Integral Field Spectroscopy in the Near IR

The study of local LIRGs and ULIRGs

Javier Piqueras López Centro de Astrobiología (CAB, INTA-CSIC) GH School 2014

Overview of the talk

- Introduction:
 - LIRGs and ULIRGs: a general perspective
 - SINFONI: the near-IR IFS at VLT
- Data analysis and calibration
- Near-IR integral field spectroscopy of local LIRGs and ULIRGs:
 - The sample
 - 2D morphology and gas kinematics
 - Dust extinction
 - Sub-kpc analysis of the SFR
- Detailed kinematics
- Summary

• Definition:

- LIRGs: $10^{11}L_{\odot} \le L_{IR} < 10^{12}L_{\odot}$
- ULIRGs: $10^{12}L_{\odot} \le L_{IR} < 10^{13}L_{\odot}$
- IR luminosity explained as the output from reprocessed radiation from dust.
- Power source: Extreme star-formation activity and AGN.
- Increasing contribution of AGN at high L_{IR} (e.g. Yuan et al. 2010, Alonso-Herrero et al. 2012)
- Large fraction of LIRGs and almost all the ULIRGs show signatures of recent interactions: triggering mechanisms (e.g. Borne et al. 2000, Veilleux et al. 2002, Kartaltepe et al. 2010, Haan et al. 2011)

• Definition:

- LIRGs: $10^{11}L_{\odot} \le L_{IR} < 10^{12}L_{\odot}$
- ULIRGs: $10^{12}L_{\odot} \le L_{IR} < 10^{13}L_{\odot}$
- IR luminosity explained as the output from reprocessed radiation from dust.
- Power source: Extreme star-formation activity and AGN.
- Increasing contribution of AGN at high L_{IR} (e.g. Yuan et al. 2010, Alonso-Herrero et al. 2012)
- Large fraction of LIRGs and almost all the ULIRGs show signatures of recent interactions: triggering mechanisms (e.g. Borne et al. 2000, Veilleux et al. 2002, Kartaltepe et al. 2010, Haan et al. 2011)

• Definition:

- LIRGs: $10^{11}L_{\odot} \le L_{IR} < 10^{12}L_{\odot}$
- ULIRGs: $10^{12}L_{\odot} \le L_{IR} < 10^{13}L_{\odot}$
- IR luminosity explained as the output from reprocessed radiation from dust.
- Power source: Extreme star-formation activity and AGN.
- Increasing contribution of AGN at high L_{IR} (e.g. Yuan et al. 2010, Alonso-Herrero et al. 2012)
- Large fraction of LIRGs and almost all the ULIRGs show signatures of recent interactions: triggering mechanisms (e.g. Borne et al. 2000, Veilleux et al. 2002, Kartaltepe et al. 2010, Haan et al. 2011)

- (U)LIRGs play a key role in galaxy evolution \bigcirc
 - Detected in large quantities at high-z \bigcirc (z>1) with Spitzer and Herschel (e.g. Le Floc'h et al. 2005, Nardini et al. 2008, Magnelli et al. 2013)
 - Agnement LIRG contribution may be the component to the SFR at z>2 (Pérez-González et al. 2005, Magnelli et al. 2011, (poly of 2013) \bigcirc
 - However, they are not very common in \bigcirc
- Then, why local (U)LIRGs?
 - Study of extreme environments with great amount of detail.
 - Compact star-formation and coeval AGN. \bigcirc
 - Feedback processes: outflows, \bigcirc quenching of the SF.
 - Link to high-z: main sequence of star- \bigcirc forming and normal galaxies.

SINFONI: the NIR IFU at VLT

- Near-IR (1.1-2.45) integral field spectrograph at the Cassegrain focus of VLT-UT4 (Eisenhauer et al. 2003, Bonnet et al 2004)
- Seeing-limited and AO-assisted observations
- Four gratings: J, H, K and H+K
- Intermediate spectral resolution: R~2000- 4000 (J, H and K), R~1500 (H+K)
- Three plate scales: 0.025, 0.100 and 0.250 arcsec per spaxel yield FoV's of ~0.8"×0.8", 3"×3" and 8"×8"
- ~4000 individual spectra per data cube

Physics in the near-IR

Physics in the near-IR

IFS study of local LIRGs and ULIRGs

- First comprehensive NIR IFS study of a sample of local LIRGs and ULIRGs
 - Representative sample of 10 LIRGs and 7 ULIRGs @ z<0.1
 - $\odot~log(L_{IR}/L_{\odot}) \sim$ 11.1 12.4
 - Different morphological types, objects with intense star formation, AGN activity, isolated galaxies, strongly interacting systems, mergers
 - Part of a larger sample of local LIRGs and ULIRGs observed with different IFS facilities (Arribas et al. 2008)
- Observations:
 - Seeing limited, ~0.6 arcsec (FWHM)
 - FoV ~8"x8", spatial resolution ~0.125 arcsec/spaxel
 - LIRGs
 - H- and K-band, R~3000-4000
 - FoV ~3x3 kpc, spatial resolution ~0.2 kpc (FWHM)
 - ULIRGs
 - K-band, R~4000
 - FoV ~12x12 kpc, spatial resolution ~0.9 kpc (FWHM)

Data analysis and calibration

• Data reduction and calibration

- ESO standard pipeline: EsoRex.
- Flux calibration: substraction of the sky emission, atmospheric absorption, and absolute flux calibration.
- Own IDL routines to improve the final data cubes: La3D and backgroundmatch method.
- Emission and kinematic maps:
 - Emission lines: single Gaussian fitting on an spaxel-by-spaxel basis.
 - Voronoi tesselation (Cappellari & Copin 2003): maximise the mean S/N of the maps.
 - Stellar kinematics: pPXF (Cappellari & Emsellem 2004) to fit a library of stellar templates.

