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Overview

* Primary Motivation: Galactic science
« Derived specifications

* QOverview of instrument design

» QOpportunities for IFU science

* |FU key science goals

* [FU specfications

 WEAVE summary



Galactic archaeology surveys:
exploiting Gaia's full potential

» Gaia: Astrometry at micro-
arcsecond precision

» The history of the Milky
Way

Launches November
2013
5 year survey from
L2...
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Galactic archaeology

» The Galactic halo

» Dynamics of the Galactic disks
» Chemical labeling

» Open clusters




A STEREOSCOPIC CENSUS OF OUR GALAXY

Dynamics, star formation
and assembly histories of disc,
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~ Mass of galaxy from
velocity structure at 15 kpc

» Proper motionsin LMC/SMC
individually to 2-3 km/s
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Horizon for proper motions
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Proper Motion:

Positions, parallaxes and proper Parallax:
10 pas/yr =1 km s at 10 kpc

motions for 10° stars to V~20 10 pas = 10% distances at 20 kpc

% Gaia RVS: no radial velocities for V>17: No abundance
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WEAVE sky coverage
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Galactic archaeology: How did

our Galaxy form?
< The Galactic halo:

< how was it formed? accreted or in-situ?
=V, [Fe/H], [a/Fe] to 10kpc

< what is the total mass of the Milky Way"?
—BHB/RGB stars beyond 80kpc

<> what is the shape of the Milky Way's gravitational potential?
—Stellar streams (50— 100kpc)

< how much substructure is there in the halo?
—2 km s7! velocities in streams

< Where/what are the most metal-poor stars in the Milky Way?
—10° candidate metal poor stars from SDSS

o



<> The halo records the formation history of the MW

< outer halo (>20 kpc): streams detected as overdensities
easily in imaging surveys (long mixing timescales)

<> inner halo (10-20 kpc): merged components are well-
mixed, need chemodynamics

Faint
stream

£ Bright
¢ Stream




Simulations of the Galactic halo

< CDM formation models predict that the halo is highly
structured due to accretion events

%ﬁ;"‘ Colours represent stars from different merger events...




Galactic archaeology: How did

our Galaxy form?
< The Galactic disk(s):

< How many disks are there really? what are their
relationships with the bulge, the halo, and each other
—> Full phase space information throughout the disk
< Did they form through accretion or in situ processes”?
— Moving groups beyond the solar neighbourhooad
<> How significant is radial migration?
— Measure metallicity gradients in the disk

— All require v.<2 km s!, Abundances & stellar parameters



WEAVE at R=5000

» WEAVE will measure

radial velocities to

o (v)<2 km/s at V=20 in
1hr of dark time (V=19
in bright time), closely
matching the Gaia
photometric limits

> WEAVE will be able
to determine the
radial velocities of
any of the ~109
Gaia stars that RVS
won't!

opy (km/s)

Gaia

astrometric

limits

Dark time




Galactic archaeology: How did
our Galaxy form?

< Galactic Populations:

< Assembly history of the disks

— Abundances to <0.1dex to ~3kpc, chronometers [Ba/Eu]
< Streams, groups and substructures?

—High precision dynamics (< 1km s°') and abundances
<> Nucleosynthesis patterns in metal-poor stars

—(detailed abundance of Li, C, a -elements




WEAVE at R=20000

» Abundances to

~0.1 dex accuracy [ apocei

|
HERMES R-~3

will allow chemical
labeling of stars

» WEAVE will reach
V~17 In ~2 hours at
S/N>60/resolution

LOG (Cumulatif Number of Stars/square degree)
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R=20000 1 S—

(4>

VWIEAVE
~~20000

14 16 18 20 limit Vm.g
063 10 16 25 40 6.3 10distance Kpc GV

630 10 16 25 40 60 100 distance Kpc Kl



Chemical labeling: examples

T Nissen+2011 3 open clusters
04} (o ) { | T | Y | ' ' y . .
% © a 06} - 1
T P e ) 14 3, ST W b, o . de Silva+2009
!‘\' 02+ a - .... \‘ A N A A A A Q ]
) | - ;,: o
oo Accreted stars?
021 . 1 . L . 1 . L M !
1.6 1.4 1.2 1.0 0.8 0.6 0.
(Fe/H)
04 | |
0.3 of &, et Th|Ck dlSk
« & .{:’:... LI e * .
0.2 * e ag emtam oL,
. L ] e LY ..
04 . . .,.~ . .
oy, ,._.',,Q. A
0 . . I .
Thin disk
01 Reddy+2006
1 0.5 Y

[FeH]

o
qar



Open cluster goals

» Open clusters represent both a “ground truth™ of our
models of stellar evolution and a tracer population of
star formation in the MW disk

» Do all stars form in clusters”? How do clusters
evolve”? How do they disperse their stars to the
field? What is the impact of radial migration on this
pProcess?

