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Overview of the talk
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๏ Integral field spectroscopy in the NIR 
๏ Basic concepts 
๏ Sky emission 
๏ Atmospheric transmission 

๏ Observing techniques 
๏ Nodding and jittering 
๏ Adaptive optics 

๏ Science with near-IR IFS data 
๏ Present and future of near-IR IFS
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λAdapted from Alington-Smith and Content (1998)

Focal plane Spectrograph input Spectrograph output

๏ Integral field spectrograph = Spectrograph + Integral field unit 
๏ IFU: divides the 2D FoV into a continuous array 

๏ Lenslet array: input image split up by a microlens array 
๏ Fibres: input image formed on a bundle of optical fibers 
๏ Fibres + lenslets: array of lenslets in front of the fibre bundle 
๏ Image slicer: input image formed on a mirror that re-arrange the 

image into a pseudoslit
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๏ Integral field spectrograph = Spectrograph + Integral field unit 
๏ IFU: divides the 2D FoV into a continuous array 

๏ Lenslet array: input image split up by a microlens array 
๏ Fibres: input image formed on a bundle of optical fibers 
๏ Fibres + lenslets: array of lenslets in front of the fibre bundle 
๏ Image slicer: input image formed on a mirror that re-arrange the 

image into a pseudoslit
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λAdapted from Alington-Smith and Content (1998)

Focal plane Spectrograph input Spectrograph output

Perfect for the IR!
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Thermal background

๏ Two sources: 
๏ Thermal background: atmospheric (+ telescope) emission dominates 

beyond ~2.3 μm 
๏ Airglow emission: OH vibrational lines that dominates below ~2.3 μm
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Sky emission
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๏ Dominant source of noise in fully processed data 
๏ Line emission is usually several orders of magnitude above from other sources 
๏ In most cases, to obtain separate sky frames is mandatory to subtract the sky 

lines (IFS limited FoV) 
๏ Sky line subtraction: 

๏ ‘Classical’ first-order approach: object spectrum - sky spectrum 
๏ Due to rapid variability of the emission, not enough for IFS data: P-Cygni 

residuals

100

80

60

40

20

0

F Ѥ

1.60 1.65 1.70
Wavelength [Rm] Davies 2007



Sky emission

12

๏ Dominant source of noise in fully processed data 
๏ Line emission is usually several orders of magnitude above from other sources 
๏ In most cases, to obtain separate sky frames is mandatory to subtract the sky 

lines (IFS limited FoV) 
๏ Sky line subtraction: 

๏ ‘Classical’ first-order approach: object spectrum - sky spectrum 
๏ Due to rapid variability of the emission, not enough for IFS data: P-Cygni 

residuals 
๏ More sophisticated methods are already implemented (e.g. Davies 2007), 

to account for variability and compensate for instrumental flexures. 
๏ However, although they might be a nuisance, sky lines could be also useful: 

๏ As reference for wavelength calibration: object and sky frames are 
observed using the same configuration 

๏ As a valuable option to characterise the spectral resolution of our data
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๏ Atmospheric absorption in the near-IR: vibrational transitions of water vapor
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๏ Atmospheric absorption in the near-IR: vibrational transitions of water vapor 
๏ Depends on the airmass, varies with time… 
๏ Although it can be modeled, it is usually corrected using standard stars: 

efficiency curves
H+K band
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๏ Atmospheric absorption in the near-IR: vibrational transitions of water vapor 
๏ Depends on the airmass, varies with time… 
๏ Although it can be modeled, it is usually corrected using standard stars: 

efficiency curves
H+K band
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๏ Observing in the near-IR 
๏ Near-IR detectors are not as efficient as optical ones: relatively 

large number of ‘bad’ pixels and defects. 
๏ Strong background emission of the sky 

๏ Detectors could be rapidly saturated. 
๏ Additional sky exposures are mandatory in most of the cases. 

๏ Atmospheric transmission. 
๏ How do we deal with that? 

๏ Split the exposures into shorter ones (50s, 100s, 150s, 300s…) 
๏ Use jittering patterns to avoid detector defects / bad pixels. 
๏ Nodding the telescope between on-source and sky positions to 

characterise the sky emission. 
๏ Observing standard stars for flux calibration.
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Example: ABBA patter

On-source

Sky
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On-source

Sky



Adaptive Optics
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๏ Basics of adaptive optics: 
๏ Problem: images blurred 

due to the refractive 
turbulent atmosphere. 

๏ Prevents large telescopes to 
achieve their diffraction limit. 

๏ The principle of AO: correct in 
real time the spatial and 
temporal variations of the 
optical path length along the 
line of sight. 

๏ Well suited for near-IR 
observations: easy to obtain 
better corrections at longer 
wavelengths

Credit: ESO/Y. Beletsky
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๏ Basics of adaptive optics: 
๏ Problem: images blurred 

due to the refractive 
turbulent atmosphere. 

๏ Prevents large telescopes to 
achieve their diffraction limit. 

