference to update the network
weights. We can significantly reduce the memory resources by
splitting the batch into a group of windows, which cannot be
arbitrarily small. Although pointlike source signals are a few
seconds long, the LSTM needs to abstract longer timescales to
assemble the long-term memory structure patterns. Thus, the
window size must be at least broader than the pointlike source

length. Moreover, individual windows should conveniently
share some intermediate time steps to help the network perform
continuous inferences through cutting edges.
Balancing the underlying application requirements and

computational costs, we choose a batch size of 1200 time
steps (equivalent to 18.7 s), containing two 700 time-step-long
windows, sharing 100 neighbors on both sides. It means that
for each window, 700 time steps are fed into the network to
infer the mid 500 time steps. At this point, the batches are ready
to feed the network.
A deep neural network design requires selecting a set of

hyperparameters representing the network capabilities and
computational constraints: More extensive networks imply
more massive processing time and memory. To avoid the
exponential complexity involved in a blind search (i.e.,
exploring every combination inside the hyperparameter space
grid), some systematic approaches like the random search,
Bayesian models, and genetic algorithms, among others, can be
used to produce efficient results (Luo 2016). Nonetheless, naive
or expert-based explorations have not been entirely suboptimal
in a wide variety of applications (Bergstra et al. 2011).
Our approach consists of a semisystematic exploration to

find suitable hyperparameter values. First, we set up an initial
framework with a simple configuration: We employ the well-
known Adam optimization algorithm (Kingma & Ba 2014),
looking to minimize the mean square error (MSE) as the loss
function. Then, we perform a two-step hyperparameter search
corresponding to the size of the architecture. We explore the
network’s depth (number of layers) and width (number of cells
per layer) parameters, monitoring the loss function to find the
best performance. The depth dimension is explored from one to
seven LSTM layers with increments of one. We sweep the
width dimension in the range of 40 to 250 cells in each layer
with increments of 30 cells. The depth–width search space is
delimited into a 7× 9 grid using a fixed learning rate equal to
10−3. Finally, we perform a fine-tuning of the learning
framework by iterating over Adam’s learning rate range
between 10−3 and 10−9. As a result, we instantiate the model
proposed in Section 3.2 with 190 bidirectional LSTM cells,
four deep layers and a 10−5 value for Adam’s learning rate.

4.3. Training

The structure degree reached by the atmospheric noise
represents quite a tough starting point to be handled by any
parametric architecture, especially for weak-brightness sources.
Nevertheless, a training strategy inspired by curriculum
(Zaremba & Sutskever 2014) and transfer learning (Weiss
et al. 2016) is—as we see below—able to perform a gradual
complexity exploration over several levels of structure and
feeding S/N.
Transfer and curriculum learning are techniques to share

knowledge between machine-learning models. On the one
hand, curriculum learning aims for intuitive exploration,
beginning with simple examples and gradually escalating
complexity. On the other hand, transfer learning takes
advantage of models trained in a data domain, using their
resulting parameter values (or part of them) as initialization
states to find better results in a related but new data domain.
To perform stable training with the highest attainable

precision, we propose an incremental learning approach that
combines transfer and curriculum learning to capture two
complexity axes: the initial S/N and the type of noise structure.

5 In a series coming from a non-flat power spectrum, we may have for
instance that std(15s) ≠ std(2s).
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Dubbing curriculum learning as the strategy’s vertical axis, our
application gradually decreases the feeding S/N from 3.5 to
0.1. This procedure helps to accelerate the optimization
convergence by simulating the gradual inclusion of fainter
astrophysical sources. Correspondingly, we dub transfer
learning as the strategy’s horizontal axis: At each feeding-S/
N level, the network explores three structure degrees: white
Gaussian, IR scintillation, and mock observations. This
procedure pretends to mimic the conditions of incrementally
worse weather.

We monitor the learning evolution along the training stages
regarding the loss function (the target-inference MSE) at each
training iteration, which is good practice for early identification
of missed behaviors such as overfitting or deficient learning
performance. Monitoring the loss curve at intermediate stages
also allows us to register variations from different training
strategies. For example, the simplest approach would be the
straightforward strategy, in which the network is trained
directly with the highest complexity, in this case, the noisier
mock observations.

However, we probe three more learning strategies (explained
below), each one exploring different routes of incremental
complexity into a discretized two-dimensional space. Each
training strategy path’s design is illustrated in Figure 4. After a
full network training, each strategy is tested on the same data
set of 1250 series with mock-observation noise and a randomly
varying feeding S/N between 0.1 and 3.5. In this test, the same
data set is used to make a fair comparison of the learning
strategies. In Figure 5, we record the loss-function value at each
iteration for every tested training strategy. The thick lines
represent the loss-function moving average inside a 25 iteration

local window, and the colored bands represent the corresp-
onding moving std.
For the straightforward strategy, we can see in Figure 5 that