» Open clusters as tracers of MW disk star formation
and chemical evolution

» How good are our stellar evolution models?

o



GA Requirements

Low Resolution Mode (R~5000)

Multiplex >~ 1000/2 degree FOV

Large simultaneous wavelength coverage
High Resolution Mode (R~20000)
Multiplex >~500/2 degree FOV

~ull coverage of element families for chemical
abelling.




Key parameter summary...

Telescope, diameter WHT, 4.2m
Field of view 2°
Number of fibers 1000
Fiber size 1.37
Low-resolution mode resolution 4300-7200
Low-resolution mode wavelength 3660-9840

coverage (A)

High-resolution mode resolution

18560-21375

High-resolution mode wavelength
coverage (A)

4040-4650, (4730-5450)
5950-6850



Galactic archaeology survey
strategy
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WEAVE: A new facllity
iNnstrument for the WHT

Current
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AVE: New top end ring
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Project Structure
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Prime Focus Corrector

New top-end ring, field corrector with
atmospheric dispersion compensation
and instrument rotator.

ING/NOVA design
Procurement through

IAC
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Fllore positioner

» Pick-and-place fiber positioner: COTS
components

» 2dF-like
» tumbler with 2 field plates
» 2 robots working in parallel

» low-risk, low-cost
» high flexibility

filber wrap



Positioner concept S|m||ar to AF2/2dF, but all COTS
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Fieldplate A

168 retractors

around plate A : . .
| X axis counterweights

LIFU
Tumbler axis

Main structure
(grey)

168 retractor units
around plate B

Focal plane
Fieldplate B imager

Cable wrap —
Interface plate
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4

2



Theta drive

Gripper unit Schunk
MEG-40EG

> Mounting bracket to theta drive

X

CCD TV unit

Gripper jaws \

Reimaging
lens

/ Fibre button

g

Fieldplate

o



Fibre retractors

» Push park locations beyond
useful field edge

» 1000 MOS buttons
» “Bull-ring” triple-parking concept

(4>

1
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Fibre cables

Button ~Fibre
1 per fibre / 6 per retractor only 1 show
' Protruding length tbc (800n
Fibre loop
4 per assembly
To allow repair without
unpicking the bundle
Length tbe (120mm)
~Protective ~ Slithet bundle
slitiet box 24 fibres
forhanding | Lengthtbe ey
=
L L
L = 4
Slhtet Distibution box Retractor bundle
24 fibres 1x24 to 4x8 fibres 4 per assombly
6 fbres per bundle

(4>

4 per assembly



MOS field configuration

» 97% of fibres allocated
in test simulation (1.8x
oversampled targets) N\

> ~8500 fibre crossings! === -\ 7

» ~1800 moves within
~55 minutes with two

robots

coherent bundles




Dual-Beam Spectrograph Design

/3.0 input, /1.8 camera, 190mm beam diameter. 2x8kx3k e2V CCDs
(CCD231-68) in each camera.

Slit curved to give uniform
spectral coverage for all fibres
in low-res

7-lens cameras (3 aspheres)

16k spectral pixels, R=5000
over 370—1000nm in one shot

Camera lenses are F2, LLF1,
N-FK51A, and LAK9

Some vignetting allowed in high
res

S
AQ




Optical design
Resolution maps produced across detector, including
spectrograph image quality and detector sampling

Verfied by two different calculation methods
Example: blue low res.

R calculated as lambda/
dlambda with gaussian fit
to spectrograph PSF

Adjacent fibres at image quality of R~5000 - 0.1 pixel sampling




Spectrograph Mechanics

Grating exchange, slit exchange, shutters and camera motion achieved
by pneumatic drives to kinematic positions — repeatable motions




—AVE throughput
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IFU Opportunities

Spectrograph with full coverage and large slit length
Slit exchange is built-in to the design

Pick and Place positioner provides easy route to
deployable mini [FUs

Tumbler 90° position provides obvious location for a
separate monolithic IFU




Mini [FU concept

» 20 minilFUs on one

field plate, ~9"x9", 1.3”

pitch

» Small enough to be
handled by the gripper

448.6

N 2mm\

3.32 mm

g =
e}
_
R&R

A\

F/2.7 Image plane_—/\ "
0373 mm \, ™

4

F/3.2 focus

37 fibres/mIFU -> 24 units
possible within slit length

1 mIFU replaces 3 MOS fibres,
so 2 mlFUs/retractor
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Galaxy Evolution Science:
WEAVE-LOFAR
» LOFAR is the world’s

largest low-frequency
radio telescope array

» The LOFAR Surveys
KSP will deliver ~107
continuum targets over
~10% deg? at 30, 60,
120, 200 MHz

» These will be strongly ®
biased towards
emission-line galaxies,
especially star-forming
galaxies

o
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» (Galaxy evolution science is multiwavelength
science!

