

Future IFS Surveys: MaNGA and the separate formation of bulges & disks

Alfonso Aragón-Salamanca Michael Merrifield Evelyn Johnston

& the MaNGA team

Presentation credits: Kevin Bundy, Renbin Yan & Evelyn Johnston

MaNGA: Mapping Nearby Galaxies at APO

MaNGA Team: Over 250 members at more than 60 institutions

Management Team

PI: Kevin Bundy Survey Scientist: Renbin Yan Instrument Scientist: Niv Drory Chief Engineer/Proj. Manager: Nick MacDonald Lead Data Scientist: David Law SDSS-IV Project Scientist: Matt Bershady

Science Team Chair: Daniel Thomas Sample Design Lead: David Wake Lead Observer: Anne-Marie Weijmans Deputy Lead Sample Design: Aleks Diamond-Stanic Composition Strategic Committee: Alfonso Aragon-Salamanca (Chair), Cheng Li, Roberto Maiolino, Christy Tremonti

Kinematics Strategic Committee: Remco van den Bosch (Chair), Karen Masters, Mike Merrifield, Eric Emsellem

Data Products Committee: Sebastian Sanchez (co-chair)

Spectroscopic Surveys (e.g. SDSS)

Spectroscopic Surveys (e.g. SDSS)

Spectroscopic Surveys (e.g. SDSS)

NGC 2974

high-z landscape:

Era of high-z IFUs

We need a z=0 baseline for 2D spectroscopy

SAURON/Atlas^{3D}: 260 early-types DiskMass: ~140 face-on disks CALIFA (Calar Alto): 600 galaxies

SAMI at AAO: 3400 galaxies

completed or ongoing

MaNGA will survey 10,000 galaxies

MaNGA Key Questions

Life	 How does gas accretion drive the growth of galaxies? What are the relative roles of stellar accretion, major mergers, and instabilities in forming galactic bulges and ellipticals?
Death	3. What quenches star formation? What external forces affect star formation in groups and clusters?
Birth	4. How was angular momentum distributed among baryonic and non-baryonic components as the galaxy formed?5. How do various mass components assemble and influence one another?

What is MaNGA?

SDSS-IV Dark time split with eBOSS
MaNGA exploits the existing BOSS instrument (high throughput, pipeline)

- Bundle BOSS fibers to create 17 IFUs of various sizes
- IFU survey of ~10k nearby galaxies

MaNGA bundles are more regular, but fibers are buffered

Hardware at a glance

IFU size distribution

6 cartridges

17 science IFUs per cartridge
12 "mini-bundles" (7-fiber) for calibration
92 IFU-associated roaming sky-fibers
Total 1423 fibers per cartridge

MaNGA instrumentation "prowess"

MaNGA Survey at a glance

2014-2020: 10,000 galaxies 140 galaxies per month

Spatial resolution = 2" (1-2 kpc) Spectral resolution = 60 km/s (sigma) S/N = 4-8 at 1.5 Re (~3 hours)

Volume-limited samples: log M_{star} > 9 Flat in stellar mass and color Uniform radial coverage

Sample selection Requirements

David Wake Aleks Diamond-Stanic

- Simple, reproducible selection
- Flat stellar mass distribution
- Uniform spatial coverage in units of R_e (1.5 or 2.5, major axis).
- Maximize S/N and spatial resolution.
- ~6000 to 1.5Re, ~3000 to 2.5Re

Main selection cuts

Color-enhanced Sample

Increase minority representation!

22

Color-enhanced Sample

16% of the 10,000 is devoted to targeting rare galaxies in color-mag space. These are also covered to 1.5Re.

The remaining ~5% of the bundles will be left for ancillary targets.

Observing Strategy

Importance of Dithering

Importance of Dithering

Importance of Dithering

Kevin ≠ Marilyn

Credit: David Law

Observing Strategy Summary

- 3 x 15min exposures, each at a different dither position.
- Obtain multiple sets of these till each plate meets the S/N requirements in blue and red for given fiber magnitudes.
 => Ensure uniform data quality
- Each set has to be finished within 1 hour to minimize image quality degradation from differential atmosphere refraction.

March Commissioning: Mrk 848

David Law

March Commissioning: Mrk 848

David Law

Christy Tremonti

Christy Tremonti

Spectroscopic Bulge-Disc Decomposition: Long-Slit

- Obtain a good quality long-slit spectrum of a galaxy
- Correct spectrum for kinematics
- Decompose light profile at each wavelength

Spectroscopic Bulge-Disc Decomposition: Long-Slit

- Obtain a good quality long-slit spectrum of a galaxy
- Correct spectrum for kinematics
- Decompose light profile at each wavelength

Spectroscopic Bulge-Disc Decomposition: Long-Slit

- Integrate to get total light of bulge and disc for that wavelength bin
- Plot against wavelength to obtain high-quality spectra representing purely the bulge and disc light.

Spectroscopic Bulge-Disc Decomposition: IFU data

- We experience degeneracy issues using only long-slit spectra from the major axis
- One way to resolve this would be to use wide-field, high-resolution IFU spectra, e.g. CALIFA, MaNGA
 - Spectral information over the whole structure of the galaxy
 - Large field of view
 - Long wavelength range

Note:

The following results are very preliminary and use many assumptions. They should be considered as a proof of concept only.

Steps to decompose IFU Spectra

- Measure and correct the kinematics over the galaxy
 - ensures each image slice is composed of spectra at the same restframe wavelength

Steps to decompose IFU Spectra

- Bin the data cube into a series of high S/N images, and decompose with GALFITM (MEGAMORPH) to see how parameters vary with wavelength.
- Print off image slices at each wavelength from the IFU datacube.

Steps to decompose IFU Spectra

- Decompose the individual image slices with GALFIT
- Plot the integrated luminosity of each component against wavelength to get its decomposed spectrum

 Use model to create separate bulge and disk data cube, preserving gradients

Future refinements and challenges

• So far we used Lick-like index analysis

 \rightarrow Relatively easy to implement full spectral fitting

So far we do not make use of kinematical information – in fact, we erase it!!! →

→ Desirable but challenging to fit kinematics and stellar populations simultaneously

• So far restricted to simple bulge/disc systems

→ Desirable but challenging to include more components (bars, spiral arms, …)