the loss function displays a sudden dropout at the beginning of
training (600 iterations), due to the initial network adaptation
to the data domain. A few steps later (600 iterations), a
plateau can be noticed, albeit with disadvantageous dispersion
amounts. We call the second strategy naive curriculum learning
(NCL), which consists of preliminary training over mock
observations, with constant feeding-S/N decrements from 3.5
to 0.1 in steps of 0.1. At any given feeding-S/N bin, when no
significant improvement in the last 400 iterations is noticed, the
network proceeds to the next feeding-S/N bin. We notice that
NCL considerably improves the loss mean value compared to
the straightforward strategy, albeit the dispersion levels are still
comparable. Besides, the NCL training checkpoint performs
poorly with white Gaussian or IR scintillation noise inferences.
This lack of robustness against structure degree variations
suggests the main disadvantage of NCL.
Thus, we test a third strategy called transfer-curriculum

learning (TCL), which alternates transfer learning iterations
(using sequentially white Gaussian, IR scintillation, and mock
observations) amid intermediate stages of curriculum learning.
TCL reports a slightly lower average loss and less dispersion
than NCL, but with the added benefit of performing better with
the other two types of noise.
Notice that the NCL and TCL loss curves suffer considerable

variability, some of them as large as those reported by the
straightforward strategy. This dispersion is rooted in the
network’s adaptation to the latest stages while forgetting
previous feeding-S/N levels, an effect also known as
catastrophic forgetting (McCloskey & Cohen 1989; Ratcliff
1990). It means that a chronically poor understanding of past
training samples might pile up as the relative complexity
increases. This effect would appear after long periods of
training and an overspecialization of the latest feeding-S/
N bins.
Inspired by a human learning strategy known as spaced

repetition,6 we address the catastrophic forgetting problem by
adding intermediate training stages to review the past complex-
ities. We call this strategy transfer-curriculum learning with
spaced reviews (TCL-SR). After each transfer and curriculum
learning round (between two feeding-S/N bins), we schedule a
review of the previous feeding-S/N range. By randomly
choosing the feeding S/N, the network can “remember” high-
S/N data distributions while continuing to learn lower-S/N
complexities. During every reviewing stage, the iteration
number is controlled on the fly by the loss-function
convergence; after 400 iterations without significant MSE
improvement, the training scheduler triggers the next TCL-SR
stage to pursue the following complexity level. In comparison,
the TCL-SR strategy yields better results in terms of narrower
variability and lower mean values for the loss function.
Although the invested training time in the TCL-SR strategy
is more significant than the straightforward strategy, the
benefits are appreciable, especially at late stages, when the
low-S/N and high-structured-noise levels pose a more
challenging task for network inferences.

Figure 4. Pictogram of the paths taken by each training strategy tested. It
should be read from the lower-left to the upper-right corner. The exploration
space is built onto two axes: the feeding S/N on the vertical axis and the noise
complexity level on the horizontal axis. The upper-right dotted circle represents
the straightforward strategy. The red-solid line going upwards at the right
corresponds to the naive curriculum learning strategy. The blue-solid zigzag
line represents transfer + curriculum learning. Finally, the green downward-
pointing arrows denote the transfer + curriculum + reviews strategy. (See
Section 4.3 for details.)

6 In cognitive psychology and pedagogy, spaced repetition is a learning
technique based on the periodic review of concepts to reduce the probability of
forgetting information after long studying periods.
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Thus, we implement the TCL-SR strategy to train our LSTM
network; the training procedure continues until an improve-
ment in the loss function is no longer noticeable. Then, the
optimization module may be disconnected, and the free
parameters get frozen.

4.4. Matched Filtering

We implement matched filtering (MF) to compare our
trained network results to conventional signal-processing
techniques. A similar approach has been used as a baseline to
compare the performance of neural networks, particularly in
gravitational-wave experiments (Cuoco et al. 2004; Allen et al.
2012; Abbott et al. 2016). The MF is defined in the frequency
domain by Turin (1960),








( ) ( )
( )

( )w
w
w

= , 12
N

where  is a template for the signal of interest (the star
superscript denotes complex conjugation), and  ( )wN is the
noise spectral density. The MF is applied to the raw signal D(ω)
in Fourier space, and the filtered signal is computed from the
inverse-Fourier transform,

 ˆ ( ) ( { ( ) ( )}) ( )w w= -Rs t D . 131

For our purposes, the template  is prepared to match the
pointlike-source shape used before, and D denotes in this
context the astrophysical signal embedded in the noisy data sets
described in previous sections.

Although the MF can recover compact astronomical sources
above a noise threshold, it is well known in general that the MF
has a few limitations (Allen et al. 2012): It is not robust against
non-white-noise artifacts, and as the signal is not precisely
known, the filter output S/N is strongly dependent on the
template. Thus, MF is expected to underperform our trained
network, especially with highly structured noise, and yield
more false positives from low-S/N raw data.

