

The separate formation of different galaxy components

Alfonso Aragón-Salamanca

School of Physics and Astronomy University of Nottingham

Overview:

- Galaxy properties and morphologies
- Main galaxy components: bulges and disks
- A "simple" case: the formation of lenticular (S0) galaxies
- Summary

Normal Spiral Galaxy

M100 © Anglo-Australian Observatory Photo by David Malin

Barred Spiral Galaxy

Barred Galaxy NGC 1365 (VLT UT1 + FORS1)

Elliptical Galaxy

Lenticular (S0) Galaxies

Irregular Galaxies

Hubble Morphological Classification System

Photometric Bulge-Disk Decomposition

Christlein & Zabludoff 2004

Photometric Bulge-Disk Decomposition

- Bulges growing?
- Disks fading?
- Different progenitors?

Christlein & Zabludoff 2004

Morphology-Density Relation at z~0

Hubble & Humason (1931)

Dressler (1980)

Density

At z~0 (Present time)

Many S0s in clusters Few Spirals in clusters At 0.36<z<0.6 (~5 Billion years ago)

Many Spirals in clusters Few S0s in clusters

ESO Distant Clusters Survey (EDisCS)

Desai et al. (2007)

(cf. Dressler et al. 1997)

Evolution of disks in clusters

- Possible mechanisms:
 - ram-pressure stripping
 - of gas halo (Bekki et al. 2002)
 - of disk gas (Quilis et al. 2000)
 - galaxy-galaxy interactions
 - harassment (Moore et al. 1998)
 - mergers (Bekki 1998)
 - cluster tidal field (Bekki 1999)

z = 49.000

Cluster
Formation
(Cold Dark
Matter
Cosmogony)

Galaxy falling into Virgo cluster

Cardiff Numerical Simulations Group (2009)

Ram Pressure:

Gas disk interacting with hot intracluster medium

Cardiff Numerical Simulations Group (2009)

Quilis, Moore & Bower (2000)

Tully-Fisher relation for low-z Spirals

Evolution of a Fading Disc Galaxy

Other Formation Mechanisms

Mergers?

Gas-Rich Collapse?

Gas-Poor Collapse?

Something Complete Different?

0 20 40
Radius ["]

Bedregal, Aragón-Salamanca & Merrifield 2006

Bedregal, Aragón-Salamanca & Merrifield 2006

S0 Tully-Fisher offsets vs. age

Bedregal, Aragón-Salamanca, Merrifield & Cardiel 2007

Prediction: Maximum Tully-Fisher offset for S0s

 $\Delta M_B(max) \sim -2.5 mag$

Bedregal, Aragón-Salamanca & Merrifield 2006

Globular Cluster M13

Globular Clusters in the Milky Way

Evolution of a Fading Galaxy

GC Specific Frequency vs. Galaxy Colours

Johnston et al. 2012

Johnston et al. 2012

Johnston et al. 2014

Origin of the Young Bulge Stellar Populations

- Bulge and disc stellar populations show a correlation
- The offset shows bulges have enhanced Fe-enrichment
 - Fe-enriched disc gas dumped in the central regions, until a final SF event created the young bulge stellar populations and quenched all star formation

Separate star-formation history of Bulge and Disk

- 1. Disc undergoes continuous SF until quenching begins
- 2. During quenching, Fe-enriched gas isdumped in the central regions

- 3. Bulge undergoes a final SF event, using up the dumped disc gas and truncating all SF in the galaxy
 - 4. After all SF has been quenched, the spiral galaxy transforms into an S0

Summary

- Bulges and disks are two distinct galaxy components.
- They have very different properties → their formation mechanisms must be different.
- S0s provide direct evidence of the separate evolution of bulges and disks.
- Lenticular (S0) galaxies are the descendents of spiral galaxies that stopped forming stars in the last few billion years.
 - Star formation ceased in the disk first, and the disk faded.
 - The last star-formation episode took place in the bulge, increasing its stellar mass/luminosity. It used gas pre-processed in the disk.