

WEAVE – the next generation wide field spectroscopy facility for the WHT

Gavin Dalton & the WEAVE Team

July 17 2013 GH 2013 @ INAOE

Overview

- Primary Motivation: Galactic science
- Derived specifications
- Overview of instrument design
- Opportunities for IFU science
- IFU key science goals
- IFU specfications
- WEAVE summary

Galactic archaeology surveys: exploiting Gaia's full potential

- Gaia: Astrometry at microarcsecond precision
 - The history of the Milky Way

Launches November 2013 5 year survey from L2...

Galactic archaeology

- ➤ The Galactic halo
- Dynamics of the Galactic disks
- Chemical labeling
- Open clusters

A STEREOSCOPIC CENSUS OF OUR GALAXY

5 kpc

Horizon for detection of Jupiter mass planets (200 pc) and P ≤ 10yr

Sun

30 open clusters within 500 pc

ωCen < 1 km/s

631

 Proper motions in LMC/SMC individually to 2-3 km/s Dynamics, star formation and assembly histories of disc, spiral arms and bulge

20 kpc

Dark matter in disc measured from distances/ motions of tracers

Distances accurate to 10% for 150 million stars

10 kpc >20 globular clusters, 100s of open clusters, 1000s of Cepheids and RR Lyrae

Mass of galaxy from velocity structure at 15 kpc

Horizon for proper motions accurate to 1 km/s

Positions, parallaxes and proper motions for 10^9 stars to V~20

Parallax: 10 μas = 10% distances at 20 kpc Proper Motion: 10 μ as/yr = 1 km s⁻¹ at 10 kpc

Gaia RVS: no radial velocities for V>17; No abundance

RA (J2000.0)

Galactic archaeology: How did our Galaxy form?

 \diamond The Galactic halo:

♦ how was it formed? accreted or in-situ?

 \Rightarrow V_r, [Fe/H], [α /Fe] to 10kpc

♦ what is the total mass of the Milky Way?

⇒BHB/RGB stars beyond 80kpc

♦ what is the shape of the Milky Way's gravitational potential?

⇒Stellar streams (50–100kpc)

♦ how much substructure is there in the halo?

⇒2 km s⁻¹ velocities in streams

♦ Where/what are the most metal-poor stars in the Milky Way?
■10⁵ candidate metal poor stars from SDSS

♦ The halo records the **formation history** of the MW

- ♦ outer halo (>20 kpc): streams detected as overdensities easily in imaging surveys (long mixing timescales)
- ♦ inner halo (10-20 kpc): merged components are wellmixed, need chemodynamics

Simulations of the Galactic halo

CDM formation models predict that the halo is **highly** structured due to accretion events

Colours represent stars from different merger events...

Galactic archaeology: How did our Galaxy form?

 \diamond The Galactic disk(s):

♦ How many disks are there really? what are their relationships with the bulge, the halo, and each other
⇒ Full phase space information throughout the disk
♦ Did they form through accretion or *in situ* processes?
⇒ Moving groups beyond the solar neighbourhood
♦ How significant is radial migration?
⇒ Measure metallicity gradients in the disk

 \Rightarrow All require v_r<2 km s⁻¹, Abundances & stellar parameters

WEAVE at R=5000

- WEAVE will measure radial velocities to
 σ(v_r)<2 km/s at V=20 in 1hr of dark time (V=19 in bright time), closely matching the Gaia photometric limits
 - WEAVE will be able to determine the radial velocities of any of the ~10⁹ Gaia stars that RVS won't!

Galactic archaeology: How did our Galaxy form?

♦ Galactic Populations:

♦ Assembly history of the disks
 ⇒ Abundances to <0.1dex to ~3kpc, chronometers [Ba/Eu]
 ♦ Streams, groups and substructures?
 ⇒ High precision dynamics (< 1km s⁻¹) and abundances
 ♦ Nucleosynthesis patterns in metal-poor stars
 ⇒ detailed abundance of Li, C, α -elements

WEAVE at R=20000

- Abundances to ~0.1 dex accuracy will allow chemical labeling of stars
- WEAVE will reach V~17 in ~2 hours at S/N>60/resolution element at R=20000

Chemical labeling: examples

Open cluster goals

- Open clusters represent both a "ground truth" of our models of stellar evolution and a tracer population of star formation in the MW disk
 - Do all stars form in clusters? How do clusters evolve? How do they disperse their stars to the field? What is the impact of radial migration on this process?
 - Open clusters as tracers of MW disk star formation and chemical evolution
 - ➤ How good are our stellar evolution models?

GA Requirements

- Low Resolution Mode (R~5000)
 - Multiplex >~ 1000/2 degree FOV
 - Large simultaneous wavelength coverage
- High Resolution Mode (R~2000)
 - Multiplex >~500/2 degree FOV
 - Full coverage of element families for chemical labelling.

