Global vs. spatially resolved physical characteristics of extragalactic HII regions

ESTALLIDOS de formación estelar

Jesús López-Hernández (INAOE-PhD)

Elena Terlevich (INAOE, Puebla, Mexico) Roberto Terlevich (INAOE/IoA) Fabio Bresolin (IfA, Hawaii) Daniel Rosa-González (INAOE) Ángeles Díaz (UAM, Madrid, Spain) Rubén García Benito (IAA, Granada, Spain) José Vílchez (IAA) Guillermo Hägele (FCAG, La Plata, Argentina)

Motivation

- Part of a programme to study the difference in the processes of star formation in the centre and disc environments (inner and outer: higher and lower Z regions) of nearby spiral galaxies.
- Chemical composition (and radial gradients) Aller (1942), Searle (1971), Smith (1975). Abundance gradients and galactic chemical evolution.
- Search for possible physical parameters variation inside each starforming region.

Three HII regions in M33 were observed with PMAS (PPak mode)@3.5m telescope in CAHA (Spain). Two central positions and IC 132, ~19' (4.69kpc) NW of the centre of the galaxy. (López Hernández et al. MNRAS 2013)

- Three giant HII regions in M101 were observed with GMOS@Gemini-N: NGC 5461, Searle 5 and Hodge 1013. (López Hernández PhD, INAOE, 2013)
- Due to the respective distances and instrumentation, both sets of observations correspond to a similar physical resolution in both galaxies.

Designations	Messier 033, Triangulum Galaxy,
	NGC 0598,UGC 01117, PGC 005818
Classification	SA(s)cd HII
Major Diameter	70.8 Arcmin
Minor diameter	41.7 arcmin
Position Angle	23 deg
Distance	840 kpc (Freedman et al. 2001)
Redshift	-0.000597 ± 0.000010
Inclination angle	53.52 deg (Corbelli & Salucci 2000)
PPak scale	3.23 pc/arcsec (8.65 pc/fibre)

Source is NED unless otherwise specified.

 [OIII] 4363Å shifted to 4360.1 too close to HgI 4358.3 in CAHA sky.

© 12 + logO/H between 8.9 (center) and 8.5 (IC 132)

Calar Alto Data

<u>PMAS@3.5m</u> in CAHA Fiber Package PPak Mode.

- 331 science fibers FOV 74"×64" and 6 bundles (6 fibers each) @72" from the centre for the sky.
- Projected fiber diameter: 2".68 (10.9pc).
- Filling factor of the science packet 60%.
- Wavelength coverage 3591 6996 (3.4 Å/pix);
 6873–10186 (3.4 Å/pix); 6100–6650 (0.64 Å/pix).
 2×2binning. Average seeing 1".
- 3 dithered pointings for each object.
- (Thanks to Sebastián Sánchez et al. E3D reduction packages)

M101 p	roperties				
Table 3.1: M101 characteristics					
Other names	NGC 5457, Pinwheel galaxy				
R.A (2000J)	$14^{h}03^{m}12.5^{s}$				
DEC. (2000J)	+54°20″56″				
Redshift	0.000804 ± 0.000007				
$Ootmode Distance^{a}$	$6.70 \pm 0.34 [\mathrm{Mpc}]$				
$\operatorname{Inclination}^{b}$	$18^{\circ} \pm 3$				
Position angle ^{b}	$39^{\circ} \pm 2$				
Disk isophotal diameter ^{c}	14'.42				
Systemic velocity ^{b}	$242.5 \pm 5 [\mathrm{km \ s^{-1}}]$				
Abundance $range^d$	$(8.74\pm0.17) - (7.55\pm0.07)$				
References: ^{<i>a</i>} Freedman et al. (2001) ^{<i>b</i>} Bo ^{<i>d</i>} Li et al. (2013) In 12+log(O/H) scale $R/R_o=0.1$) and the most external (SDF from NED.	sma et al. (1981) ^c de Vaucouleurs et al. (1991). c. Values are for the inermost region (H493, I323, $R/R_o=1.2$). Other values were obtained				

GMOS Data

Array of hexagonal lenslets; each one coupled to a fiber; detector: 3 2048x4608 EEV chips arranged in a row. 500 fibers for the object and 250 for the sky @1' away from the object. Spatial sampling 0".2/fiber.