Morphology and gas kinematics

LIRGs and ULIRGs K-band continuum

Gas morphology and kinematics

Piqueras López et al. 2012

- Star-forming regions are concentrated on structures like rings or spiral arms.
- These structures dominate the emission of ionised gas.
- Regions with intense star formation (~30 $M_{\odot}yr^{-1}$) at distances ~2-4 kpc from the nuclei.
- Warm molecular gas is mainly concentrated at the nuclei of the galaxies.
- H_2 1-0S(1) and Bry lines show similar luminosities.

Gas morphology and kinematics

Piqueras López et al. 2012

- Both ionized and molecular phases show very similar global kinematics.
- Velocity fields in LIRGs show typical rotational patterns.

lonized gas

Molecular gas

 ULIRGs show complex kinematics, with different velocity gradients due to their interacting nature.

Dust extinction and star formation

Extinction and SF in (U)LIRGs

• Analysis of the dust extinction:

$$A_{\lambda_{1}} - A_{\lambda_{2}} = -2.5 \cdot \log \frac{(F_{\lambda_{1}}/F_{\lambda_{2}})_{O}}{(F_{\lambda_{1}}/F_{\lambda_{2}})_{T}}$$
$$A_{Brv} = 0.096 A_{V}, A_{Br\delta} = 0.132 A_{V} \text{ and } A_{Pag} = 0.145 A_{V}$$

- Star-formation rate (see Calzetti, 2012; Kennicutt & Evans 2012):
 - Ionized gas: Brγ (LIRGs) and Paα (ULIRGs)
 - Monochromatic mid-IR (24 μm)
 - Integrated far-IR (8-1000 μm)

2D extinction structure

Av distributions and radial profiles

- Typical spaxel-by-spaxel values: Av ~ 1 30 mag
- Individually, there is no dependence on luminosity.
- Global distributions:

Av (ULIRGs) ~ Av (LIRGs) +1.2 mag

- Radial profiles:
 - Mild dependence on galactocentric distance up to ~1 kpc.
 - Visual extinction decreases ~2-3 mag within the first kpc.

Σ_{SFR} distributions

- Spaxel-by-spaxel distributions of the Σ_{SFR} of LIRGs and ULIRGs (observed and extinction corrected) in regions with similar physical scales (r < 1.4 kpc)
- Median values: Σ_{SFR} (LIRGs) = 1.72 M_oyr⁻¹kpc⁻²; Σ_{SFR} (ULIRGs) = 2.90 M_oyr⁻¹kpc⁻²

 Σ_{SFR} (ULIRGS) ~ 1.7 x Σ_{SFR} (LIRGS)

Comparison with other SFR tracers

- Optical (Ha):
 - Observed and extinction-corrected values.
 - Deeply obscured regions: optical measurements underestimate the extinction.
 - SFR(Paa) ~ 3 x SFR(Ha)
- Mid-infrared (24 μ m):
 - Strong correspondence with SFR(Paa) measurements
 - Some discrepancies at the high luminosity range.
- Far-infrared (L_{IR}):
 - SFR(Paα) measurements are systematically lower than SFR(L_{IR})
 - Extinction effects.
 - Contribution from underlaying old stellar populations.

Piqueras López et al. 2014, in prep.

Comparison with other SFR tracers

- Optical (Ha):
 - Observed and extinction-corrected values.
 - Deeply obscured regions: optical measurements underestimate the extinction.
 - SFR(Paa) ~ $3 \times SFR(Ha)$
- Mid-infrared (24 μ m):
 - Strong correspondence with SFR(Paa) measurements
 - Some discrepancies at the high luminosity range.
- Far-infrared (L_{IR}):
 - SFR(Paα) measurements are systematically lower than SFR(L_{IR})
 - Extinction effects.
 - Contribution from underlaying old stellar populations.

Piqueras López et al. 2014, in prep.

Comparison with other SFR tracers

- Optical (Ha):
 - Observed and extinction-corrected values.
 - Deeply obscured regions: optical measurements underestimate the extinction.
 - SFR(Paa) ~ 3 x SFR(Ha)
- Mid-infrared (24 μ m):
 - Strong correspondence with SFR(Paa) measurements
 - Some discrepancies at the high luminosity range.
- Far-infrared (L_{IR}):
 - SFR(Paα) measurements are systematically lower than SFR(L_{IR})
 - Extinction effects.
 - Contribution from underlaying old stellar populations.

Piqueras López et al. 2014, in prep.