Key parameter summary...

Telescope, diameter	WHT, 4.2m	
Field of view	2°	
Number of fibers	1000	
Fiber size	1.3"	
Low-resolution mode resolution	4300–7200	
Low-resolution mode wavelength coverage (Å)	3660–9840	
High-resolution mode resolution	18560–21375	
High-resolution mode wavelength coverage (Å)	4040–4650, (4730–5450) 5950–6850	

Galactic archaeology survey strategy

	log(N)	Area (deg²)	R	Depth
Halo	6	1000	5000	V≤20
Disks	6.7	300	5000	V≤20
Chemical Iabeling	4.7 (disk) 5.7 (halo)	2000	20000	V≤17
Open clusters	4.7	150	20000	V≤17

WEAVE: A new facility instrument for the WHT

WEAVE: New top end ring

Project Structure

Prime Focus Corrector

ING/NOVA design Procurement through IAC New top-end ring, field corrector with atmospheric dispersion compensation and instrument rotator.

Fibre positioner

- Pick-and-place fiber positioner: COTS components
 - ➤ 2dF-like
 - ➤ tumbler with 2 field plates
 - ➤ 2 robots working in parallel
 - ➢ low-risk, low-cost
 - ➢ high flexibility

Positioner concept similar to AF2/2dF, but all COTS

Fibre retractors

- Push park locations beyond useful field edge
- ➤ 1000 MOS buttons
- "Bull-ring" triple-parking concept

Fibre cables

MOS field configuration

- 97% of fibres allocated in test simulation (1.8x oversampled targets)
- ➤ ~8500 fibre crossings!
- ~1800 moves within ~55 minutes with two robots

8 AG fibres/field using 5" FOV coherent bundles

Dual-Beam Spectrograph Design

f/3.0 input, f/1.8 camera, 190mm beam diameter. 2x8kx3k e2V CCDs (CCD231-68) in each camera.

Slit curved to give uniform spectral coverage for all fibres in low-res

7-lens cameras (3 aspheres)

16k spectral pixels, R=5000 over 370—1000nm in one shot

Camera lenses are F2, LLF1, N-FK51A, and LAK9

Some vignetting allowed in high res

Optical design

Resolution maps produced across detector, including spectrograph image quality and detector sampling Verfied by two different calculation methods

Example: blue low res.

R calculated as lambda/ dlambda with gaussian fit to spectrograph PSF

Series127 Series121

Series115 Series109 Series103 Series97

Series91

Series8

Series79

Series73

Series67

Series61

Series55

Series40

Series4

Series37

Series31

Series25 Series19 Series13 Series7 Series1

5,50E+02-6,00E+02

5,00E+02-5,50E+02

■ 4,50E+02-5,00E+02

4 00E+02-4 50E+02

3,50E+02-4,00E+02

3.00E+02-3.50E+02

2,50E+02-3,00E+02

2,00E+02-2,50E+02

■ 1,50E+02-2,00E+02

1.00E+02-1,50E+02

■ 5,00E+01-1,00E+02

0.00E+00-5.00E+01

31

Adjacent fibres at image quality of R~5000 - 0.1 pixel sampling

Nevin Milduleton, Jonan Fragt,

Spectrograph Mechanics

Grating exchange, slit exchange, shutters and camera motion achieved by pneumatic drives to kinematic positions – repeatable motions

WEAVE throughput

Wavelength (nm)

More photons/object than VLT FLAMES, with 10x

IFU Opportunities

- Spectrograph with full coverage and large slit length
 - Slit exchange is built-in to the design
- Pick and Place positioner provides easy route to deployable mini IFUs
- Tumbler 90° position provides obvious location for a separate monolithic IFU

Mini IFU concept

- 20 minilFUs on one field plate, ~9"x9", 1.3" pitch
- Small enough to be handled by the gripper

37 fibres/mIFU -> 24 units possible within slit length

1 mIFU replaces 3 MOS fibres, so 2 mIFUs/retractor

Galaxy Evolution Science: WEAVE-LOFAR

- LOFAR is the world's largest low-frequency radio telescope array
- The LOFAR Surveys KSP will deliver ~10⁷ continuum targets over ~10⁴ deg² at 30, 60, 120, 200 MHz
- These will be strongly biased towards emission-line galaxies, especially star-forming galaxies

- Galaxy evolution science is *multiwavelength* science!
- ➢ Our goal here is to understand
 - \succ the evolution of
 - dwarf galaxies
 - \succ the *kinematics* of galaxies
 - \succ the population of *radio-emitting* galaxies
 - the impact of large-scale environment on these evolutionary pathways
 - and the distribution of dark matter in present-day galaxies

WEAVE-Clusters

> What is the effect of environment on galaxy evolution?

