OBSERVATIONAL METHODS IN RADIO ASTRONOMY I: SINGLE-DISH

NURIA MARCELINO
INTRODUCTION
THE MM-SUBMM WINDOW
THE MM-SUBMM WINDOW: spectral line surveys

Orion KL Tercero et al. 2010
THE MM-SUBMM WINDOW: velocity channel maps

IRC+10216; CO J=2-1
Cernicharo et al. 2015
GOALS / QUESTIONS

Goals
• Measure the signal emitted from a particular region in the sky
• Obtain spectral or spatial information of the source
• Determine chemical and/or physical properties

Questions
• Measurement fidelity
• Calibration

Not covered in this talk
• Receivers and backends
ANTENNAS
RADIOTELESCOPES

JCMT

APEX

GBT

IRAM

GTM
Parabolic primary dish, but different positions of the receivers:

- Cassegrain: hyperbolic, convex subreflector
- Gregory: elliptical, concave subreflector behind the prime focus (e.g. Effelsberg)
- Nasmyth: hyperbolic subreflector and flat tertiary mirror (e.g. IRAM 30m, APEX)
- Offset Cassegrain: “half” parabolic and hyperbolic subreflector (e.g. GBT)

Advantages of the different optical configurations:

- Secondary focus: 5-10 times larger f/D ratios, less sensitive to lateral focus offsets, increase effective area, decrease spillover
- Nasmyth system: receivers are not tilted with elevation, more space in rx cabin
- Offset Cassegrain: less blockage by subreflector and support structure, less standing waves
Radiotelescopes

<table>
<thead>
<tr>
<th>Obs.</th>
<th>D (m)</th>
<th>ν (GHz)</th>
<th>λ (mm)</th>
<th>HPBW (’’)</th>
<th>Latitude (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRAM</td>
<td>30</td>
<td>70 – 345</td>
<td>4 – 0.7</td>
<td>35 – 7</td>
<td>+37</td>
</tr>
<tr>
<td>GTM</td>
<td>50 (32)</td>
<td>(73 – 116, 230)</td>
<td>4 – 0.85</td>
<td>20 – 6</td>
<td>+19</td>
</tr>
<tr>
<td>APEX</td>
<td>12</td>
<td>230 – 1200</td>
<td>1.3 – 0.3</td>
<td>30 – 6</td>
<td>−22</td>
</tr>
<tr>
<td>JCMT</td>
<td>15</td>
<td>210 – 710</td>
<td>2 – 0.2</td>
<td>20 – 8</td>
<td>+20</td>
</tr>
<tr>
<td>Herschel</td>
<td>3.5</td>
<td>500 – 2000</td>
<td>0.6 – 0.1</td>
<td>43 – 11</td>
<td>space</td>
</tr>
</tbody>
</table>

- Collecting area: λ/D
- Angular resolution: λ/D
ANTENNA THEORY: POWER PATTERN

- Reciprocity theorem: antenna in emission
- Distribution of electric field on the dish: \(E_{ant}(x,y) \)
- Far field radiated by the dish:
 \[E_{ff}(l,m) \propto \mathcal{F}[E_{ant}(x,y)] \]
- Power emitted \(\propto |E_{ff}(l,m)|^2 \)
- Power pattern: \(P(l,m) \propto |E_{ff}(l,m)|^2 \)
- Beam solid angle:
 \[\Omega_A = \int_{4\pi} P(\Omega) d\Omega \]
- Effective area:
 \[A_e = \eta_A \cdot A_{geom} \rightarrow \eta_A : aperture efficiency \]
- Fundamental relation:
 \[A_e \cdot \Omega_A = \lambda^2 \]
ANTENNA THEORY: POWER PATTERN

Main beam solid angle:

\[\Omega_{MB} = \int_{\text{main lobe}} P(\Omega) \, d\Omega \]

Main beam efficiency:

\[\eta_B = \frac{\Omega_{MB}}{\Omega_A} \]
POWER COLLECTED
BY AN ANTENNA

- Power from a monochromatic point source, collected by an area A_e:
 \[P_\nu = \frac{1}{2} A_e \cdot S_\nu \quad [\text{W Hz}^{-1}] \]

Flux density S_ν measured in Jy: \(1 \text{Jy} = 10^{-26} \text{ J s}^{-1} \text{ m}^{-2} \text{ Hz}^{-1} \)

- If source is extended:
 \[\delta P_\nu = \frac{1}{2} A_e \cdot I_\nu \cdot \delta \Omega \quad [\text{W Hz}^{-1}] \]

