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Overview of the talk

Integral field spectroscopy in the NIR
e® Basic concepts

® Sky emission

® Atmospheric transmission
Observing technigques

@ Nodding and jittering

o Adaptive optics

Science with near-IR |FS data
Present and future of near-IR [FS
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IFS in the NIR: basic concepts

® Integral field spectrograph = Spectrograph + Integral field unit
o |FU: divides the 2D FoV into a continuous array

® Lenslet array: input image split up by a microlens array

® Fibres: input image formed on a bundle of optical fibers

o Fibres + lenslets: array of lenslets in front of the fibre bundle

® Image slicer: input image formed on a mirror that re-arrange the
Image into a pseudoslit

Spectrograph input Spectrograph output

Adapted from Alington-Smith and Content (1998) ‘)\ /
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Sky emission
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@ Thermal background: atmospheric (+ telescope) emission dominates

beyond ~2.3 um

® Airglow emission: OH vibrational lines that dominates below ~2.3 pm
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Sky emission

Dominant source of noise Iin fully processed data
| ine emission is usually several orders of magnitude above from other sources

N MOost cases, to obtain separate sky frames is mandatory to subtract the sky
ines (IFS limited FoV)

Sky line subtraction:

o ‘Classical’ first-order approach: object spectrum - sky spectrum

© Due to rapid variability of the emission, not enough for IFS data: P-Cygni
residuals
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®

Sky emission

Dominant source of noise In fully processed data
| ine emission is usually several orders of magnitude above from other sources

N Most cases, to obtain separate sky frames is mandatory to subtract the sky
ines (IFS limited FoV)

Sky line subtraction:

o ‘Classical’ first-order approach: object spectrum - sky spectrum

© Due to rapid variability of the emission, not enough for IFS data: P-Cygni
residuals

® More sophisticated methods are already implemented (e.g. Davies 2007),
to account for variability and compensate for instrumental flexures.

However, although they might be a nuisance, sky lines could be also useful:

® As reference for wavelength calibration: object and sky frames are
observed using the same configuration

® As a valuable option to characterise the spectral resolution of our data
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Normalised flux

Atmospheric transmission: Efficiency curves

® Atmospheric absorption in the near-IR: vibrational transitions of water vapor
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Normalised flux

Atmospheric transmission: Efficiency curves

® Atmospheric albsorption in the near-IR: vibrational transitions of water vapor
® Depends on the airmass, varies with time...

e Although it can be modeled, it is usually corrected using standard stars:
efficiency curves

H+K band

Spectrum
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Normalised flux

Atmospheric transmission: Efficiency curves

® Atmospheric albsorption in the near-IR: vibrational transitions of water vapor
® Depends on the airmass, varies with time...

e Although it can be modeled, it is usually corrected using standard stars:
efficiency curves

H+K band
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Observing techniques



Observing techniques

@ Observing in the near-IR

®

®

Near-IR detectors are not as efficient as optical ones: relatively
large number of ‘lbad’ pixels and defects.

Strong background emission of the sky
® Detectors could be rapidly saturated.
o Additional sky exposures are mandatory in most of the cases.

Atmospheric transmission.

e How do we deal with that?

®

®

®

Split the exposures into shorter ones (50s, 100s, 150s, 300s...)
Use jittering patterns to avoid detector defects / bad pixels.

Nodding the telescope between on-source and sky positions to
characterise the sky emission.

Observing standard stars for flux calibration.
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Observing techniques

Example: ABBA patter
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Observing techniques

Example: ABBA patter
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Adaptive Optics

® Basics of adaptive optics:

® Problem: images blurrea
due to the refractive
turbulent atmosphere.
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® Prevents large telescopes to
achieve their diffraction limit.

® The principle of AO: correct in
real time the spatial and £ S, |
temporal variations of the A | /
optical path length along the R T | |
line of sight.

o Well suited for near-IR
observations: easy to obtain
petter corrections at longer

wavelengths
Credit: ESO/Y. Beletsky



Adaptive Optics

® Basics of adaptive optics:

® Problem: images blurrea
due to the refractive
turbulent atmosphere.

Atmospheric turbulence
perturbs wavefront

® Prevents large telescopes to
achieve their diffraction limit.

P

® The principle of AO: correct in
real time the spatial and e
temporal variations of the computer
optical path length along the
line of sight.

Beamsplitter

® Well suited for near-IR
observations: easy to obtain
petter corrections at longer
wavelengths
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Adaptive Optics

Seeing ~1.4 arcsec

| AO loop closed
p00f  FWHM ~0.046 arcsec

Credit: Keck Observatory
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® Adaptive optics observations:
© Natural guide star (NGS)

® A close (d < 10”), bright star (R < 15 mag) is
needed.

