```
Global vs. spatially resolved physical characteristics of extragalactic HII regions
```

```
Jesús López-Hernández (INAOE-PhD)
```

Jesús López-Hernández (INAOE-PhD)
Elena Terlevich (INAOE, Puebla, Mexico)
Elena Terlevich (INAOE, Puebla, Mexico)
Roberto Terlevich (INAOE/IoA)
Roberto Terlevich (INAOE/IoA)
Fabio Bresolin (IfA, Hawaii)
Fabio Bresolin (IfA, Hawaii)
Daniel Rosa-González (INAOE)
Daniel Rosa-González (INAOE)
Ángeles Díaz (UAM, Madrid, Spain)
Ángeles Díaz (UAM, Madrid, Spain)
Rubén García Benito (IAA, Granada, Spain)
Rubén García Benito (IAA, Granada, Spain)
José Vílchez (IAA)
José Vílchez (IAA)
Guillermo Hägele (FCAG, La Plata, Argentina)

```
Guillermo Hägele (FCAG, La Plata, Argentina)
```


Motivation

- Part of a programme to study the difference in the processes of star formation in the centre and disc environments (inner and outer: higher and lower z regions) of nearby spiral galaxies.
- Chemical composition (and radial gradients) Aller (1942), Searle (1971), Smith (1975). Abundance gradients and galactic chemical evolution.
- Search for possible physical parameters variation inside each starforming region.
- Three HII regions in M33 were observed with PMAS (PPak mode)@3.5m telescope in CAHA (Spain). Two central positions and IC 132, $\sim 19^{\prime}(4.69 \mathrm{kpc})$ NW of the centre of the galaxy. (López Hernández et al. MNRAS 2013)
- Three giant HII regions in M101 were observed with GMOS@Gemini-N: NGC 5461, Searle 5 and Hodge 1013. (López Hernández PhD, INAOE, 2013)
- Due to the respective distances and instrumentation, both sets of observations correspond to a similar physical resolution in both galaxies.

Calar Alto Data

- PMAS@3.5m in CAHA Fiber Package PPak Mode.
- 331 science fibers FOV $74^{\prime \prime} \times 64^{\prime \prime}$ and 6 bundles (6 fibers each) @72" from the centre for the sky.
© Projected fiber diameter: $2^{\prime \prime} .68$ (10.9pc).
- Filling factor of the science packet 60%.
- Wavelength coverage $3591-6996$ ($3.4 \AA /$ pix); 6873-10186 (3.4 A/pix); 6100-6650 (0.64 A/pix). 2×2 binning. Average seeing $1^{\prime \prime}$.
- 3 dithered pointings for each object.
- (Thanks to Sebastián Sánchez et al. E3D reduction packages)

M101 properties

Table 3.1: M101 characteristics

Other names	NGC 5457, Pinwheel galaxy
R.A (2000J)	$14^{h} 03^{m} 12.5^{s}$
DEC. $(2000 \mathrm{~J})$	$+54^{\circ} 20^{\prime \prime} 56^{\prime \prime}$
Redshift	0.000804 ± 0.000007
Distance a	$6.70 \pm 0.34[\mathrm{Mpc}]$
Inclination b	$18^{\circ} \pm 3$
Position angle b	$39^{\circ} \pm 2$
Disk isophotal diameter c	$14^{\prime} .42$
Systemic velocity b	$242.5 \pm 5\left[\mathrm{~km} \mathrm{~s}^{-1}\right]$
Abundance range d	$(8.74 \pm 0.17)-(7.55 \pm 0.07)$

References: ${ }^{a}$ Freedman et al. (2001) ${ }^{b}$ Bosma et al. (1981) ${ }^{c}$ de Vaucouleurs et al. (1991). ${ }^{d} \mathrm{Li}$ et al. (2013) In $12+\log (\mathrm{O} / \mathrm{H})$ scale. Values are for the inermost region (H493, $\mathrm{R} / \mathrm{R}_{o}=0.1$) and the most external (SDH323, R/R $\mathrm{R}_{o}=1.2$). Other values were obtained from NED.