Brightness I_ν measured in Jy sr-1: \(1 \text{Jy sr}^{-1} = 10^{-26} \text{ J s}^{-1} \text{ m}^{-2} \text{ Hz}^{-1} \text{ sr}^{-1} \)

Source flux density is: \(S_\nu = \int_{\Omega_s} I_\nu(\Omega) \, d\Omega \)

BUT observed flux density is: \(S_{obs} = \int_{\Omega_s} P(\Omega)I_\nu(\Omega) \, d\Omega < S_\nu \)
TEMPERATURE SCALES
BLACK BODY RADIATION

Planck Law: \[
B_\nu(T) = \frac{2\hbar \nu^3}{c^2} \frac{1}{e^{h\nu/kT} - 1}
\]

Rayleigh-Jeans approximation:
\[h\nu < < kT \rightarrow B_\nu(T) = \frac{2\nu^2}{c^2} kT\]

Brightness temperature: temperature a black body would have to match the observed intensity of an extended source at frequency \(\nu\):
\[
I_\nu(\Omega) = B_\nu(T_b) \rightarrow T_b = \frac{c^2}{2k\nu^2} I_\nu(\Omega) = \frac{\lambda^2}{2k} I_\nu(\Omega)
\]

\[
S_\nu = \int_{\Omega_s} I_\nu(\Omega) d\Omega = \frac{2k}{\lambda^2} T_b \Delta \Omega
\]
BLACK BODY RADIATION

Planck Law:

$$B_\nu(T) = \frac{2\hbar \nu^3}{c^2} \frac{1}{e^{\hbar \nu/kT}-1}$$

Rayleigh-Jeans approximation:

$$h\nu \ll kT \rightarrow B_\nu(T) = \frac{2\nu^2}{c^2} kT$$

Brightness temperature: temperature a black body would have to match the observed intensity of an extended source at frequency ν:

$$I_\nu(\Omega) = B_\nu(T_b) \rightarrow T_b = \frac{c^2}{2k\nu^2} I_\nu(\Omega)$$

$$S_\nu = \int_{\Omega_s} I_\nu(\Omega) d\Omega = \frac{2k}{\lambda^2} T_b \Delta \Omega$$

NOTE this is not valid in the mm and low T:

$$\frac{\nu}{GHz} \ll 20.84 \frac{T}{K}$$

At T=10K: 230 GHz~208.4K (cold dark clouds)
ANTENNA TEMPERATURE: T_A

- Johnson noise: in thermal equilibrium, the power produced by a resistor is determined by its physical temperature:
 \[p_\nu = kT \]
 (Nyquist theorem)

- We can define an equivalent antenna temperature:
 \[p_\nu = kT_A \]

- As seen before:
 \[p_\nu = \frac{Ae}{2} \int_{\Omega_s} P(\Omega) I_\nu(\Omega) d\Omega \]

\[T_A(\Omega) = \frac{Ae}{2k} \int_{\Omega_s} I_\nu(\Omega) P(\Omega) d\Omega \quad \text{; using} \quad A_e \cdot \Omega_A = \lambda^2 \]

\[T_A(\Omega) = \frac{1}{\Omega_A} \int_{\Omega_s} \frac{\lambda^2}{2k} I_\nu(\Omega) P(\Omega) d\Omega = \frac{1}{\Omega_A} \int_{\Omega_s} T_b P(\Omega) d\Omega \]
Atmosphere effects, at a given ν:

\[
T_A = T_b e^{-\tau_\nu} + T_{atm} (1 - e^{-\tau_\nu})
\]

Antenna temperature corrected by atmospheric absorption:

\[
T'_A = T_A e^{-\tau_\nu}
\]

Note that for space telescopes, e.g. Herschel:

\[
T'_A = T_A
\]
ANTENNA TEMPERATURE: T_A^*

- Correct for rear-sidelobes: measure the power received only from the forward 2π sr:

\[
T_A^* = \frac{1}{P_{2\pi}} \int_{\Omega_s} T_b P(\Omega) d\Omega
\]

\[
T_A^* = \frac{P_{4\pi}}{P_{2\pi}} T_A' = \frac{T_A'}{F_{eff}}
\]

- Forward efficiency:

\[
F_{eff} = \frac{P_{2\pi}}{P_{4\pi}}
\]
MAIN BEAM TEMPERATURE: T_{MB}

- Take into account main-beam and error-lobes
- Same as T^*_A but within the main beam instead of 2π:

$$T_{MB} = \frac{1}{P_{MB}} \int_{\Omega_s} T_b P(\Omega) d\Omega = \frac{P_{4\pi}}{P_{MB}} T'_A$$