5. Results

We are now interested in performing a statistical character-
ization of the network’s inferences through incremental com-
plexity levels. Including white Gaussian and IR scintillation

noise in this characterization is instructive to contextualize the
results obtained with mock observations. Figure 3 shows three
examples of network inferences with three types of noise;
altogether, they exemplify the network’s inference of a faint
source (feeding S/N= 0.8) embedded in incremental levels of
structured noise. Another set of time streams with higher feeding
S/Ns is shown in the upper panel of Figure 6, focusing on the
detection windows.
First, we need to define a criterion for window detection (in a

single shot). We see that for any given realization of
atmospheric noise Ai and an astrophysical pointlike source si,
the network inference ŝi is a noisy representation of the true
signal si. Notice that low-frequency modes could dominate the
residual atmospheric noise. To estimate this residual noise, we
feed the network with Ai (which is equivalent to zero signal)
and obtain an inference dubbed as Âi, which is an
approximation of the residual noise pattern contained in ŝi.
Henceforth, we denote the level of residual noise as std(Âi) and
look for peaks in ŝi above 3 × std(Âi), labeling them as
detection candidates. Because we know beforehand our
simulated signal, we can classify each detection as a true
positive or false positive. We also verify that the inference
matches the target temporal location, allowing slight temporal
displacements within a tolerance of ∼0.17 s, which is near one-
fourth of the source width.
Using this criterion, we can count the number of sources

successfully detected after a single inference over each
structured-noise type. We generate a large number of new
white Gaussian, IR scintillation, and mock-observation noisy
data sets, each made of 150,000 realizations, created with
feeding S/N= 0.1, 0.2, ..., 3.5. In Figure 7, we see the recovery
rate as a function of feeding S/N; it is higher for the less
structured noise, reaching 95% slightly above a feeding S/N of
0.6 for white Gaussian, 0.8 for IR scintillation, and 1 for mock
observations. Further, we find false-positive counts below 10%
at feeding S/N 0.3.
To assert a comparison to a classical method, we test our MF

implementation (Section 4.4) over another set of 150,000
random realizations per type of noise and compute the source
detection rate in Figure 7. As it might have been anticipated,
we see that the MF technique cannot recover as many
astronomical sources as our trained network, especially at
low S/N. For example, with a feeding S/N equal to 1, the MF

Figure 5. Learning curves along the first 1250 training iterations with mock-observation noise and random feeding S/Ns between 0.1 and 3.1. Previously, each model
was thoroughly trained according to the learning strategies drawn in Figure 4. Each curve is measured as the average MSE evolution, and the colored regions represent
the corresponding dispersion. Four training strategies are tested, of which the straightforward strategy is the least effective, while our proposed strategy of curriculum
transfer learning with spaced reviews exhibits the best performance. (See Section 4.3 for further discussion.)
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detection rates are ;35% for white Gaussian noise, 34% for IR
scintillation, and 4.4% for mock observations. These figures are
in sharp contrast to our neural network results, generating a
detection rate above 90% for the same feeding S/N (see
Figure 7). Further, with MF, we find ∼20% false positives at
feeding S/N 1.

Even when an astrophysical source is recovered in a single-
shot inference (as Figure 7 shows), it does not necessarily
imply an accurate measurement. We know that atmospheric-
noise residuals harm single-shot temporal samplings, causing
distorted flux measurements. However, given the random
nature of atmospheric noise, residuals are expected to introduce
random departures from the actual flux, which, on average,
should cancel out at every pixel location in the map domain.

Henceforth, we use the term telescope measurement as the
average of a large number of stacked inferences in the time
domain. This term is reminiscent of what happens in the map
domain, where the final measurement of an astronomical source
is mainly the average of many (suitably cleaned) temporal
samples. Consequently, although we do not address the map-
making problem in our current analysis, we can, nonetheless,
assert the expected map-domain detection quality.

Figure 6 (lower panel) shows the telescope measurements of
a ∼1.3 mJy pointlike source after 50 stacked inferences. If the
noise residuals were unstructured, the noise reduction after
stacking 50 network inferences would have been ~1 50 , or
∼85%. However, we record an improvement of roughly 66%,
indicating that the residual noise left by our network still has
some degree of structure. We observe that the peak position is

Figure 6. Upper panels: single-shot inferences of a ∼1.3 mJy source made by our network and MF. While in Figure 3, gray lines denote raw atmospheric noise, here,
gray lines represent atmospheric-noise residuals (denoted by Âi in the text) after our network-based filtering. (MF noise residuals are not shown.) The horizontal
colored solid lines represent the 1σ network-residual noise level in the complete batch, while the orange dashed lines are the size of the MF-residual noise. The
network inferences (denoted as ŝi) are the colored noisy lines near the target (si), and the MF inferences are the orange solid lines. Lower panels: telescope
measurements of the same sources after averaging 50 inferences of the same signal embedded in different noise realizations. The horizontal colored lines represent the
corresponding 1σ residual noise levels in the complete batch. The telescope noise reduction from single-network inferences accounts for roughly 66% in these
examples. This S/N is regarded as an approximation of the one that could be attained by a full-array integration in the map domain (see also Figure 11).

Figure 7. Source detection rate as a function of feeding S/N. The curves
quantify the fraction of the total number of simulated sources that are
successfully cleaned and detected above a 3σ noise level after a single-shot
network or MF inference. Our neural network recovers a more significant
fraction of sources than the MF. For example, the MF completeness for feeding
S/N = 1 is ;35%, 34%, and 4.4% for white Gaussian, IR scintillation, and
mock observations, respectively. In contrast, our neural network produces a
source detection above 95% for the same feeding S/N.
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accurately recovered, though the inferred pointlike source is
broadened compared to the original target, clearly as an
accumulated effect of small temporal shifts around the signal’s
peak. Atmospheric effects well known in astronomy as blurring
or wandering are similar to the observed accumulated beam
broadening (Tatarskii 1961, 1971; Wheelon 2001). For
comparison, MF inferences in Figure 6 are significantly less
accurate; even after being stacked to form telescope measure-
ments, the average profile loses information at the skirts of the
flux distribution. Moreover, notice that our network’s 1σ
residual noise is much smaller than the level of MF-residual
noise in Figure 6.