M101 (sTsci Dieitized Sky Survey poss 8)


```
GMOS Data
- GMOS@8m in GEMINI-N.
- Array of hexagonal lenslets; each one coupled to a fiber; detector: \(32048 \times 4608\) EEV chips arranged in a row. 500 fibers for the object and 250 for the sky @1' away from the object. Spatial sampling \(0^{\prime \prime} .2 /\) fiber.
- Pixel size \(13.5 \mu \mathrm{~m}\); plate scale \(0^{\prime \prime} .0727 /\) pix.
- 1-slit mode: FOV \(5^{\prime \prime} \times 3.5^{\prime \prime}\) (science); \(5^{\prime \prime} \times 1.75^{\prime \prime}\) for sky.
- Wavelength coverage 3650-6400 ( \(0.46 \AA /\) pix); \(6350-9150\) ( \(0.47 \AA /\) pix) \(2 \times 2\) binning. Average seeing \(0.5^{\prime \prime}\). Photometric conditions.
- (Thanks to Gelys Trancho et al. GMOS reduction packages)
```

M101 Journal of observations (Gemini-N Jan/2007)			
		Exposure [s]	
Object RA (J2000.	DEC (J2000.0)		£ $6350-9150 \AA$
NGC 5461 $\quad 14^{t} 3^{3} 40.5$	$5^{54^{\circ} 99^{\prime} 0^{\prime \prime}}$	$\frac{3650-6400 \AA}{3 \times 180}$	3×1800
	$54^{\prime 2} 22^{\prime} 27^{\prime \prime}$	3×1800	3×1800
Hodge 1013 (H1013) $14^{k} 4^{3} 3^{3} 30.7$	$14^{\text {h }} 03^{m} 30.7^{s} \quad 54^{2} 21^{\prime} 14^{\prime \prime}$	3×1800	2×1800
Average seeing was 0.5			
Object	$R\left({ }^{\prime}\right)$	$D($ (')	$\mathrm{R}=$ deprojected galactocentric distance
NGC 5461, S7, H1105	$\begin{gathered} 0.34 \\ (9.4 \mathrm{kpc}) \end{gathered}$	30	
S5, H336	$\begin{gathered} 0.22 \\ (6.0 \mathrm{kpc}) \end{gathered}$	11	
H1013, s3	$\begin{gathered} 0.19 \\ (5.4 \mathrm{kpc}) \end{gathered}$	14	D=Size

Figure 3.2: Left: Section of the Row Stacked Spectra (RSS) for NGC 5461. Right: Section of the reconstructed white-light image with the hexagonal lenslets structure of the instrument. The left side are fibers dedicated to the sky. Each lenslet has a projected diameter of $2^{\prime \prime}$.

Jesús López PhD 2013, INAOE

Atmospheric absorption (M33)

Differential Armospheric Refraction S5-M101

Figure 3.4: Left: Displacement due to DAR measured with different widths. Left: Displacement measured using $200 \AA$ bands. Right: measured for each wavelength. In each panel the bluest wavelength is to the right and the reddest to the left. The background images are whitelight for Searle 5

IC 132 Global spectrum

NGC 5461 Global spectrum

Determining the gas physical conditions

Some ions forbidden emission lines can be used to determine T_{e}. For example, those corresponding to levels $2 \mathrm{p}^{2}$ of ions: $\mathrm{O}^{2+}, \mathrm{N}^{+}, \mathrm{S}^{2+}$

Temperature from collisional transitions between similar energy levels.

For the [OIII] lines:

$$
\frac{j_{\lambda 4959}+j_{\lambda 5007}}{j_{\lambda 4363}}=\frac{7.73 \exp \left[\left(3.29 \times 10^{4}\right) / T\right]}{1+4.5 \times 10^{-4}\left(N_{e} / T^{1 / 2}\right)} .
$$

TEMPERATURE

For the [NII] lines:

$\frac{j_{\lambda 6548}+j_{\lambda 6583}}{j_{\lambda 5755}}=\frac{6.91 \exp \left[\left(2.50 \times 10^{4}\right) / T\right]}{1+2.5 \times 10^{-3}\left(N_{e} / T^{1 / 2}\right)}$

Electron density can also be determined from ratios of certain emission lines.
e.g. [OII] y [SII]

FIGURE 5.2
Energy-level diagrams of the $2 p^{3}$ ground configuration of [O II] and $3 p^{3}$ ground
Energy-ceve diagrams
configuration of ($\mathrm{S} I \mathrm{I}$).