Ø Pixel size 13.5µm; plate scale 0″.0727/pix.

Wavelength coverage 3650 – 6400 (0.46 Å/pix);
 6350–9150 (0.47 Å/pix) 2×2binning. Average seeing 0.5". Photometric conditions.

(Thanks to Gelys Trancho et al. GMOS reduction packages)

M101 Journal of observations (Gemini-N Jan/2007)

			_	Exposure [s]		
Object RA (J2000		0.0) DEC (J2000.0)		3650 - 6400) Å 6350 - 9150 Å	
NGC 5461	1 $14^{h}03^{m}40.$		s 54°19′01″		3×1800	
Searle 5 (S5)	$14^{n}02^{m}54.6$	6^s 54°22′27″		3×1800	3×1800	
Hodge 1013 (H1013)	$14^{h}03^{m}30.7$	$.7^s$ $54^{\circ}21'14''$		3×1800	2×1800	
Average seeing was 0".5	5					
Object		R(′)		D(")		
NGC 5461, S7, H1105		0.34 (9.4kpc)		30	R=deprojected galactocentric	
S5, H336		0.22 (6.0kpc)		11	distance	
H1013, S3		0.19 (5.4kpc)		14	D=Size	

Left: Displacement due to DAR measured with different widths. Left: Displacement measured using 200 Å bands. Right: measured for each wavelength. In each panel the bluest wavelength is to the right and the reddest to the left. The background images are whitelight for Searle 5

IC 132 Global spectrum

Once temperature and density have been determined, ionic abundances can be derived from the intensities of the corresponding emission lines.

DIRECT CHEMICAL ABUNDANCES

$$rac{X^{+i}}{H^+} \;=\; rac{I(\lambda,X^{+i})}{I(H_eta)} \, rac{\epsilon(H_eta)}{\epsilon(\lambda,x^{+i})}$$

ALTERNATIVE PARAMETER S₂₃

$S_{23} = ([SII]+[SIII]) / H\beta$

Also produced in massive stars. S/O constant. Spectroscopically, lines are analogous to the oxygen ones but, because of their longer wavelength, their contribution to cooling should be more important at low temperatures. Besides, they are less sensitive to T_e , so the

inversion of the relation should occur at higher metallicities.

The relation will remain univalued up to higher metallicity values.

Other abundance calibrators

N2 = I(6584 Å)/I(H α) (Denicoló et al., 2001).

• No uncertainties due to reddening or to flux calibration and is univalued with metallicity over the whole range.

• But it shows scattering due to anticorrelation with the degree of ionisation and to the uncertainty on the N/O value.

Empirical metallicity estimators R23, N2, O3N2

[NII]/[OII] to separate upper and lower branch of R23;

vertical dashed line from Kewley and Ellison (2008)

Diagnostic diagrammes: [0111]5007/Hβ, [N11]6584/Hα, [S11]6717,31/Hα

IC 132

	44 40 38 36 34 30 32 30 32 34 36 38 40	A 42 44 46 1.2 1.0 0.8 0.4 0.2 42 44 46 1.2 4600	BB 4800 5000 4800 5000	WR Region 5200 5400 WR Region WR Region 5200 5400 5400 5400	A 	
IC 132	in M33 Values WN7 in	are consist A and 24	tent with t WN7 Wolf	he presenc -Rayet sto	ce of 21 ars in B	
	region	log(L) erg s ⁻¹	EW(BB) Å	$\rm BB/H\beta$		
	A B	37.84 37.89	15 13	0.38 0.41		