Some sort of calibration is typically necessary for any
cleaning methodology (see, e.g., Downes et al. 2012 and
Rodríguez-Montoya et al. 2018). We can use telescope
measurements not only to characterize the network’s inferences
but even more important to design a flux calibration procedure,
which will be critical by the time when real observational data
from any new-generation instrument will be available and
processed by a scaled version of our current architecture. We
split the flux range into 14 bins and generate 2000 noise
realizations for each flux bin. We perform a Gaussian-curve fit
to each averaged signal to measure the source flux and
statistical error. From the 14 telescope measurements obtained,
as shown in Figure 8, we see that they differ from the ideal one-
to-one flux-correspondence line. Then, we perform a poly-
nomial fit that we can use to calibrate subsequent network
detection.

To verify the calibration effectiveness, we utilize, once
again, our 150,000 noisy data realizations but correct the
network flux measurements with the telescope measurements’
best fit. The resulting cloud of calibrated flux points appears in
Figure 9. Vertical error bars denote the 1σ dispersion amount.
Shaded regions represent the typical 1σ feeding-error bar that
was used to generate these simulations. For each type of noise,
the dispersion-to-feeding-error ratio is 0.27 for white
Gaussian, 0.29 for IR scintillation, and 0.44 for mock
observations. Performing a linear fit to the calibrated cloud of
flux points, we find a good agreement with the ideal one-to-one
correspondence line, indicating a good calibration. Subtracting
the true flux and drawing the corresponding histograms on
Figure 10, we can observe that the random distortion
distributions tend to be symmetric, with a skewness-to-std
ratio of 0.70 for white Gaussian, 0.63 for IR scintillation,
and 0.70 for mock observations. Thus, as we anticipated, we
can assert that random flux distortions will indeed cancel out in
the map domain, provided that they have been correctly
calibrated.
From Figures 6, 8, and 9, we see that mock observations

display comparatively lower recovery rates, larger flux bias,
and more scattered dispersion with respect to those of white
Gaussian and IR scintillation noise. We attribute this behavior
to the structure degree contained in mock-observation noise
and the underlying instrumental systematic features that are
likely present in these more realistic simulations. Notwith-
standing these, in preliminary setups, we also identified that the

Figure 8. Flux calibration of network inferences. For each flux bin, 2000 network inferences are stacked, and an average signal is statistically inferred. The error bars
represent the uncertainty in the amplitude of the pointlike source signal. The error bars joining curve represent a polynomial fit that can be used to calibrate posterior
network inferences.

Figure 9. Comparison of network-inferred source fluxes vs. the real ones for the three types of simulated noise. Shaded regions represent 1σ dispersion of the feeding
noise. Vertical error bars represent the inferred flux’s 1σ dispersion (per flux bin of 0.2 mJy) due to atmospheric residuals. The cloud of dots is a subrepresentative
sample of the 150,000 total inferences per type of noise.
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training strategy could reduce both systematics. Indeed, to
compensate for the higher complexity of low-feeding-S/N
samples, our TCL-SR training strategy weighs more on the
latest reviewing stages, having lower flux sources. This scheme
increases the recovery of weak sources (Figure 7), reduces the
random distortion dispersions (Figure 9), and explains the
overestimations at low fluxes in Figure 8 (which we correct
through flux calibration).

On the other hand, notice the significant noise-level drop in
the telescope measurements in Figure 6. This improvement is

more clearly represented in Figure 11, where we show the S/N
obtained from mock observations (only) as a function of flux.
The single measurements’ S/N is computed as the expectation
value of the 150,000 total inferences (previously used for
Figure 7). The telescope measurements’ S/N is computed
directly from their corresponding error bars (see Figure 8). Both
MF and our neural network inferences are represented in
Figure 11. For example, we see that a pointlike source of 1 mJy,
recorded in mock-observation raw data with feeding S/N= 1.0,
is expected to be measured by our neural network with an S/N
between ∼5–13. Likewise, after enough samples, the same
source is expected to be measured by the telescope with an S/N
of ∼27. In contrast, a single MF inference of a 1 mJy source is
expected with an S/N below ∼2.5, while an MF-telescope
measurement at the same flux would only slightly improve the
S/N. MF-telescope measurements show a maximum S/N at
fluxes above ∼2.5 mJy. This plateau is explained by the
information loss at the skirts of the MF inference profile (as
shown in Figure 6), which is intensified for brighter sources.
Overall, our trained network reports a significant S/N
enhancement of astrophysical sources with respect to raw
signals and is superior to our tested MF technique.
As a side note, it is worth mentioning that our network

obtained well-behaved inferences on temporal series generated
from a spectral density absent in the training data sets. Given
the variability of climate conditions along different observation
nights, this capability to infer from diverse noise structures is
an advantageous transfer learning capability to be further
explored.
We should finally specify that our model was built in

TENSORFLOW (Abadi et al. 2016) and trained in a tower-data
configuration. The acceleration hardware consists of four Volta-
100. The total training procedure required nearly 144 hr of GPU
time. The final frozen model takes up 520 Mb in memory.