FIGURE 5.3
Calculated variation of [0 II] (solid line) and [S II] (dashed line) intensity ratios as function of N_{e} at $T=10,000^{\circ} \mathrm{K}$. At other temperatures the plotted are very nearly correct if the horizontal scale is taken to be $N_{e}\left(10^{4} / T\right)^{1 / 2}$

Once temperature and density have been determined, ionic abundances can be derived from the intensities of the corresponding emission lines.

$$
\frac{X^{+i}}{H^{+}}=\frac{I\left(\lambda, X^{+i}\right)}{I\left(H_{\beta}\right)} \frac{\epsilon\left(H_{\beta}\right)}{\epsilon\left(\lambda, x^{+i}\right)}
$$

- When T_{e} and N_{e} are not possible --> empirical calibrations.

Empirical calibrations rest on direct T_{e} measurements in the low metallicity regime (high excitation) while requiring the use of theoretical models in the high metallicity (low excitation) regime.

ALTERNATIVE PARAMETER S_{23}

$$
S_{23}=([S I I]+[S I I I]) / H \beta
$$

Also produced in massive stars. S/O constant. Spectroscopically, lines are analogous to the oxygen ones but, because of their longer wavelength, their contribution to cooling should be more important at low temperatures.
Besides, they are less sensitive to T_{e}, so the inversion of the relation should occur at higher metallicities.

> The relation will remain
> univalued up to higher
> metallicity values.

$\mathrm{N} 2=|(6584 \AA) /|(\mathrm{H} \alpha)$ (Denicoló et al., 2001).

- We used to take for granted homogeneity inside a region (e.g. Vílchez et al. 1988)

Line ratios variation
 along regions of
 NGC604-M33 (long slit
 spectra)

4. Díaz et al. 1987, MNRAS, 226, 19

Empirical metallicity estimators R23, N2, O3N2

[NII]/[OII] to separate upper and

 lower branch of R23;vertical dashed line from Kewley and Ellison (2008)

Sobering thought

Diagnostic diagrammes:

[OIII]5007/H β, [NII]6584/H α, [SII]6717,31/H α

 IC 132

BPT diagrammes (M33);

boundaries: Kewley+Dopita2002 (solid), Kauffmann+2003 (dotted),
Stasińska+2006 (dashed)

BPT diagrammes for M101

IC 132 in M33

- Values are consistent with the presence of 21 WN7 in A and 24 WN7 Wolf-Rayet stars in B

region	$\log (\mathrm{L})$ $\mathrm{erg} \mathrm{s}^{-1}$	$\mathrm{EW}(\mathrm{BB})$ \AA	$\mathrm{BB} / \mathrm{H} \boldsymbol{\beta} \boldsymbol{1}$
A	37.84	15	0.38
B	37.89	13	0.41

Number of WN7 estimated from the BB

Table 3.18: Wolf Rayet BB, luminosity, EW and the estimation of the number of WN7 stars.