® Under these conditions, the diffraction limit
of the telescope could be approached or
achieved.

® Sky coverage ~10%
® Laser guide star (LGS)

® A laser beam is used to create an artificial
star by resonant fluorescence of Na atoms.

© However, a tip-tilt star (d < 1, R < 18 mag)
IS also required for first-order corrections of
the wavefront.

® For larger apertures, it does not cover the
full aperture at the heigh of the turbulent
layers (cone effect, focal anisoplanatism)

Adaptive Optics
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® Adaptive optics observations:
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® A close (d < 10”), bright star (R < 15 mag) is
needed.

® Under these conditions, the diffraction limit
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® Sky coverage ~10%
® Laser guide star (LGS)

® A laser beam is used to create an artificial
star by resonant fluorescence of Na atoms.

© However, a tip-tilt star (d < 1, R < 18 mag)
IS also required for first-order corrections of
the wavefront.

® For larger apertures, it does not cover the
full aperture at the heigh of the turbulent
layers (cone effect, focal anisoplanatism)

Adaptive Optics

Credit: Gemini Observatory/AURA
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PSF: AO vs seeing-limited observations

NICMOS F160W NICMOS Convolved SINFONI H-band
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PSF: AO vs seeing-limited observations

NICMOS F160W NICMQOS Convolved SINFONI H-band
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PSF: AO vs seeing-limited observations
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Science with near-IR |IFS data



Science with near-IR IFS data

® lonised gas and star-formation

® A1.282 pm, A1.876 um, A2.166 pum, A2.166 pm, primary
iIndicators of the star-formation rate

o Hel A2.059 um associated to very young star-forming complexes

® A1.257 pm, A1.644 pm: supernova rate in starbursts and constrain
the age of the stellar populations
e Extinction measurements: and ine ratios
® : Ho excitation mechanisms
® lonisation mechanisms: 2D BPT near-IR diagrams, A and ./ (Ho/Bry)
line ratios

e Tracers of obscured AGNSs: [SIVI| A1.963 um and [CaVlll] A2.321 um as AGN
indicators

o Stellar populations: absorption features, Cal, Nal, CO (2-0), CO(3-1)...

© Multi-phase gas and stellar kinematics, outflows signatures in different phases of the
ISM
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Science with near-IR IFS data

H-band
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Science with near-IR IFS data

H-band
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Present and future of near-IR IFS



Present & future: Ground 8-11m

Type FoV Scale R A range
?5@'31)8 Lenslet 30332;1622 210 Og ?%(Sg 2./k-4.0k  1.0-2.4 um
(Gel\lr:?ljf? N) Slicer 3"x3” 40x100 mas 5.0k 0.95-2.4 pm
S”(\l\/i(T))[\“ SIS g g 250mas  20ask 1 2ASHT
K(I\\//IL%S Slicer 25(3X>2<i)8 200 mas S.ELZEZK 0.8-2.5 um
FRIDA Slicer 0.65°x0.65" | ,q o 19K 43K oo ,c -

(GTC) 2.6"%2.6” 30k
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Present & future: Ground 20-40m

Type FoV Scale R A range
0.187x0.35"
lF/\“/ST Leg|i8(|;eetror to 4’5(1)?13323 2.0-4.0k  0.8-2.5 pm
ey 2.2"x4.47
0.67x0.9” 4x4 mas
AARMONE sicer Syt Waldmas o.5g ’oiﬁk’ 0.47-2.5 um
(E-ELT) 3.0"x4.3” 20x20mas ;) o ' S
6.4"x9.1" 00x30 mas '
0.3°x0.5”
GIC\EA/\D;S Slicer to 652)2m§§ 5.0 - 10.0k 0.84-2.4 pm
( ) 2.25"x4.47
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HARMONI at the E-ELT

Ha, z~2 ULIRG 100 mas, VLT




HARMONI at the E-ELT

Ha, z~2 ULIRG 40 mas
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HARMONI at the E-ELT

20 mas

Ha, z~2 ULIRG

Thatte et al. 2012
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HARMONI at the E-ELT

Ha, z~2 ULIRG 5 mas

Thatte et al. 2012
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NIRSpec

MIRI

Present & future: Space

Type FoV Scale R A range

Slicer B /5 mas 0.1k-2.7k  0.6-5.0 pm

Siicer 30 t>(<)3.9 17010640  2.2kto . o
mas 3.0k H

OB/ X
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