6. Conclusions

Structured noise in the time domain poses a significant
challenge for communications and astronomy, especially under
low-S/N conditions. Here, we have shown that a deep-learning
approach with a representative training data set could
significantly advance the treatment of structured noise. This
contribution is of great interest for ground-based infrared and
millimeter-wave astronomy in the advent of a new technolo-
gical generation of continuum cameras and large telescopes
because the turbulent atmosphere of Earth introduces highly
structured noise that can be removed only through advanced
data-processing techniques and physical modeling.
We propose a bidirectional RNN model with the ability to

abstract long- and short-term nonlinear features from sequential
data. Our architecture consists of bidirectional LSTM cells that
assemble a many-to-many input/output configuration. We
utilize sliding windows of atmospheric noise with an embedded
astrophysical signal to feed and train the network to retrieve a
clean version of the signal. This configuration allows us to
capture some of the larger atmospheric fluctuations while
optimizing memory space and processing capabilities.
Because neural networks need to learn from large amounts of

representative data, we develop and present here a complete
model for the IR scintillation spectral density, taking into account
the Kolmogorov–Obukhov (KO) theory, the dry-air turbulent
fluctuations (real part of the refractive index), and the anomalous
dispersion caused by water-molecule emission lines (imaginary

Figure 10. Distributions of random flux distortions on network inferences
caused by atmospheric-noise residuals, using the three types of structured noise.

Figure 11. S/N enhancement from mock-observation noisy series. The
ensemble average upon 150,000 independent realizations is shown to exhibit
the network and MF detectability improvement. The curves represent the
incrementally larger S/N per source flux in the case of raw data (feeding S/N),
network and MF single-shot inferences, and telescope measurements.
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part of the refractive index). Furthermore, we generate synthetic
observations to train the network with a realistic type of noise,
containing intrinsic structures induced possibly by instrumental
effects. We have tried four training strategies and adopt our TCL-
SR strategy, a useful combination of curriculum and transfer
learning with intermediate reviewing blocks.

We test our trained network with several complexity levels,
reporting more than 95% of source recovery (see Figure 7) at
feeding S/N 0.6, 0.8, and 1, in the cases of white Gaussian, IR
scintillation, and mock observational noise, respectively. We
characterize random flux distortions caused by atmospheric-noise
residuals, helping us design an efficient TCL-SR training strategy
and calibrate inferences against flux bias. After an effective
calibration, random flux distortions cancel out on average,
leading to unbiased statistical measurements. It means that
atmospheric-noise residuals shall be diluted in the map domain,
provided a large enough number of temporal samples are stacked
at every pixel. Furthermore, our network reports a significant
S/N enhancement of astronomical signals (see Figure 11). We
notice that the network (single-shot) measurements improve the
S/N from ∼5 to 44 times, on average, compared to raw data.
Meanwhile, the telescope (statistical) measurements improve the
S/N∼19–71 times compared to raw data.

By comparison, our tests with the simple MF technique
deliver a poor detection rate on single inferences and look
nonrobust to handle different nonwhite Gaussian noise complex-
ities (more sophisticated versions like the adaptive MF may
yield better results, though; Robey et al. 1992). Thus, we assert
that our neural network presents the potential of a much more
efficient approach to converge to accurate astrophysical
measurements than more traditional filtering methods.

We conclude that our deep-learning methodology reports a
satisfactory cleaning performance over structured-noise temporal
series and considerably high astronomical-signal enhancement.
Additionally, our training strategy shows some evidence of
effectiveness over diverse degrees of simulated noise structure
(using spectral densities not contained in the training data set).

It is worth stressing that although we have focused on
pointlike sources, they represent a wide variety of applications
for extragalactic astronomy, ranging from telescope-pointing
calibrations to the observation of far and faint submillimeter
galaxies. Regarding new-generation instruments, both atmo-
spheric and pointlike source simulations are fairly representa-
tive realizations of the expected data. Nevertheless, more
specialized simulations capturing each instrument’s particular
features may be generated from their observational data.