Number of WN7 estimated from the BB

Table 3.18: Wolf Rayet BB, luminosity, EW and the estimation of the number							
of WN7 stars.							
	Zone	BB.	$\log L(BB)$	EW(BB)	N(WN7)		
NGC 5461	N _{Full}	4.82 ± 0.24	38.41 ± 0.03	8.92 ± 0.40	83		
	N_{10}	8.94 ± 0.32	38.15 ± 0.02	$9.76 {\pm} 0.34$	45		
	N_{20}	11.56 ± 0.39	$37.89 {\pm} 0.02$	10.00 ± 0.33	25		
	N ₃₀	$13.96{\pm}0.59$	$37.38{\pm}0.02$	$10.46 {\pm} 0.45$	8		
S 5	S_{Full}	13.49 ± 1.27	37.74 ± 0.05	6.03 ± 0.34	17		
	S_3	42.45 ± 2.60	$37.28 {\pm} 0.03$	7.44 ± 0.33	6		
	S_6	$60.63 {\pm} 4.96$	$36.66 {\pm} 0.04$	$7.94{\pm}0.50$	1		
H1013	H_{Full}	6.63 ± 0.42	$37.98 {\pm} 0.03$	9.97 ± 0.62	31		
	H_4	11.15 ± 0.52	$37.52 {\pm} 0.02$	$10.33 {\pm} 0.49$	11		
	H_6	$14.34{\pm}0.87$	$36.65{\pm}0.03$	11.38 ± 0.78	1		
^{<i>a</i>} Normalized to $H\beta = 100$.							

Conclusions (M33)

IFS covering from 3600Å to 1µm (from [OII] to [SIII]) for 2 starforming regions in M33 was obtained with PPAK in Calar Alto. A central area 300×500 pc² and IC132 at 19⁻ (4.69 kpc) galactocentric distance.
 J. López et al. 2013, MNRAS, 430, 472

- Physical conditions for each spaxel and integrated over iso-Hα surface brightness were derived.
- Many spaxels in the [SII] ratio maps (N_e) were found outside the theoretical limits.

Oosterbrock

Conclusions (M33)

IFS covering from 3600Å to 1µm (from [OII] to [SIII]) for 2 starforming regions in M33 was obtained with PPAK in Calar Alto. A central area 300×500 pc² and IC132 at 19⁻ (4.69 kpc) galactocentric distance.
 J. López et al. 2013, MNRAS, 430, 472

- The Physical conditions for each spaxel and integrated over iso-H α surface brightness were derived.
- Many spaxels in the [SII] ratio maps (N_e) were found outside the theoretical limits. This calls for a revision in the collisional strengths for the theoreticians.
 (Watch this space; Ferland, private communication).

- Sevidence for diffuse emission is found in the external region.
- With this pilot programme we proved the feasibility of the project.

- BPT diagnostic diagrammes reveal two different sequences for the central and outer regions.
 Photoionization models explain them mainly as due to ionization parameter (U) and to a lesser degree, to Z.
 They also show that one cannot use global diagnostic diagrammes when analysing "fractional" 3D data.
- Two concentrations of Wolf-Rayet features are detected in IC132. Their integrated spectra are consistent with them hosting 21 and 24 WN7 stars respectively.
- No WR stars were found in the central regions in spite of their higher metallicities. (???)

(M101)

 3 HII regions were observed with IFS in M101 using GMOS at Gemini-N.

- The difference in scale between the two telescopes is compensated by the difference in distance of the two galaxies, so the spatial resolution of both sets of observations is comparable.
- No inconsistencies were found in these regions with the determinations of electron densities from [SII] ratios (could different abundances explain that? 8.9 8.5 for M33 vs. 8.74 7.55 for M101)

- The results are mostly consistent with homogeneous properties inside each HII region.
- WR features were found in the three regions, both WN and WC stars, helping to pin down the age of the ionizing clusters. Aperture effects were studied, higher spatial resolution is highly desirable.
- The spaxels again populate different regions in the BPT diagrams. Full 3D photoionization models are in progress (with C. Morisset, watch this space, too)