- Beam efficiency:

$$B_{eff} = \frac{P_{MB}}{P_{4\pi}}$$

\rightarrow

$$T_{MB} = \frac{T'_A}{B_{eff}} = \frac{F_{eff}}{B_{eff}} T^*_A$$

what we measure is T^*_A or T_{MB} which are NOT T_b
• **Small sources:** $\Omega_s << \Omega_{MB} : \quad T_{MB} \approx T_b \frac{\Omega_s}{P_{MB}} < T_b$
 \rightarrow \text{beam dilution}

• **Large sources:** $\Omega_s >> \Omega_{MB} : \quad T_A^* \approx T_b \int_{2\pi} P(\Omega) d\Omega / P_{2\pi} \approx T_b$

• **Special case:** $\Omega_s = \Omega_{MB} : \quad T_{MB} = T_b \int_{\Omega_s} P(\Omega) d\Omega / P_{MB} = T_b$

• **General case:** $\Omega_s \sim \Omega_{MB} : \quad T_A^* = T_b \int_{\Omega_s} P(\Omega) d\Omega / P_{2\pi}$

• Usually, T_{MB} is used assuming “the source fills the beam”, but…

\[
\begin{align*}
\Omega_s < \Omega_{MB} & \quad \rightarrow \quad T_b > T_{MB} \\
\Omega_{MB} < \Omega_s < 2\pi & \quad \rightarrow \quad T_{MB} > T_b > T_A^* \\
2\pi < \Omega_s & \quad \rightarrow \quad T_A^* > T_b
\end{align*}
\]
FROM KELVIN TO JANSKY

- Flux density:
 \[S_v = \int_{\Omega_s} I_v(\Omega) d\Omega = \frac{2k}{\lambda^2} \int_{\Omega_s} T_b d\Omega \]

- Power received by the antenna:
 \[kT'_A = k \frac{T_A^*}{F_{eff}} = \frac{1}{2} A_e \cdot S_v \]

 \[\Rightarrow \quad \frac{S_v}{T_A^*} = \frac{2k}{A} \frac{F_{eff}}{\eta_A} \quad \text{[Jy K}^{-1}] \]

- Depends on the antenna
- Values are tabulated, e.g. for IRAM 30m:
 range from \(\sim 6 \) @ 90 GHz, to \(\sim 11 \) @ 340 GHz
CALIBRATION
Calibration needs to account for:

- **Atmosphere:**
 - Emission/absorption at frequency ν
 - Turbulence producing phase drifts

- **Full detection system:**
 - Antenna characteristics and loosees
 - Receivers: gain, noise, stability
 - Cables, backends, etc.

Questions:

- How to convert counts at the backend level, to power in physical units
- How to correct for the atmospheric contribution
CALIBRATION

• What we measure…

\[C_{sou} = \chi \left[T_{rec} + F_{eff} e^{-\tau\nu} T_{sou} + T_{sky} \right] \]

where

\[T_{sky} = F_{eff} (1 - e^{-\tau\nu}) T_{atm} + (1 - F_{eff}) T_{amb} \]

- \(T_{rec} \): noise contribution from the receiver
- \(T_{sky} \): noise contribution from the atmosphere (\(T_{atm} \)), and the receiver cabin and ground (\(T_{amb} \))

→ Details in Lecture by Luis Velilla on friday

• Correct for atmospheric emission and stability (atmospheric and instrumental)

→ switching bw ON and OFF positions (observing modes)
CALIBRATION: T_{sys} and noise

System temperature: gives a measure of the noise including all sources, from the sky to backends

→ Statistical noise in our spectra (radiometer formula):

$$\sigma = \frac{T_{\text{sys}}}{\sqrt{d\nu \cdot \Delta t}}$$

- $d\nu$: spectral resolution
- $t_{\text{on}}/t_{\text{off}}$: ON/OFF integration time
- Δt: depends on the observing mode
OBSERVING MODES: position switching

- The telescope cyclically moves between two positions, ON (Source+Atmosphere) and OFF (Atmosphere)
 → Subtracting both positions gives the source signal
- Cons:
 - OFF position without any signal → need to go far away sometimes (and spend time moving the antenna)
 - If OFF position is far, atmosphere varies → bad baselines
- \(t_{on} = t_{off} = t_{tot}/2 \) → \(\Delta t = t_{tot}/4 \) →

\[
\sigma_{psw} = \frac{2 \cdot T_{sys}}{\sqrt{d\nu \cdot t_{tot}}}
\]
OBSERVING MODES: wobbler switching