» Our goal here is to understand

» the evolution of

» dwarf galaxies

> 1
> t

ne kinematics of galaxies

ne popula

lon of radio-emitting galaxies

» the impact o
these evolutionary pathways

" large-scale environment on

» and the distribution of dark matter in
present-day galaxies
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—-Clusters

» \What is the effect of environment on galaxy evolution®?

> as

a function of mass: what is the impact on the

scaling relations, kinematics, and stellar
populations of dwarf galaxies”

> as

a function of local environment: what happens

to galaxies in the infall regions of clusters?

> as

a function of lookback time: how do the

kinematics and stellar populations of cluster
galaxies evolve?
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—-Clusters

» Layer 1: Tracing the evolution of dwarf galaxies in clusters

> >10% cluster dwarfs at R=5000 down to Mi<-16 with MOS
mode + 103 cluster dwarfs with mIFUs to derive spatially-
resolved properties

» Layer 2: The infall regime

> 104 galaxies in 10 large superstructures at z~0.1-0.2 at
R=5000 to R<21 in MOS mode

» Layer 3: The evolution of cluster galaxies at z<0.5

» 25 cluster cores with LIFU mode



Galaxy Evolution Science:
WEAVE-Apertif

» Apertif is the world’s first working
focal-plane array, capable of full
Westerbork resolution (~15") over
a single, full 8 deg? pointing in the
frequency range 1000-1750 MHz
with nearly the sensitivity of the %\,
present “single-pixel” WSRT front- &=
ends

o
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WEAVE-Apertit

» The APERTIF
Medium-Deep Survey
will survey 107
galaxies at 0.1<z<0.4 e ° e
over 500 deg? in the
21cm line of HI, while
the shallow all-sky 1] HETDEX
survey will survey 104 I H-ATLAS

0 CVn groups
galaxies at z<0.1 o Nearby Galaxy

> spatially-resolved  gn %G

kinematics of the

neutral gas and
stellar pop"s

A
quy



WEAVE-Apertit

> Tier 1: 104 galaxies, half over 10* deg?, half
over 500 deg? with mIFU at R=5000 to
probe star-formation quenching and the
fueling of the blue cloud

» Tier 2. 50 LSB galaxies with LIFU at
R=10000 to determine masses of their dark
and luminous matter using disk kinematics

» Tier 3: 10 nearby disk galaxies with LIFU
to determine the impact of secular
evolution on their gas and stars

Should be complementary to MaNGA...

Al



WEAVE-LOFAR

» WEAVE can obtain redshifts for ~107 emission-line
galaxies detected by LOFAR at z<1.3 (Oll) and z>2.3
Ly a)

» Radio continuum fluxes + redshifts = unbiased star-
formation rates over large range of cosmic time!

» Spectra will often give metallicities and even stellar
velocity dispersions: chemical evolution and stellar
Mmasses

» Black hole accretion mechanism can be determined
for radio AGN: evolution of BH accretion rate and
stellar-BH co-evolution

o



WEAVE-LOFAR

> A properly-selected sample of ~5x10°
galaxies over 10* deg? is critical for effective
follow-up of LOFAR

» select by radio power and, when
possible, by optical color

» Depths to V~21 are required (but S/N
requirements not strict)

o



Additional Galaxy evolution
sclence cases

» Extragalactic star clusters

» Dwarf galaxies in the local cosmological
volume

» Stellar populations at intermediate redshifts
» Ultra-deep spectroscopy



Key parameter summary...

Telescope, diameter WHT, 4.2m
Field of view 2°
Number of fibers 1000

Fiber size 1.3"

Number of small IFUs, size

~20, 9"x12" (1.3” spaxels)

LIFU size

~1.5'x1" (2.6" spaxels)

Low-resolution mode resolution 4300-7200
Low-resolution mode wavelength
coverage (A) 3660-9840
High-resolution mode resolution 18560-21375
High-resolution mode wavelength 4040-4650, 4730-5450
coverage (A) 5950-6850
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Nominal survey parameters

Survey Mode No. Objects Area (deg?) Nights
GA halo LR MOS/R=5000 10° 6500 215
GA halo HR MOS/R=20000 5x10* 2500 115
GA disk LR MOS/R=5000 5x10° 2000 90
GA disk HR MOS/R=20000 5x10° 2000 715
Clusters L1 MOS/R=5000 3x10* 150 25
Clusters L1 mIFU/R=5000 10° 150 50
Clusters L2 MOS/R=5000 10* 30 10
Clusters L3 LIFU/R=5000 150 0.08 75
LOFAR MOS/R=5000 4x10° 10000 575
Apertif-mIFU mIFU/R=5000 10* 1000 290
Apertif-LIFU LIFU/R=20000 60 0.025 60

N.B. Reduction in total time from the fact that the
LOFAR and Halo surveys overlap...

La Palma weather is dependable... 7.5 hours/night every
night Is the average... makes survey planning easy!
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