The Stability of Galaxy Disks

Kyle B. Westfall Kapteyn Astronomical Institute, Groningen, Netherlands

university of groningen

THE DISKMASS SURVEY TEAM

DAVID R. ANDERSEN (HIA) MATTHEW A. BERSHADY (UW) THOMAS P. K. MARTINSSON (LEIDEN) ROBERT A. SWATERS (NOAO) MARC A. W. VERHEIJEN (KAPTEYN) KYLE B. WESTFALL (KAPTEYN)

The DiskMass Survey In Brief

The DiskMass Survey is a focused study of face-on galaxies with the primary aim of understanding the dark and luminous mass distribution in disk-dominated systems.

• Vertical oscillations dynamically isolate the disk contribution via:

 $\Sigma_{dyn} = \sigma_z^2 / \pi G k h_z$

 $\Upsilon_{dyn} = \Sigma_{dyn} / \mu$

- σ_z is the vertical velocity dispersion
- k is a constant describing the vertical density distribution (exp, sech, sech²)
- h_z is the scale height

Guillermo Haro Workshop

The DiskMass Survey In Brief

• 40 late-type spirals

- primarily Sb-Sc type
- $-21.5 > M_K > -26.0$
- 2.0 < B-K < 4.2
- $21.8 > \mu_{R,0} > 18.6$ (Freeman ~ 20.7)
- B

- Extensive Data Set
 - SPK+PPK IFU Spectroscopy
 - Stellar (MgI, CaII) + Ionized Gas (OIII, H α) kinematics
 - HI Radio synthesis imaging
 - UBVRIJHK + Spitzer (I2, I4, M1, M2) photometry

Guillermo Haro Workshop

DiskMass Survey Results

• Galaxy disks are submaximal (Bershady+ 2011)

Guillermo Haro Workshop

Friday, July 19, 2013

DiskMass Survey Results

- Galaxy disks are submaximal (Bershady+ 2011)
- $\Upsilon_K \sim 0.3$ (Martinsson+ 2013, in press)
- Disk stability correlates with SFR (Westfall+ in prep)

No Bar (S)
Weak Bar (SAB)
Strong Bar (SB)

Why stability matters

- How susceptible are galaxy disks to perturbations?
 - Density wave theory suggests they should be given morphological features like bars and spiral arms
- How do these perturbations affect/regulate their secular evolution?
 - For example, perturbations could
 - * produce gravitational effects that might facilitate star formation
 - * scatter stars thereby increasing their velocity dispersion and making the stellar disk more stable

Guillermo Haro Workshop

Kinematic Maps

We construct a generative model based on analytic dynamical theory.

The best-fitting parameters of the model and their errors are determined by sampling from the Bayesian posterior.

UGC 4368

Guillermo Haro Workshop

Bayesian Inference Likelihood *Hypothesis* **Prior Probability** Data **Parameters** $P(\boldsymbol{\theta}|\mathcal{D},\mathcal{H}) = \frac{P(\mathcal{D}|\boldsymbol{\theta},\mathcal{H})P(\boldsymbol{\theta}|\mathcal{H})}{\int P(\mathcal{D}|\boldsymbol{\theta},\mathcal{H})P(\boldsymbol{\theta}|\mathcal{H})d\boldsymbol{\theta}}$ "Evidence"

Guillermo Haro Workshop

19 July 2013

Friday, July 19, 2013

Generative Modeling

We construct a generative model based on analytic dynamical theory.

The best-fitting parameters of the model and their errors are determined by sampling from the Bayesian posterior.

Guillermo Haro Workshop

19 July 2013

Generative Modeling

- Model elements:
 - Geometry (*i*, PA, etc.)
 - Stellar rotation curve
 - Stellar velocity ellipsoid * σ_R , $\alpha = \sigma_z/\sigma_R$, $\beta = \sigma_{\theta}/\sigma_R$
 - Corrects V_g to V_c : * $V_c^2 = V_g^2 + \sigma_g^2 \delta_{GP}$
- Asymmetric drift:
 - $\ast V_g{}^2 = V_{\ast}{}^2 + \sigma_{\ast}{}^2 \,\delta_{AD}$
 - $-\delta_{AD} > 0$ for nearly all galaxies

Generative Modeling

The MCMC sampling provides a set of parameters drawn in proportion to their probability.

From these, we can derive other properties of the galaxy, such as disk stability.

Axial Ratios

• α may change with Hubble type due to relative influence of scattering processes (Gerssen & Shapiro Griffin 2012)

Guillermo Haro Workshop

19 July 2013

Star formation vs. Stability

- Although the correlation is rough, galaxies with a higher SFR are generally less gravitationally stable.
 - Star-formation rates are based on the 21-cm radio continuum.

What do scaling relations suggest?

SFR, $\mu_{0,K}$, h_R , Υ_K , α , σ_g , k, X_{CO}

Kennicutt (1998) Verheijen & Sancisi (2001) Regan+ (2006) Bershady+ (2010) Saintonge+ (2011) Martinsson (2011) Andersen & Bershady (2013) Martinsson+ (2013)

Guillermo Haro Workshop

19 July 2013

Friday, July 19, 2013

Star formation vs. Stability

 Although the correlation is rough, galaxies with a higher SFR are generally less gravitationally stable.

Star-formation rates are based on the 21-cm radio continuum.

Yes.

• Does this make sense?

Guillermo Haro Workshop

19 July 2013

Guillermo Haro Workshop

Summary

- The DiskMass Survey is a focused study of face-on galaxies with the primary aim of understanding the dark and luminous mass distribution in disk-dominated galaxies.
 - A primary driver for building PPak, the CALIFA workhorse. (Verheijen+ 2004)
- Galaxy disks are submaximal (Bershady+ 2011)
- $\Upsilon_{\rm K} \sim 0.3$ (Martinsson+ 2013, in press)
- Disk stability correlates with SFR, as we expect it should. (Westfall+ in prep)