A journey through the amazing new world of stellar populations in 2D: 1st results on galaxy growth from the CALIFA survey

Outline

1 – Spectral synthesis w/STARLIGHT

Basics & example results

...a preamble to the main feature:

2 – Galaxy evolution in 2D: CALIFA
> PyCASSO & 1st results

THE EVOLUTION OF GALAXIES RESOLVED IN SPACE AND TIME: AN INSIDE-OUT GROWTH VIEW FROM THE CALIFA SURVEY

E. Pérez¹, R. Cid Fernandes^{1,2}, R. M. González Delgado¹, R. García-Benito¹, S. F. Sánchez^{1,3}, B. Husemann⁴, D. Mast^{1,3}, J. R. Rodón¹, D. Kupko⁴, N. Backsmann⁴, A. L. de Amorim², G. van de Ven⁵, J. Walcher⁴,

Resolving galaxies in time and space: I:

Applying STARLIGHT to CALIFA datacubes

R. Cid Fernandes^{1,2}, E. Pérez¹, R. García Benito¹, R. M. González Delgado¹, A. L. de Amorim², S. F. Sánchez^{1,3}, B. Husemann⁴, J. Falcón Barroso^{5,6}, P. Sánchez-Blázquez⁷, C. J. Walcher⁴, and D. Mast^{1,3}

Resolving galaxies in time and space: II:

Uncertainties in the spectral synthesis of data cubes

R. Cid Fernandes^{1,2}, R. M. González Delgado², R. García Benito², E. Pérez², A. L. de Amorim^{1,2}, S. F. Sánchez^{2,3}, B. Husemann⁴, R. López-Fernández², N. Vale Asari¹, J. Falcón Barroso^{5,6}, P. Sánchez-Blázquez⁷, C. J. Walcher⁴, and D.

The star formation history of CALIFA galaxies: Radial structures

R. M. González Delgado¹, E. Pérez¹, R. Cid Fernandes^{1,2}, R. García Benito¹, A. L. de Amorim², S. F. Sánchez^{1,3}, B. Husemann⁴, C. Cortijo-Ferrero¹, R. López Fernández¹, P. Sánchez-Blázquez⁵, S. Bekeraite⁴, C. J. Walcher⁴, J.

Forward spectral synthesis

Inverse spectral synthesis

Semi Empirical Analysis of (SDSS) Galaxies

The SEAGal team

RCF (Florianópolis)

Abilio Mateus (Florianópolis)

William Schoenell (Florianópolis)

Jean Gomes (CAUP, Portugal)

Laerte Sodré (São Paulo)

Natalia Vale Asari (Florianópolis)

Marielli Schlickmann (Florianópolis)

Grażyna Stasińska (Meudon)

Flori-where?

W Latin American Regional IAU Meeting

in American Region

LARIM 2013

25-30 November 2013 Praia dos Ingleses Florianópolis, SC - Brazil www.larim2013.org.br

Scientific Organizing Committee

Zulema Abraham Brazlí Cesar Briceño Avila Venezuela Roberto Cid Fernandes Brazil Alejandro Córsico Argentina Tabaré Gallardo Uruguay Leopoldo Infante Chile William Lee Mexico Fernando Roig Brazil

Local Organizing Committee

Silvia Alencar UFMG Bernardo Borges UFSC Roberto Cid Fernandes UFSC Jane Gregorio-Hetem USP Abilio Mateus UFSC Daniela Pavani UFBCS Natalia Vale Asari UFSC Maria Jaqueline Vasconcelos I

2 – Galaxy evolution in 2D The brave new world of spatially resolved star formation histories

Calar Alto Legacy Integral Field Area survey

CALIFA Survey

- ~ 80 members / 13 countries
- PI: S. F. Sánchez
- PS: C. J. Walcher

250 dark nights:

- PPAK@3.5m CAHA
- Full optical wavelength range
- ~2000 spectra per galaxy

Sample:

- ~20 galaxies per 1x1 mag
 - bin in the CMD
- + diameter selection ...

Enrique Pérez

Rosa González Delgado

Helena (+ me)

PyCASSO: Some "technical details"

Spatial masks

S/N ~ 20

Spectral masks Bad pixel flags Correlated errors Calibration issues

. . .