- ➤ as a function of mass: what is the impact on the scaling relations, kinematics, and stellar populations of dwarf galaxies?
- Set as a function of local environment: what happens to galaxies in the infall regions of clusters?
- as a function of lookback time: how do the kinematics and stellar populations of cluster galaxies evolve?

WEAVE-Clusters

> Layer 1: Tracing the evolution of dwarf galaxies in clusters

- >10⁴ cluster dwarfs at R=5000 down to M_r<-16 with MOS mode + 10³ cluster dwarfs with **mIFUs** to derive *spatiallyresolved properties*
- Layer 2: The infall regime
 - 10⁴ galaxies in 10 large superstructures at z~0.1–0.2 at R=5000 to R<21 in MOS mode</p>
- > Layer 3: The evolution of cluster galaxies at z < 0.5
 - > 25 cluster cores with LIFU mode

Galaxy Evolution Science: WEAVE-Apertif

Apertif is the world's first working focal-plane array, capable of full Westerbork resolution (~15") over a single, full 8 deg² pointing in the frequency range 1000–1750 MHz with nearly the sensitivity of the present "single-pixel" WSRT frontends

WEAVE-Apertif

The APERTIF Medium-Deep Survey will survey 10⁴ galaxies at 0.1<z<0.4 over 500 deg² in the 21cm line of HI, while the shallow all-sky survey will survey 10⁴ galaxies at z<0.1</p>

spatially-resolved
 kinematics of the
 neutral gas and
 stellar popⁿs

WEAVE-Apertif

- Tier 1: 10⁴ galaxies, half over 10⁴ deg², half over 500 deg² with mIFU at R=5000 to probe star-formation quenching and the fueling of the blue cloud
- Tier 2: 50 LSB galaxies with LIFU at R=10000 to determine masses of their dark and luminous matter using disk kinematics
- Tier 3: 10 nearby disk galaxies with LIFU to determine the impact of secular evolution on their gas and stars

Should be complementary to MaNGA...

WEAVE-LOFAR

- ➢ WEAVE can obtain redshifts for ~10⁷ emission-line galaxies detected by LOFAR at *z*<1.3 (OII) and *z*>2.3 (Ly α)
 - Radio continuum fluxes + redshifts = unbiased starformation rates over large range of cosmic time!
 - Spectra will often give metallicities and even stellar velocity dispersions: chemical evolution and stellar masses
 - Black hole accretion mechanism can be determined for radio AGN: evolution of BH accretion rate and stellar-BH co-evolution

WEAVE-LOFAR

- A properly-selected sample of ~5x10⁶ galaxies over 10⁴ deg² is critical for effective follow-up of LOFAR
 - select by radio power and, when possible, by optical color
- Depths to V~21 are required (but S/N requirements not strict)

Additional Galaxy evolution science cases

- Extragalactic star clusters
- Dwarf galaxies in the local cosmological volume
- > Stellar populations at intermediate redshifts
- Ultra-deep spectroscopy

Key parameter summary...

Telescope, diameter	WHT, 4.2m	
Field of view	2°	
Number of fibers	1000	
Fiber size	1.3"	
Number of small IFUs, size	~20, 9"x12" (1.3" spaxels)	
LIFU size	~1.5'x1' (2.6" spaxels)	
Low-resolution mode resolution	4300-7200	
Low-resolution mode wavelength coverage (Å)	3660-9840	
High-resolution mode resolution	18560-21375	
High-resolution mode wavelength coverage (Å)	4040–4650, 4730–5450 5950–6850	

Nominal survey parameters

Survey	Mode	No. Objects	Area (deg ²)	Nights
GA halo LR	MOS/R=5000	10 ⁶	6500	215
GA halo HR	MOS/R=20000	5x10⁴	2500	115
GA disk LR	MOS/R=5000	5x10 ⁶	2000	90
GA disk HR	MOS/R=20000	5x10⁵	2000	715
Clusters L1	MOS/R=5000	3x10 ⁴	150	25
Clusters L1	mIFU/R=5000	10 ³	150	50
Clusters L2	MOS/R=5000	10 ⁴	30	10
Clusters L3	LIFU/R=5000	150	0.08	75
LOFAR	MOS/R=5000	4x10 ⁶	10000	575
Apertif-mIFU	mIFU/R=5000	10 ⁴	1000	290
Apertif-LIFU	LIFU/R=20000	60	0.025	60

N.B. Reduction in total time from the fact that the LOFAR and Halo surveys overlap...

La Palma weather is dependable... 7.5 hours/night every night is the average... makes survey planning easy!

