Galaxy evolution through cosmic time : Synergy with the GTC and LMT

Hector Bravo-Alfaro Universidad de Guanajuato

Main Collaborators

J. H. van Gorkom (Columbia Univ. USA), D. Mayya (INAOE), F. Durret (IAP, Fr), Y. Venkatapathy, M. Lopez, D. Perez (U. de Gto, Mx), T.C. Scott & C. Lobo (U. do Porto), . E. Brinks (U. of Hertfordshire, UK)

NGC 4921 HI on HST VI 2 kpc

1. Intro: galaxy clusters and evolution at low z

2. Strong morphological transformation: the jellyfish

3. Observing the gas component : Hi and CO

4. Final remarks

Flarare 2. HI intensity contour man on a color HST image (P606W+P814W) of NGC 4921. Contours as in Figure 1. Note the highly asymmetric HI distribution with

Galaxies are well behaved at z = 0: the Hubble "tuning-fork" diagram

Strong tranformation of spirals in clusters (z = 0.2)

B234908-262039 in A2667 (z=0.2) HST-WFPC2 F450W, F606W, F814W

Cortese, Marcillac, Richard, Bravo-Alfaro, et al. 2007

An evolutionary sequence?

The stages: Starbursts? Post-starbursts? Disrupted?

The mechanisms: RPS or tidal interactions? Where?

DEAD GALAXY

The strategy

- A sample of nearby clusters ($z \le 0.2$)
- Different physical conditions (Lx, mass, relaxation, etc.)
- Observe the whole volume (imaging) the HI
- Image the same field with opt-NIR telescopes.
- Analyse/quantify galaxy stellar asymmetries.
- Observe selected galaxies on CO
- Analyse the ICM (X-ray) distribution.
- Detect cluster substructures \rightarrow

... hints on galaxy evolution, individually and statistically

Part 2. Strong transformation seen in the optical

A dozen more in Coma

Yagi et al. 2010 (@ Subaru)

FIG. 4L,- Same as Figure 4A, but of GMP4060.

Extended emission line regions in Coma

FIG. 4B.- Same as Figure 4A, but of GMP2559.

Poggianti et al. 2016 (WINGS, BUDHIES... GASP @ MUSE

Our data... so far

KAZ 364 @ A85

No old stars found along the filaments

→ the blue stars must be formed in situ, after a strong gas sweeping event (RPS)

A85[ADF98]286

A second jellyfish, seen in a "younger" stage than KAZ364. This is a very HI deficient object.

In total three jellyfish galaxies in A85 have no red stars along the peculiar arms (until our limit of 22.4 mag arcsec ⁻² in J-band) \rightarrow RPS seems to be very active in A85

CFHT-g

A85[ADF98] 374

A candidate to jellyfish in A0085, appears NORMAL in HI....!!

So far, very few jellyfish have been observed in HI.

But.... !!

Scott, Bravo-Alfaro, Venkatapathy et al. in prep.)

Full LTG distribution across A496

- Pink zone: perturbed in HI and normal in NIR : RPS
- Blue zone: perturbed in HI and perturbed in NIR : tidal

Part 3: what does the gas can tell

The full HI in Abell 496

- 58 HI detections
- 20% 30% show disruptions :
- Gas deficiency, asymmetry, and/or optical offset.

30m IRAM survey: H₂ content, gas asymmetries. 19 CO detections , 5 H₂ deficient ones and 3 non-detections (Scott et al. In prep)

Figure A4. CGCG 097–079 CO $(J = 2 \rightarrow 1)$ spectra (left) and CO $(J = 1 \rightarrow 0)$ spectra (centre), with the (0,0) position at the galaxy's optical centre; the α and δ offsets are in arcseconds. The image is an SDSS *r*-band. The yellow circle indicates the size of the 2.6 mm beam at the central pointing position. Red crosses indicate the position of a 1.3 mm observation with a red circle added to indicate the size of the 1.3 mm beam if CO $(J = 2 \rightarrow 1)$ was detected at that position. Green contours trace H α emission from GOLDMine.

097-079 ,(Abell 1367 z=0.020) RPS or tidal interaction with 097-073 !? Scott et al. 2015

Thoughts and ideas

Many galaxies have some secrets.....

FGC 1287 triplet. NRAO-VLA HI map : 250 kpc gas tail (Scott et al. 2012)

Thoughts and ideas

- Not all interesting stuff is happening at high redshift!!
- Multi-λ
- Deep imaging in NIR (rather than opt) to inspect for tidal interactions
- MOS (optical) and LMT

Questions

- Disrupted galaxies: is it a rather common phenomena?
- What are the physical conditions around jellyfishes?
- If RPS is to blame... why some appear with normal HI?
- How RPS can be so strong without a dense/hot ICM?
- Pre-processing or LSS environment?

Gracías! hector@astro.ugto.mx