NGC 5461

Zone	BB^{a}	$\log \mathrm{~L}(\mathrm{BB})$	$\mathrm{EW}(\mathrm{BB})$	$\mathrm{N}(\mathrm{WN} 7)$
$\mathrm{N}_{\text {Full }}$	4.82 ± 0.24	38.41 ± 0.03	8.92 ± 0.40	83
$\mathrm{~N}_{10}$	8.94 ± 0.32	38.15 ± 0.02	9.76 ± 0.34	45
$\mathrm{~N}_{20}$	11.56 ± 0.39	37.89 ± 0.02	10.00 ± 0.33	25
$\mathrm{~N}_{30}$	13.96 ± 0.59	37.38 ± 0.02	10.46 ± 0.45	8
$\mathrm{~S}_{\text {Full }}$	13.49 ± 1.27	37.74 ± 0.05	6.03 ± 0.34	17
$\mathrm{~S}_{3}$	42.45 ± 2.60	37.28 ± 0.03	7.44 ± 0.33	6
$\mathrm{~S}_{6}$	60.63 ± 4.96	36.66 ± 0.04	7.94 ± 0.50	1
$\mathrm{H}_{\text {Full }}$	6.63 ± 0.42	37.98 ± 0.03	9.97 ± 0.62	31
H_{4}	11.15 ± 0.52	37.52 ± 0.02	10.33 ± 0.49	11
H_{6}	14.34 ± 0.87	36.65 ± 0.03	11.38 ± 0.78	1

Conclusions (M33)

- IFS covering from $3600 \AA$ to $1 \mu m$ (from [OII] to [SIII]) for 2 starforming regions in M33 was obtained with PPAK in Calar Alto. A central area $300 \times 500 \mathrm{pc}^{2}$ and IC132 at 19^{\prime} (4.69 kpc) galactocentric distance. J. López et al. 2013, MNRAS, 430, 472
- Physical conditions for each spaxel and integrated over iso-H α surface brightness were derived.
- Many spaxels in the [SII] ratio maps $\left(N_{e}\right)$ were found outside the theoretical limits.

Electron density can also be determined from ratios of certain emission lines. e.g. [OII] y [SII]

FIGURE 5.3
Calculated variation of [O II] (solid line) and [S II] (dashed line) intensity ratios as function of N_{e} at $T=10,000^{\circ} \mathrm{K}$. At other temperatures the plotted curve are very nearly correct if the horizontal scale is taken to be $N_{e}\left(10^{4} / T\right)^{1 / 2}$.

Conclusions (M33)

(2) IFS covering from $3600 \AA$ to $1 \mu \mathrm{~m}$ (from [OII] to [SIII]) for 2 starforming regions in M33 was obtained with PPAK in Calar Alto. A central area $300 \times 500 \mathrm{pc}^{2}$ and IC132 at $19^{\prime}(4.69 \mathrm{kpc})$ galactocentric distance.
J. López et al. 2013, MNRAS, 430, 472

- Physical conditions for each spaxel and integrated over iso-H α surface brightness were derived.
- Many spaxels in the [SII] ratio maps (N_{e}) were found outside the theoretical limits. This calls for a revision in the collisional strengths for the theoreticians. (Watch this space; Ferland, private communication).
- Higher temperatures, $\mathrm{EW}(H \beta)$, size and excitation are observed and lower direct and empirical abundances and extinction are derived in the outer relative to the inner regions.
- Evidence for diffuse emission is found in the external region.
- With this pilot programme we proved the feasibility of the project.
- BPT diagnostic diagrammes reveal two different sequences for the central and outer regions. Photoionization models explain them mainly as due to ionization parameter (U) and to a lesser degree, to Z. They also show that one cannot use global diagnostic diagrammes when analysing "fractional" 3D data.
- Two concentrations of Wolf-Rayet features are detected in IC132. Their integrated spectra are consistent with them hosting 21 and 24 WN7 stars respectively.
- No WR stars were found in the central regions in spite of their higher metallicities. (???)

(M101)

- 3 HII regions were observed with IFS in M101 using GMOS at Gemini-N.
. The difference in scale between the two telescopes is compensated by the difference in distance of the two galaxies, so the spatial resolution of both sets of observations is comparable.
(No inconsistencies were found in these regions with the determinations of electron densities from [SII] ratios (could different abundances explain that? 8.9-8.5 for M33 vs. 8.74 - 7.55 for M 101)
- The results are mostly consistent with homogeneous properties inside each HII region.
- WR features were found in the three regions, both WN and WC stars, helping to pin down the age of the ionizing clusters. Aperture effects were studied, higher spatial resolution is highly desirable.
- The spaxels again populate different regions in the BPT diagrams. Full 3D photoionization models are in progress
(with C. Morisset, watch this space, too)

Welcome to Mexico!

