Integral Field Spectroscopy in the Near IR

Instrumentation, techniques and data reduction

Javier Piqueras López Centro de Astrobiología (CAB, INTA-CSIC) GH School 2014

RO DE ASTROBIOLOGÍA

Overview of the talk

- Integral field spectroscopy in the NIR
 - Basic concepts
 - Sky emission
 - Atmospheric transmission
- Observing techniques
 - Nodding and jittering
 - Adaptive optics
- Science with near-IR IFS data
- Present and future of near-IR IFS

- Integral field spectrograph = Spectrograph + Integral field unit
- IFU: divides the 2D FoV into a continuous array
 - Lenslet array: input image split up by a microlens array
 - Fibres: input image formed on a bundle of optical fibers
 - Fibres + lenslets: array of lenslets in front of the fibre bundle
 - Image slicer: input image formed on a mirror that re-arrange the image into a pseudoslit

- Integral field spectrograph = Spectrograph + Integral field unit
- IFU: divides the 2D FoV into a continuous array
 - Lenslet array: input image split up by a microlens array
 - Fibres: input image formed on a bundle of optical fibers
 - Fibres + lenslets: array of lenslets in front of the fibre bundle
 - Image slicer: input image formed on a mirror that re-arrange the image into a pseudoslit

- Integral field spectrograph = Spectrograph + Integral field unit
- IFU: divides the 2D FoV into a continuous array
 - Lenslet array: input image split up by a microlens array
 - Fibres: input image formed on a bundle of optical fibers
 - Fibres + lenslets: array of lenslets in front of the fibre bundle
 - Image slicer: input image formed on a mirror that re-arrange the image into a pseudoslit

- Integral field spectrograph = Spectrograph + Integral field unit
- IFU: divides the 2D FoV into a continuous array
 - Lenslet array: input image split up by a microlens array
 - Fibres: input image formed on a bundle of optical fibers
 - Fibres + lenslets: array of lenslets in front of the fibre bundle
 - Image slicer: input image formed on a mirror that re-arrange the image into a pseudoslit

Sky emission

- Two sources:
 - Thermal background: atmospheric (+ telescope) emission dominates beyond ~2.3 μm
 - $\circ~$ Airglow emission: OH vibrational lines that dominates below ~2.3 μm

Sky emission

- Dominant source of noise in fully processed data
- Line emission is usually several orders of magnitude above from other sources
- In most cases, to obtain separate sky frames is mandatory to subtract the sky lines (IFS limited FoV)
- Sky line subtraction:
 - 'Classical' first-order approach: object spectrum sky spectrum
 - Due to rapid variability of the emission, not enough for IFS data: P-Cygni residuals

Sky emission

- Dominant source of noise in fully processed data
- Line emission is usually several orders of magnitude above from other sources
- In most cases, to obtain separate sky frames is mandatory to subtract the sky lines (IFS limited FoV)
- Sky line subtraction:
 - 'Classical' first-order approach: object spectrum sky spectrum
 - Due to rapid variability of the emission, not enough for IFS data: P-Cygni residuals
 - More sophisticated methods are already implemented (e.g. Davies 2007), to account for variability and compensate for instrumental flexures.
- However, although they might be a nuisance, sky lines could be also useful:
 - As reference for wavelength calibration: object and sky frames are observed using the same configuration
 - As a valuable option to characterise the spectral resolution of our data

Atmospheric transmission: Efficiency curves

• Atmospheric absorption in the near-IR: vibrational transitions of water vapor

Atmospheric transmission: Efficiency curves

- Atmospheric absorption in the near-IR: vibrational transitions of water vapor
- Depends on the airmass, varies with time...
- Although it can be modeled, it is usually corrected using standard stars: efficiency curves


```
H+K band
```

Atmospheric transmission: Efficiency curves

- Atmospheric absorption in the near-IR: vibrational transitions of water vapor $oldsymbol{O}$
- Depends on the airmass, varies with time... igodol
- Although it can be modeled, it is usually corrected using standard stars: igodolefficiency curves


```
H+K band
```

- Observing in the near-IR
 - Near-IR detectors are not as efficient as optical ones: relatively large number of 'bad' pixels and defects.
 - Strong background emission of the sky
 - Detectors could be rapidly saturated.
 - Additional sky exposures are mandatory in most of the cases.
 - Atmospheric transmission.
- How do we deal with that?
 - Split the exposures into shorter ones (50s, 100s, 150s, 300s...)
 - Use jittering patterns to avoid detector defects / bad pixels.
 - Nodding the telescope between on-source and sky positions to characterise the sky emission.
 - Observing standard stars for flux calibration.