Our present study may be extended in many ways. For
instance, growing the LSTM’s long-term memory could make it
possible to abstract longer correlations to handle higher-structure
degrees or recover fainter sources. Mechanisms such as Attention
Models (Vaswani et al. 2017) or Compressive Transformers (Rae
et al. 2019) could provide interesting improvements as well.
Multifeature networks may be another route for further studies,
as it can be useful to train the network with environmental data
taken at the observation site. For example, it would be useful to
perform independent measurements of the temperature and
specific-humidity structure parameters along the troposphere,
which are well known to correlate with the recorded structured
noise. In this direction, our physical IR scintillation model may
be beneficial for further investigations attempting to disentangle
the scintillation noise from a signal propagating through Earth’s
atmosphere. In turn, deep-learning research applied to

atmospheric sciences could provide a parametric characterization
of environmental variables from rough data, understanding
which is of great interest not only for astronomy but also for a
wide variety of fields where turbulence is involved.
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Appendix
Propagation of Millimeter Waves through the Turbulent

Atmosphere

In this appendix, we review atmospheric-turbulence physics
responsible for imprinting highly structured noise on the
recorded signals. Earth’s atmosphere is a very complex medium;
even during calm nights ideal for astronomical observations,
turbulent fluctuations of wind velocity, air temperature,
pressure, and specific humidity dominate the atmosphere
dynamics. Although these thermodynamic variables are studied
as climate phenomena, their small perturbations are entirely
chaotic and make any deterministic description impossible.
Fortunately, Kolmogorov’s theory (Pope 2000; Nieuwstadt

et al. 2016; Vallis 2017) provides a successful description of
turbulent phenomena by distinguishing three physical scales:
(i) the outer scale L0, characterized by large fluctuations
(eddies) that are responsible for injecting mechanical energy
into the system through progressive decays to smaller and
smaller eddies. This energy cascade proceeds without (sig-
nificant) loss down to (ii) the inner scale l0, where, due to the
air viscosity and molecular diffusion, all the energy is finally
dissipated into heat. (iii) The universal inertial regime is an
intermediate range of longitudes l0= l= L0, where dissipation
is negligible and turbulence dynamics is locally homogeneous
and isotropic. For Earth’s atmosphere, typically, L0∼ 5–10 km
and l0∼ 1 mm. Further, at millimeter wavelengths, light
interacts mainly along its path through the troposphere, which
has a height of H∼ 10 km. For a receiver pointing to a zenith
angle θ, the Fresnel length (Wheelon 2001, 2003) (which is
comparable to the size of eddies causing light diffraction) is at
most l qH sec . Because, for typical observation angles, it is
true that  l ql H Lsec0 0, Kolmogorov’s universal
inertial regime provides a proper prescription of the atmo-
spheric turbulence affecting millimeter astronomy.

A.1. Wave Equations and the Turbulence Description

The theory of wave propagation through turbulent media was
developed in Tatarskii’s (1961) seminal treatise (Tatarskii 1961),
followed by his own review (Tatarskii 1971). Subsequent
extensions have been summarized in more recent reviews
(Beland 1993; Wheelon 2001, 2003; Andrews & Phillips 2005).
However, the fluctuations in the refractive index’s imaginary
part—which account for absorption and reemission (anomalous
dispersion) of light—are often overlooked. Given that the former
is a dominant effect at infrared and millimeter wavelengths,
below, we shall review the equations governing the propagation
of infrared light through a turbulent atmosphere.
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An electromagnetic wave propagates through the atmosphere
obeying the wave equation

( ) ( ) ( ) ( ) + =r r rE k n E 0, A12 2 2

where E is a component of the electric field, k= |k| is the
wavenumber amplitude, and n(r) is the atmosphere’s refractive
index. The random nature of n(r) prevents us from obtaining
any exact solution to the wave equation. Nevertheless,
approximate descriptions are still possible, like the Rytov
approximation, which uses a transformation E(r)= E0(r) e

ψ( r)

in order to perform a series expansion in terms of the surrogate
function ψ= ψ0+ ψ1+ ψ2+ ..., where the field E0 obeys the
vacuum wave equation.

We can describe the random behavior of the refractive index
in terms of small variations,

( ) ( ) ( )= +r rn n1 , A21

where we have defined 〈n(r)〉= 1. In nature, n1(r)= nR(r)−
inI(r) is a complex passive scalar field whose real part is
responsible for variations of the propagating wave due to
refraction, and the imaginary part is responsible for absorption.
For visible light nI is usually negligible; meanwhile, at infrared
and millimeter wavelengths, the atmospheric molecules cause
resonant absorption and reemission of light; thus, anomalous
dispersion is nonnegligible. Considering up to linear terms
(n2≈ 1+ 2n1), we can see that the refractive index conveniently
appears as the source in a first-order wave equation,

( ) ( ) · ( ) ( ) ( )y y y +   = -r r r rk n2 2 . A32
1 0 1

2
1

With an additional transformation ( ) ( ) ( )y = y-r rQ e r
1 0 , one

recovers the familiar Helmholtz equation,

( ) ( )( ) + = - yrQ k Q k n e2 , A4r2 2 2
1 0

whose solution is well known in terms of the Green function
( ) ( ∣ ∣)·( ) p= --R r R rG e, 4k R ri ,

( ) ( ) ( )
( )

( ) ( )òy = -r R r
r
r

rk d r G
E

E
n2 , , A5o

o
1

2 3 0

0
1

where ro and r represent the observer and scattering positions,
respectively. The first-order Rytov solution is readily found
from ( ) ( ) ( )= yr rE E e r

o o1 0 o1 . Implicitly, the former equations
contain the expressions for the amplitude A and phase j of the
random-field fluctuation,

( ) ( ) [ ( ( )] ( )f j= +r r rE A iexp , A6o o o1 0

where f0 is the mean-field value of the phase fluctuations. Yet,
instead of the amplitude itself, it is commonly more useful to
work with the log-amplitude ( )c º A Elog 0 . Consequently,
the astronomical-signal fluctuations propagating through the
atmosphere are described by the complex scattering integral,