- Two methods (effective and core radius) yield similar results.
- Size:
 - LIRGs: r~60-400 pc
 - ULIRGs: r~300-1500 pc
- Luminosity:
 - LIRGs: $L_{Paa} \sim 10^5 10^7 L_{\odot}$
 - ULIRGs: $L_{Paa} \sim 10^6 10^8 L_{\odot}$
- SFR surface density:
 - LIRGs: $\Sigma_{SFR} \sim 1-90 \ M_{\odot} yr^{-1} kpc^{-2}$
 - ULIRGs: $\Sigma_{SFR} \sim 0.1-100 \ M_{\odot} yr^{-1} kpc^{-2}$
- Velocity dispersion:
 - LIRGs: σ~30-120 kms⁻¹
 - ULIRGs: σ~40-200 kms⁻¹

Piqueras López et al. 2014, in prep.

- Two methods (effective and core radius) yield similar results.
- Size:
 - LIRGs: r~60-400 pc
 - ULIRGs: r~300-1500 pc
- Luminosity:
 - LIRGs: $L_{Pa\alpha} \sim 10^5 10^7 L_{\odot}$
 - ULIRGs: $L_{Paa} \sim 10^6 10^8 L_{\odot}$
- SFR surface density:
 - LIRGs: $\Sigma_{SFR} \sim 1-90 \ M_{\odot} yr^{-1} kpc^{-2}$
 - ULIRGs: $\Sigma_{SFR} \sim 0.1-100 \ M_{\odot} yr^{-1} kpc^{-2}$
- Velocity dispersion:
 - LIRGs: σ~30-120 kms⁻¹
 - ULIRGs: σ~40-200 kms⁻¹

Piqueras López et al. 2014, in prep.

- Two methods (effective and core radius) yield similar results.
- Size:
 - LIRGs: r~60-400 pc
 - ULIRGs: r~300-1500 pc
- Luminosity:
 - LIRGs: $L_{Paa} \sim 10^5 10^7 L_{\odot}$
 - ULIRGs: $L_{Paa} \sim 10^6 10^8 L_{\odot}$
- SFR surface density:
 - LIRGs: $\Sigma_{SFR} \sim 1-90 \ M_{\odot} yr^{-1} kpc^{-2}$
 - ULIRGs: $\Sigma_{SFR} \sim 0.1-100 \ M_{\odot} yr^{-1} kpc^{-2}$
- Velocity dispersion:
 - LIRGs: σ~30-120 kms⁻¹
 - ULIRGs: σ~40-200 kms⁻¹

Piqueras López et al. 2014, in prep.

Comparison with local and high-z samples

- Comparison with other samples:
 - Locally: star-forming regions from 'normal' and starbursts galaxies, and Antenae.
 - High-z: star-forming regions and global measurements within z~0.8-2.7.
- L_{Paα} r relation, possible transition:
 - Ionized-bounded regions (Strömgren spheres): n = 3
 - Density-bounded regions: n < 3
 - Frontier at L_{Paα} ~ 10⁵ L_☉ (Beckman et al. 2000)
- Linear fitting to different samples:
 - (U)LIRGs + local: n = 2.98
 - (U)LIRGs + high-z: n = 1.77
 - All samples: n = 2.78
- Possible resolution effects, blending, S/N (Liu et al. 2013)

Piqueras López et al. 2014, in prep.

Detailed kinematics

Multi-component gas kinematics

IRAS17208-0014

Piqueras López, J., 2014, PhD Thesis

Multi-phase outflows: AGNs

Emonts et al. 2014 (accepted, A&A)

Multi-phase outflows: SNs

Multi-phase outflows: SNs

Multi-phase outflows: Star formation

Piqueras López, J., 2014, PhD Thesis

Summary

- Near-IR IFS:
 - Allows us to perform comprehensive analysis of a wide variety of physical processes.
 - And trace the kinematics of different phases of the ISM simultaneously using a single, self-contained data set.
- SINFONI study of local (U)LIRGs
 - Different phases of the gas present different morphologies and small-scale kinematics.
 - Ionized gas associated with SF regions in rings and spiral arms, molecular gas concentrated towards the stellar nuclei of the sources.
 - Wide range of Av values on a spaxel-by-spaxel basis, from regions almost transparent to Av~25-30 mag.
 - Star formation:
 - $\Sigma_{SFR} \sim 0.3-50 \text{ M}_{\odot} \text{yr}^{-1} \text{kpc}^{-2}$ in LIRGs and ~ 0.05-15 $\text{M}_{\odot} \text{yr}^{-1} \text{kpc}^{-2}$ in ULIRGs
 - Σ_{SFR} (ULIRGs) ~ 1.7 x Σ_{SFR} (LIRGs) within the same physical scales.
 - Star-forming regions:
 - Analysis of 95 individual regions: SFR ~ 0.03 30 M_☉yr⁻¹, r~60-400 pc in LIRGs and r~300-1500 pc in ULIRGs.
 - Star-forming regions, especially in ULIRGs, present similar properties than those observed at highz.
 - Multi-phase outflows: ubiquitous, with independence of their driving mechanism.