Mapping physical properties of the most extreme UVbright starburst galaxies in the local universe

the local universe

Baugh (2006)

Local universe

High redshift

Local universe

Cold flows

Local instabilities

Immeli et al. 2004

Interactions and mergers?

Marta Volonteri, UMich

FS09 *High velocity dispersion*

Law09 FS09 Stellar mass dependence of observables

 Stellar mass of selected sample
Samples with and without AO
Issues with observations at high z: Surface Brightness / Resolution

The sample of Lyman break analogs

 $\frac{L_{FUV}}{I_{1530}} \ge 2 \times 10^{10} L_{\odot}$ $I_{\odot} kpc^{-2}$

Hoopes et al. (2007) Overzier et al. (2009)

The sample of Lyman break analogs

 $\begin{array}{l} \mathsf{L}_{\rm FUV} \geq 2 \times 10^{10} \ \mathsf{L}_{\odot} \\ \mathrm{I}_{1530} \geq 10^9 \ \mathsf{L}_{\odot} \ \mathrm{kpc^{-2}} \end{array}$

Hoopes et al. (2007) Overzier et al. (2009)

LBAs are similar to high-z starbursts!

The low-z advantage

The low-z advantage

Keck/OSIRIS data: low-z X high-z S/N V(km/s)

Real data (200 pc, high S/N)

-60 -80

100

Gonçalves+10

Artificially redshifted to z=2.2(1 kpc, low S/N)

Q0449-BX93 (z = 2.0067) +0.38/elocity (km s⁻¹) (km s-1) 00 0 -0.38 +0.38-0.380

Law et al. 2007

Δ δ (arcsec)

 $\Delta \alpha$ (arcsec)

More massive objects show stronger velocity shears with similar values to high-z

More massive objects show stronger velocity shears with similar values to high-z

Comparisons between seeing-limited and AO data at high-z:

- Loss of resolution yields smaller velocity gradients
- Less massive galaxies are dispersion-dominated

Newman+12

But stellar mass function is steep at high-z!

Reddy & Steidel, 2009

But stellar mass function is steep at high-z!

Reddy & Steidel, 2009

Mergers vs disks?

Krajnović et al. 2006 Shapiro et al. 2008

High-redshift data underestimates the asymmetry levels

Gonçalves+10

Robertson & Bullock (2008)

Robertson & Bullock (2008)

THIS IS A MERGER

Kinematic properties depend on gas fraction of the interacting galaxies

Optical IFU of starbursts

Mapping dust extinction

Overzier+11

Mapping dust extinction

Overzier+11

Where is the dust?

Is dust abundance correlated with clump properties?

Mapping Ha/Hb can provide the answer

Metallicity gradients

Mass-metallicity relation is offset from local galaxies

Carolyne Santos de Oliveira & Karín Menéndez-Delmestre

Metallicity gradients

Mass-metallicity relation is offset from local galaxies

Carolyne Santos de Oliveira & Karín Menéndez-Delmestre

Metallicity gradients provide a constraint for feedback models

Gibson et al. 2013

21

Inverse metallicity gradients?

Arguably support the cold flow hypothesis

Cresci et al. 2010

AGN contribution

Newman+13

 $H\alpha$ contours

0

-0.5

Region colorcoding

0.5

IMACS-IFU PI: Menéndez-Delmestre

ALMA High resolution imaging: resolved SK law!

•LBAs are very unusual starburst galaxies in the low-z universe, more akin to high-z LBGs

More massive galaxies present disk-like properties

 Loss of resolution and surface brightness can lead to misinterpreting the data

Three main goals in the optical:

 Mapping the dust emission and correlate with clump properties

 Mapping the metallicity distribution and measuring gradients, constraining formation models

Line emission diagnostics at high resolution

Summary

- •LBAs are very unusual starburst galaxies in the low-z universe, more akin to high-z LBGs
- More massive galaxies present disk-like properties
- Loss of resolution and surface brightness can lead to misinterpreting the data
- Three main goals in the optical:
- Mapping the dust emission and correlate with clump properties
- Mapping the metallicity distribution and measuring gradients, constraining formation models
- Line emission diagnostics at high resolution