( ) ( ) ( ) ( )
( )

( ) ( )òc j+ = -r r r r
r
r

ri k d r G
E

E
n2 , . A7o o o

o

2 3 0

0
1

Because the observed light intensity is the field square
amplitude, I/I0= |E1|

2/|E0|
2= e2χ, random variations of χ

are a proxy to quantify the noise induced by the turbulent
atmosphere, an effect also known as scintillation. Notice that as
〈n1〉= 0, we also have 〈χ〉= 0 by definition. However, the
second-order statistical moments are nonnegligible; indeed, the

scintillation noise variance can be computed from

[ ] ( )s c=
á - á ñ ñ

á ñ
» á ñ

I I

I
4 , A8I
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2
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To compute this double integral we need some prior knowledge
of the complex refractive-index autocovariance function

( ) ( )á ¢ ñr rn n1 1 . For cell sizes ∣ ∣ - ¢r rl L0 0, well inside
the universal inertial regime, we know that turbulence is
homogeneous, thus, the autocovariance can only depend on the
relative position - ¢r r but not on the individual vectors r and
¢r . Furthermore, each component of the autocovariance is
associated with its Fourier power spectrum by
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where κ is the eddy wavevector. Moreover, provided the
turbulence is isotropic inside the universal inertial regime, we
know that Φn should not depend on any specific direction but
just on the magnitude of the wavevector κ= 2π/l. According to
a simple dimensional analysis, Kolmogorov and Obukhov
showed that in this approximation Φn is given by the KO
spectrum, ( )k kF = -C0.033n n

2 11 3 (Kolmogorov 1991; Obhu-
kov 1941), where the structure constant C2

n must be determined
experimentally. For cell sizes barely comparable to the outer
scale, ∣ ∣- ¢ r r L0, the KO spectrum is still valid locally, but
Cn
2 needs to be corrected as a function of position. For Earth’s

atmosphere, the structure parameter depends mainly on the
height above the observer ( ) ( )rC C zn n

2 2 . More generally, the
turbulence spectrum can be characterized by

( ) ( ) ( ) ( )k kF = Fz C z; , A11n n
2

0

where from here on the subscript n denotes R, I, or IR. Φ0(κ)
could be written as the original KO spectrum 0.033 κ−11/3, but
because both the outer and dissipation scales suppress power at
the largest and smallest scales, respectively, several empirical
models have been developed in order to account for deviations
from the inertial regime; e.g., Tatarskii’s (1961) spectrum
(Tatarskii 1961), von Kármán’s (1948) spectrum (Von Kar-
man 1948), and yet a more versatile version (that contains the
former two) was proposed by Pope (2000),
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with L0= 5–10 km, cL= 2.6, and p0= 4 as some typical
values. Here we will not consider dissipation scale effects, so
we choose β0= 0.

A careful analysis shows that C2
R depends mainly on the

fluctuations of temperature and humidity, while CI
2 depends

mainly on the humidity fluctuations (Hill et al. 1980). Yet, it is
not possible to determine any of the structure parameters from
first principles, and they have to be measured directly (see e.g.,
(Osborn et al. 2017; Qian et al. 2018; Avila et al. 2019;
Avila 2021). For many years, these kinds of experiments (in
different locations and altitudes) have generated empirical
profiles for ( )C z ;n

2 one of the most popular is the so-called
Hufnagel-Valley 5/7 (HV5/7) model (Beland 1993),
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where υrms is the transverse rms wind speed. Ideally, one
needs special measurements of the structure parameter but
these measurements are not always available. Nonetheless, we
can make use of an empirical profile like the HV5/7 model to
make some approximations. By substituting Equations (A10),
(A11), (A12), and (A13) into Equation (A9), we can estimate
the second-order statistical moments of the astronomical signal
passing through the turbulent atmosphere.

A.2. Scintillation Variance

For simplicity, we may initially think of a point receiver and
take the origin at the receiver position ro= 0. Consider the
incident astronomical signal as a plane wave propagating from
the zenith ( ) = -rE e ikz

0 0 . We can also use the approximation
of a small scattering angle, which is valid under conditions
of weak scattering, in cylindrical coordinates, r + »z2 2

r+z z22 . The argument of the scattering integral is, in this
case,
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This can be substituted in Equation (A9) with the aid of
Equation (A10) to compute the fluctuation autocovariance,
which is the sum of the real, imaginary, and the imaginary-real
contributions,

( )c c c cá ñ = á ñ + á ñ + á ñ. A15R I
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where Φ0(κ) is given in Equation (A12). The integrals over the
angular coordinates are easily done under the assumption of
local isotropy,
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where we have made the line-of-sight change of variable
J =z s z sec , with ϑ the zenith angle, hmin is the altitude at

which the observatory sits on, and hmax is the maximum
relevant height, in our case, the end of the troposphere. Several
investigations (Lee & Harp 1969; Hill et al. 1980; Lüdi et al.
2005; Solignac et al. 2012; Yuan et al. 2015) have shown that
C2
R is typically 103–107 times larger than CI

2. This might
naively lead to the wrong assumption that the imaginary-part
contributions would be negligible with respect to the purely
real part, but as we will see, this is not the case for infrared and
millimeter wavelengths.