- The secondary cyclically and quickly moves between the ON and OFF (usually symmetric OFF – ON – ON – OFF)
- Pros: very good baselines
- Cons:
 - Limited wobbling throw
 - Always in one antenna direction → rotates in the sky
 → Source must be compact

\[t_{on} = t_{off} = \frac{t_{tot}}{2} \rightarrow \Delta t = \frac{t_{tot}}{4} \rightarrow \]

\[\sigma_{WSW} = \frac{2 \cdot T_{sys}}{\sqrt{d \nu \cdot t_{tot}}} \]
OBSERVING MODES: frequency switching

- The tuning frequency cyclically and quickly changes between two phases: \(f_{\text{rest}} - f_{\text{throw}} \) and \(f_{\text{rest}} + f_{\text{throw}} \)

- Pros: The telescope is **always** ON source
 - No need for OFF positions
 - Lower loise

- Cons:
 - Limited frequency throw \(\rightarrow \) narrow lines
 - Presence of negative ghosts \(\rightarrow \) low line density
 - Presence of atmospheric lines
 - Strong ripples in the baselines (standing waves)

- \(t_{\text{on}} = t_{\text{off}} = t_{\text{tot}} \rightarrow \Delta t = t_{\text{tot}}/2 \rightarrow \)

\[
\sigma_{\text{fsw}} = \frac{\sqrt{2} \cdot T_{\text{sys}}}{\sqrt{dv \cdot t_{\text{tot}}}}
\]
OBSERVING MODES: on-the-fly mapping

- The telescope continuously slew through the source with time to map it. The result is a cube of spectra.

- Nr of independent measurements:
 \[n_{beam} = \frac{A_{map}}{A_{beam}} \]

- \(t_{on}^{beam}, t_{off}^{beam} \):
 \[\Delta t = \frac{t_{on}^{beam} \cdot t_{off}^{beam}}{t_{on}^{beam} + t_{off}^{beam}} \]

- Linear scanning speed and area speed:
 \[v_{area} = v_{linear} \Delta \theta \]

- Nyquist sampling: \(\Delta \theta = \theta/2 \)
OBSERVING MODES: on-the-fly mapping

- The telescope continuously slew through the source with time to map it. The result is a cube of spectra.

- Frequency switching:

 \[t_{on}^{beam} = t_{off}^{beam} = t_{tot}/n_{beam} \rightarrow \Delta t = t_{tot}/2n_{beam} \rightarrow \]

 \[\sigma_{fsw} = \frac{\sqrt{2n_{beam}} \cdot T_{sys}}{\sqrt{dv \cdot t_{tot}}} \]

- Position switching: share same OFF for multiple ONs

 ON-ON-ON-OFF-ON-ON-ON-OFF-...

 submap

 \[\sigma_{psw} = \frac{\sqrt{n_{beam} + n_{submap}}}{n_{beam}} \cdot T_{sys} \]

 \[\frac{\sigma_{psw}}{\sigma_{fsw}} = \frac{1}{\sqrt{2}} \left(1 + \sqrt{\frac{n_{submap}}{n_{beam}}} \right) \geq 1 \]
GOALS / QUESTIONS

Goals
- Measure the signal emitted from a particular region in the sky
- Obtain spectral or spatial information of the source
- Determine chemical and/or physical properties

Questions
- Measurement fidelity: $\eta_A, \eta_B, F_{\text{eff}}, B_{\text{eff}}$
- Calibration
 - Gain calibration: $C_{\text{source}} \rightarrow T^*_A, T_{MB} \rightarrow S_V$
 - Observing switching modes: remove noise contribution from the atmosphere and whole detection system
BUT THERE’S MORE...

- **Real antenna:**
 - Real beam pattern
 - Error beams
 - Antenna deformations: astigmatism, coma, etc.

- **Other calibration measurements needed during observations:**
 - Pointing: optimize with direction Az, El (gravity)
 - Focus: optimize secondary position in z (temperature)

- ** Receivers:** e.g. *image band rejection* (SSB, DSB,..)
- **Backends:** bandwidth and spectral resolution
FURTHER READING

• “Tools of Radio Astronomy”, T.L. Wilson, K. Rohlfs, S. Hüttemesiter

• IRAM 30m and interferometry schools:
 http://www.iram-institute.org/EN/content-page-67-7-67-0-0-0-0.html

• NRAO Radio Astronomy essentials web course:
 https://science.nrao.edu/opportunities/courses/era

• IRAM technical reports
 http://www.iram-institute.org/EN/content-page-161-7-66-161-0-0-0.html