๏ The principle of AO: correct in 
real time the spatial and 
temporal variations of the 
optical path length along the 
line of sight. 

๏ Well suited for near-IR 
observations: easy to obtain 
better corrections at longer 
wavelengths
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Deformable
mirror

Atmospheric turbulence
perturbs wavefront

     Wavefront
sensor

Corrected high-
resolution image

Real-time
computer

Adapted from Davies and Markus 2012



Adaptive Optics

22
Credit: Keck Observatory

AO loop closed
FWHM ~ 0.046 arcsec

Seeing ~1.4 arcsec
Open loop

H-band H-band K-band
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๏ Adaptive optics observations: 
๏ Natural guide star (NGS) 

๏ A close (d < 10”), bright star (R < 15 mag) is 
needed. 

๏ Under these conditions, the diffraction limit 
of the telescope could be approached or 
achieved. 

๏ Sky coverage ~10% 
๏ Laser guide star (LGS) 

๏ A laser beam is used to create an artificial 
star by resonant fluorescence of Na atoms. 

๏ However, a tip-tilt star (d < 1’, R < 18 mag) 
is also required for first-order corrections of 
the wavefront. 

๏ For larger apertures, it does not cover the 
full aperture at the heigh of the turbulent 
layers (cone effect, focal anisoplanatism)

Adaptive Optics

Credit: ESO/Y. Beletsky
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๏ Ionised gas and star-formation 
๏ Paβ λ1.282 μm, Paα λ1.876 μm, Brδ λ2.166 μm, Brγ λ2.166 μm, primary 

indicators of the star-formation rate 
๏ HeI λ2.059 μm associated to very young star-forming complexes 
๏ [FeII] λ1.257 μm, [FeII] λ1.644 μm: supernova rate in starbursts and constrain 

the age of the stellar populations 
๏ Extinction measurements: Brγ/Brδ and Paα/Brγ line ratios 
๏ Warm molecular gas: H2 excitation mechanisms 
๏ Ionisation mechanisms: 2D BPT near-IR diagrams, [FeII]/Paβ and H2/Paβ (H2/Brγ) 

line ratios 
๏ Tracers of obscured AGNs: [SiVI] λ1.963 μm and [CaVIII] λ2.321 μm as AGN 

indicators 
๏ Stellar populations: absorption features, CaI, NaI, CO (2-0), CO(3-1)… 
๏ Multi-phase gas and stellar kinematics, outflows signatures in different phases of the 

ISM



Science with near-IR IFS data
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Present and future of near-IR IFS



Present & future: Ground 8-11m
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Type FoV Scale R λ range

OSIRIS 
(Keck) Lenslet 0.32”x1.28” 

to 3.2”x6.4”
20, 35x50, 
100 mas 2.7k-4.0k 1.0-2.4 μm

NIFS 
(Gemini N) Slicer 3”x3” 40x100 mas 5.0k 0.95-2.4 μm

SINFONI 
(VLT) Slicer 0.8”x0.8” 

3”x3”, 8”x8”
25, 100, 
250 mas

1.5k 
2.0-4.5k 1.1-2.45 μm

KMOS 
(VLT) Slicer 2.8”x2.8” 

(x24) 200 mas 2.0k 
3.5-4.2k 0.8-2.5 μm

FRIDA 
(GTC) Slicer 0.65”x0.65” 

2.6”x2.6” 10-40 mas 1.5k, 4.5k, 
30k 0.9-2.5 μm



Present & future: Ground 20-40m
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Type FoV Scale R λ range

IRIS 
(TMT)

Lenslet or 
slicer

0.18”x0.35” 
to 

2.2”x4.4”
4, 10, 24, 
50 mas 2.0-4.0k 0.8-2.5 μm

HARMONI 
(E-ELT) Slicer

0.6”x0.9” 
1.5”x2.1” 
3.0”x4.3” 
6.4”x9.1”

4x4 mas 
10x10 mas 
20x20 mas 
60x30 mas

0.5k, 3.5k, 
8.0k, 
20.0k

0.47-2.5 μm

GMTIFS 
(GMT) Slicer

0.3”x0.5” 
to 

2.25”x4.4”
6,12, 25, 
50 mas 5.0 - 10.0k 0.84-2.4 μm



HARMONI at the E-ELT
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Hα, z~2 ULIRG 100 mas, VLT

Thatte et al. 2012



HARMONI at the E-ELT
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Hα, z~2 ULIRG 40 mas

Thatte et al. 2012



HARMONI at the E-ELT
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Hα, z~2 ULIRG 20 mas

Thatte et al. 2012



HARMONI at the E-ELT
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Hα, z~2 ULIRG 5 mas

Thatte et al. 2012



Present & future: Space
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Type FoV Scale R λ range

NIRSpec Slicer 3”x3” 75 mas 0.1k-2.7k 0.6-5.0 μm

MIRI Slicer
3.0”x3.9” 

to 
6.7”x7.7”

170 to 640 
mas

2.2k to 
3.0k 5-28 μm