- Basics of adaptive optics:
 - Problem: images blurred due to the refractive turbulent atmosphere.
 - Prevents large telescopes to achieve their diffraction limit.
- The principle of AO: correct in real time the spatial and temporal variations of the optical path length along the line of sight.
- Well suited for near-IR observations: easy to obtain better corrections at longer wavelengths

- Basics of adaptive optics:
 - Problem: images blurred due to the refractive turbulent atmosphere.
 - Prevents large telescopes to achieve their diffraction limit.
- The principle of AO: correct in real time the spatial and temporal variations of the optical path length along the line of sight.
- Well suited for near-IR observations: easy to obtain better corrections at longer wavelengths

Adapted from Davies and Markus 2012

K-band

- Adaptive optics observations:
 - Natural guide star (NGS)
 - A close (d < 10"), bright star (R < 15 mag) is needed.
 - Under these conditions, the diffraction limit of the telescope could be approached or achieved.
 - Sky coverage ~10%
 - Laser guide star (LGS)
 - A laser beam is used to create an artificial star by resonant fluorescence of Na atoms.
 - However, a tip-tilt star (d < 1', R < 18 mag) is also required for first-order corrections of the wavefront.
 - For larger apertures, it does not cover the full aperture at the heigh of the turbulent layers (cone effect, focal anisoplanatism)

- Adaptive optics observations:
 - Natural guide star (NGS)
 - A close (d < 10"), bright star (R < 15 mag) is needed.
 - Under these conditions, the diffraction limit of the telescope could be approached or achieved.
 - Sky coverage ~10%
 - Laser guide star (LGS)
 - A laser beam is used to create an artificial star by resonant fluorescence of Na atoms.
 - However, a tip-tilt star (d < 1', R < 18 mag) is also required for first-order corrections of the wavefront.
 - For larger apertures, it does not cover the full aperture at the heigh of the turbulent layers (cone effect, focal anisoplanatism)

PSF: AO vs seeing-limited observations

$I_{SINFONI} = I_{NICMOS} \otimes B$ $PSF_{SINFONI} = PSF_{NICMOS} \otimes B$

PSF: AO vs seeing-limited observations

Piqueras López, J., 2014, PhD Thesis

PSF: AO vs seeing-limited observations

- Ionised gas and star-formation
 - Paβ λ1.282 µm, Paα λ1.876 µm, Brδ λ2.166 µm, Brγ λ2.166 µm, primary indicators of the star-formation rate
 - Hel $\lambda 2.059 \ \mu m$ associated to very young star-forming complexes
 - [Fell] $\lambda 1.257 \mu m$, [Fell] $\lambda 1.644 \mu m$: supernova rate in starbursts and constrain the age of the stellar populations
- Extinction measurements: $Br\gamma/Br\delta$ and $Paa/Br\gamma$ line ratios
- Warm molecular gas: H₂ excitation mechanisms
- Ionisation mechanisms: 2D BPT near-IR diagrams, [Fell]/Paβ and H₂/Paβ (H₂/Brγ) line ratios
- $\bullet\,$ Tracers of obscured AGNs: [SiVI] $\lambda 1.963\,\mu m$ and [CaVIII] $\lambda 2.321\,\mu m$ as AGN indicators
- Stellar populations: absorption features, Cal, Nal, CO (2-0), CO(3-1)...
- Multi-phase gas and stellar kinematics, outflows signatures in different phases of the ISM

Present and future of near-IR IFS

Present & future: Ground 8-11m

	Туре	FoV	Scale	R	λ range
OSIRIS (Keck)	Lenslet	0.32"x1.28" to 3.2"x6.4"	20, 35x50, 100 mas	2.7k-4.0k	1.0-2.4 µm
NIFS (Gemini N)	Slicer	3"x3"	40x100 mas	5.0k	0.95-2.4 µm
SINFONI (VLT)	Slicer	0.8"x0.8" 3"x3", 8"x8"	25, 100, 250 mas	1.5k 2.0-4.5k	1.1-2.45 µm
KMOS (VLT)	Slicer	2.8"x2.8" (x24)	200 mas	2.0k 3.5-4.2k	0.8-2.5 µm
FRIDA (GTC)	Slicer	0.65"x0.65" 2.6"x2.6"	10-40 mas	1.5k, 4.5k, 30k	0.9-2.5 µm

Present & future: Ground 20-40m

	Туре	FoV	Scale	R	λ range
IRIS (TMT)	Lenslet or slicer	0.18"x0.35" to 2.2"x4.4"	4, 10, 24, 50 mas	2.0-4.0k	0.8-2.5 µm
HARMONI (E-ELT)	Slicer	0.6"x0.9" 1.5"x2.1" 3.0"x4.3" 6.4"x9.1"	4x4 mas 10x10 mas 20x20 mas 60x30 mas	0.5k, 3.5k, 8.0k, 20.0k	0.47-2.5 µm
GMTIFS (GMT)	Slicer	0.3"x0.5" to 2.25"x4.4"	6,12, 25, 50 mas	5.0 - 10.0k	0.84-2.4 µm

Ha, z~2 ULIRG 100 mas, VLT

Ha, $z\sim 2$ ULIRG 40 mas

Ha, z~2 ULIRG 20 mas

Ha, z~2 ULIRG 5 mas

Present & future: Space

	Туре	FoV	Scale	R	λ range
NIRSpec	Slicer	3"x3"	75 mas	0.1k-2.7k	0.6-5.0 µm
MIRI	Slicer	3.0"x3.9" to 6.7"x7.7"	170 to 640 mas	2.2k to 3.0k	5-28 µm