A census of ionising conditions in the local universe from CALIFA

Lutz Wisotzki
Leibniz Institute for Astrophysics (AIP)

Bernd Husemann, C. J. Walcher (AIP), S.F. Sanchez (IAA), \& the CALIFA Collaboration

Outline

1. CALIFA as a volume-representative sample of galaxies; Estimating population properties from the CALIFA sample
2. A volume-corrected BPT diagram; Boundaries of BPT domains

How representative for galaxies is the CALIFA sample?

(and what do we mean by "representativity"?)

CALIFA objects cover the full range of galaxy locations in the colour-magnitude diagram:

but the relative numbers reflect the sample selection criteria and not population properties!
(N.B.: the same is true for SDSS and any other survey!!!)

CALIFA selection criteria

- Footprint: inherited from SDSS DR7 photometric catalogue; $\Omega=8700$ deg2
- Redshift: $0.005<z<0.03$
- Angular isophotal major axis at 25 mag/arcsec2: $45^{\prime \prime}<$ isoA $_{r}<79.2^{\prime \prime}$

Plots on this and following pages will be published in CALIFA sample characterisation paper: Walcher et al, to be submitted
$\Rightarrow 937$ galaxies within footprint.
in absolute magnitudes:

Does CALIFA have a complicated selection function?

Which SDSS galaxies are `accessible’ to CALIFA?

Does CALIFA have a complicated selection function?

Fraction of SDSS galaxies that would be selected by CALIFA if placed at suitable redshift, as function of absolute magnitude:

Does CALIFA have a complicated selection function?

Which SDSS galaxies are `accessible’ to CALIFA? - now in stellar masses

Does CALIFA have a complicated selection function?

Fraction of SDSS galaxies that would be selected by CALIFA if placed at suitable redshift, as function of stellar mass:

CALIFA survey volume

- Total volume between $z=0.005$ and $z=0.03$ over CALIFA footprint of $8700 \mathrm{deg}^{2}: \quad \mathrm{V}=1.7 \times 10^{6} \mathrm{Mpc}^{3}$
- but each galaxy only "visible to CALIFA" within some redshift range:
- Actually available survey volume V_{a} is different from galaxy to galaxy.
- Value of V_{a} depends only on linear isophotal size $D_{\text {iso }}$.

(completely analogous to $\mathrm{V}_{\max }$ formalism in flux-limited surveys)

Object-specific CALIFA survey volume as function of $D_{\text {iso }}$

What can we do with volume correction?
From histograms to estimated population distribution functions

What can we do with volume correction?
From histograms to estimated population distribution functions

Size distribution function

Estimating population distributions of spectroscopic properties from IFS samples

Just some possibilites:

- Stellar mass function from spectral modelling
- Total emission line luminosity function
- SFR distribution function
- Beyond the Tully-Fisher relation:
- circular velocity distribution function
- bivariate distribution of velocities and stellar masses

Part 2: A census of ionising conditions from CALIFA

(work in progress, to be published as soon as possible)

BPT diagnostic emission line diagram(s)

Emission line ratios can probe shape of ionising spectrum;
(also relevant: intensity of radiation field, gas density, abundances)

At least 2 line ratios required for classifying different types of excitation.

Most popular: [O III] $\lambda 5007 / \mathrm{H} \beta$ vs. [N II] $\lambda 6584 / \mathrm{Ha}$

- lines are bright
- indepent of dust reddening
- low vs. high ionisation potential

(Baldwin, Phillips, Terlevich 1981)

Some steps in the evolution of the BPT diagram

(Kauffmann et al. 2003)

The CALIFA view on the BPT diagram

In 10^{6} spectra from 300 galaxies: spaxel-by-spaxel evaluation of emission line ratios

The CALIFA view on the BPT diagram

Same as before, but now only using spaxels with $r<0.7 r_{50}$ (\approx typical for SDSS)

Volume emissivity as function of excitation conditions

numbers of pixels

Ha luminosity density [erg si Mpc^{-3}]

Volume emissivity as function of excitation conditions

Implications:

- H II regions provide > 90\% of all Ha photons in the local universe
- forming a very narrow sequence
- Dominant contributors are low [OIII] (metal rich) regions.
- AGN / LI(N)ER contribution is <10\% (but $>50 \%$ of all spaxels)
- Sum over image gives total Ha luminosity density at $z \approx 0$;

Luminosity densities of other lines

[O III] $\lambda 5007$

[O I] 16300

Luminosity densities in [OI]/H $\alpha-[\mathrm{OII}] / \mathrm{H} \beta$ diagram

\# pixels

[OIII]5007
[OI]6300

Boundaries in the

Boundaries in the BPT diagram

Ha luminosity density

Distribution of mean H α equivalent width in BPT diagram

Notice:

- Zone with $W(H \alpha)>10 \AA$ identical with H II region sequence (cf. also Cid Fernandes et al 2011)
- Sharp cutoff towards AGN / LI(N)ER regime
- very few AGN in CALIFA
- in particular: no trace of "transition zone" from H II $\rightarrow \mathrm{LI}(\mathrm{N}) \mathrm{ER}$
\Rightarrow a "natural boundary" between H II and other regions? LINER regions = diffuse emission?

H α luminosity densities for different equivalent widths

Ha equivalent widths in [OI] BPT diagram

- Sharp cutoff towards

AGN / LI(N)ER regime remains

- Note: also low mean EW in "AGN zone" (there are only few AGN in CALIFA!)
- more evidence for LINER = DIG?

Conclusions

1. The angular diameter selection of the CALIFA sample ensures not only a broad coverage of galaxy properties; it also allows for straightforward volume correction.
2. It is thus possible to estimate population distributions from CALIFA measurements.
3. We present the first volume-corrected BPT diagram, showing how the H luminosity density in the local universe is distributed over different excitation conditions.
4. $\mathrm{LI}(\mathrm{N}) E R-$ like regions are well separated from H II regions when using $\mathrm{EW}(\mathrm{H} \alpha)$ as additional diagnostic.