+-

PyCASSO: spectral products

Spectral cubes:

- Data
- Fit: stellar "continuum"
- Residual: gas

Useful for emission line work....

Example spectral fits: Nucleus and @ R = 1 HLR

Resolving galaxies in time and space: I:

Applying STARLIGHT to CALIFA datacubes

R. Cid Fernandes^{1,2}, E. Pérez¹, R. García Benito¹, R. M. González Delgado¹, A. L. de Amorim², S. F. Sánchez^{1,3}, B. Husemann⁴, J. Falcón Barroso^{5,6}, P. Sánchez-Blázquez⁷, C. J. Walcher⁴, and D. Mast^{1,3}

+ 2D maps of A_V , mass, mean ages, Zs, kinematics, SFRs ...

CALIFA 277

21

THE EVOLUTION OF GALAXIES RESOLVED IN SPACE AND TIME: AN INSIDE-OUT GROWTH VIEW FROM THE CALIFA SURVEY

E. PÉREZ¹, R. CID FERNANDES^{1,2}, R. M. GONZÁLEZ DELGADO¹, R. GARCÍA-BENITO¹, S. F. SÁNCHEZ^{1,3}, B. HUSEMANN⁴, D. MAST^{1,3}, J. R. RODÓN¹, D. KUPKO⁴, N. BACKSMANN⁴, A. L. DE AMORIM², G. VAN DE VEN⁵, J. WALCHER⁴, L. WISOTZKI⁴, C. CORTIJO¹, AND CALIFA COLLABORATION⁶

When and where the mass is assembled ?

Galaxies with M > 10^{10} M_o grow inside-out The central core is assembled early (z > 2), but their envelope continues to assemble (z = 2 – 0)

The star formation history of CALIFA galaxies: Radial structures

R. M. González Delgado¹, E. Pérez¹, R. Cid Fernandes^{1,2}, R. García Benito¹, A. L. de Amorim², S. F. Sánchez^{1,3}, B. Husemann⁴, C. Cortijo-Ferrero¹, R. López Fernández¹, P. Sánchez-Blázquez⁵, S. Bekeraite⁴, C. J. Walcher⁴, J. Falcón-Barroso^{6,7}, A. Gallazzi⁸, G. van de Ven⁹, J. Alves¹⁰, J. Bland-Hawthorn¹¹, R. C. Kennicutt, Jr.¹² D. Kupko⁴, M. Lyubenova⁹, D. Mast^{1,3}, M. Mollá¹³, R. A. Marino¹⁴, A. Quirrenbach¹⁵, J. M. Vílchez¹, L. Wisotzki⁴, and CALIFA collaboration

(a) log $\mathcal{L}_{\lambda 5635} [L_{\odot}/\text{\AA}/pc^2]$

(b) A_V [mag]

(c) log $\mathcal{L}_{\lambda 5635}^{dered} [L_{\odot}/\text{\AA}/pc^2]$

(d) log $\mathcal{M} [M_{\odot}/pc^2]$

Light x Mass sizes (WYSI not WYG!)

→ Galaxies are ~20% more compact in mass than in light

Systematic spatial variations in A_V and/or M/L cause the 20% difference in radii.

¿ $∇A_V$ or ∇M/L?

- \succ ~ 5% due to ∇A_V
- ~15% due to ∇M/L (age & Z gradients)

Global x local: is SFH driven by M_{*} or μ_* ?

Summary

- PyCASSO: A powerful tool to digest datacubes
- Galaxies grow inside out
- Mass builds up faster for more massive galaxies, at any R!
 - Downsizing = Downsizing(R)
- Relative inner-outer age difference peaks @ $M_* = 7 \times 10^{10} M_o$
 - Theory says this is ~ where AGN and SN (low M) feedback are minimal...
- Galaxies are 20% smaller in mass than in light
 - 3/4 due to ∇age and 1/4 due to ∇A_V
- Spatially averaged and integrated properties correlate very well. Both match the properties at R = 1 HLR
 - Effective radii are more effective than you may have thought!
- The local stellar mass density drives the SFH is disks, but in bulge dominated systems the total stellar mass is a more fundamental property