A.3. Covariance and Aperture Averaging

Consider a pair of point receivers separated by a (constant)
baseline vector ρb. The spatial covariance between two point
receivers is very similar to the previous computation in
Equations (A17),
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The expressions for the R and IR components are closely
similar. Now, the integration over the angular coordinates
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yields
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where J0 is the zeroth-order spherical Bessel function. Using
Equation (A19), we want to correct the scintillation variance in
Equation (A18) by considering the electromagnetic wave
collecting average of a large telescope. To do so, we can assume
for simplicity a circular dish of radius ar (more realistic aperture
corrections can be considered; Osborn 2015; Osborn et al. 2015).
Then, we need to sum over all point-receiver spatial covariances
located at pair positions ρ1 and ρ2 inside the circular aperture,
such that their (now variable) baseline distance ∣ ∣r rr = - =b 1 2
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2

2
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1 2 1 2
1 2 is ρb� ar. Then, the aper-
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where J1 is the first-order spherical Bessel function. The overall
effect of a large dish is to reduce the scintillation noise. But
notice that the ( )xsin2 function has significantly less overlap
with ( )J x x1

2 2 than ( )xcos2 . Consequently, the noise reduction
is quite notable for the refractive-index real part; however, the
scintillation noise due to the imaginary part remains almost
unchanged irrespective of dish size (see Figure 12).

A.4. Temporal Power Spectrum

For the next step, we need to invoke Taylor’s frozen
turbulence hypothesis (Taylor 1938), which postulates that for
short enough periods of time and for slowly changing wind
velocities, the turbulent atmosphere can be seen as a frozen
screen moving in a horizontal plane along the line of sight. In
other words, Taylor’s hypothesis states an equivalence between
spatial and temporal covariances, allowing us to make the
replacement ρb→ τυ in Equation (A19), in terms of the wind

Figure 12. Theoretical realizations of the scintillation noise (left) and its corresponding spectral density (right), caused by the atmospheric turbulence perturbing the
electromagnetic waves propagating through Earth’s troposphere. The infrared and millimeter waves are affected by the dry air—or real refractive index—turbulent
fluctuations (top panel), but more dominantly, they are affected by the water vapor—or imaginary refractive index—turbulent fluctuations (bottom). A circular telescope
aperture with 30 and 50 m of diameter is considered to compute each noise simulation. Theoretical scintillation power spectra are represented by thick lines (corresponding
to  in Equation (5)). Random-noise realizations are created according to Equation (5) and represented by thin lines in the spectral densities and temporal series.
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velocity transverse component υ(z). Thus, the temporal
covariance can be written as
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with similar expressions for the I and IR components and
where we already include the aperture-averaging factor. The
frequency power density, defined by ( )òc w wá ñ = cd P2 , can be
computed from the Fourier transformation of the temporal
covariance,
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The full power spectrum is the sum of the complex refractive-
index contributions, Pχ= PR(ω)+ PI(ω)+ PIR(ω). The tem-
poral integration can be done analytically under the condition
ω< κυ<∞ , leading us to
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These integrals can be easily evaluated numerically once some
profiles for the structure parameters and wind speed have been
specified. Bufton’s wind profile (Andrews & Phillips 2005) is a
simple empirical model suggesting a Gaussian shape for υ(z),
with a stream peaking barely below the troposphere’s height.
Notice that the structure parameter integration over z
contributes effectively as an overall numerical prefactor; thus,
we can use Equation (A13) as the altitude profile for the three
structure parameters, and modulate parametrically their relative
power.

From the theoretical scintillation spectral density in
Equations (A23), we can generate many simulations of atmo-
spheric temporal series using Equation (5). Figure 12 exemplifies
these random realizations, with 30 and 50m telescope-aperture

diameters, and observations at the zenith. The upper-left panel
shows two dry-air scintillation (real refractive index) simulated
time streams. The corresponding theoretical spectral densities
are represented by the smooth curves on the upper-right
panel, which are convolved with a Gaussian-random series to
simulate an observation. The lower-left panel shows two wet-air
scintillation (real+imaginary refractive index) simulations with

= -C C10I R
2 5 2. The lower-right panel shows the corresponding

theoretical and random spectral densities. From the theoretical
spectral density, we observe a high-frequency power reduction
by the 50 m aperture compared to the 30 m one; it means that a
large telescope can notably reduce the dry-air scintillation noise.
On the other hand, the low-frequency power remains equal for
both 30 and 50 m; it means that a larger dish cannot defeat the
wet-air scintillation noise.
In summary, Equation (A23) represents the general scintilla-

tion spectral density at infrared and millimeter waves, derived
from turbulence physics and telescope-aperture-averaging
factors. The large-scale highly structured noise prevailing in
the observational temporal series is mainly caused by the
amplitude of the imaginary-part structure parameter CI(z). This
derivation is presented for an astronomical application for the
first time and should be the preferred model to simulate
atmospheric noise at infrared and millimeter waves.
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