Galaxy classification and redshift determination using neural networks and the OTELO survey

José A. de Diego

6/9/2018

Why Deep Neural Networks?

Domínguez Sánchez H, Huertas-Company M, Bernardi M, Tuccillo D, Fischer JL. 2018. *Improving galaxy morphologies for SDSS with Deep Learning*. MNRAS 476: 3661-76

Table 2. Precision and recall (TPR) values for different P_{thr} and average accuracy for the questions which have two possible answers in GZ2 classification scheme.

Question	Meaning	$P_{\rm thr}$	TPR	Prec.	Acc.
		0.2	0.97	0.91	
Q1	Disc/features	0.5	0.95	0.96	0.98
-		0.8	0.90	0.99	
		0.2	1.00	0.67	
Q2	Edge-on	0.5	0.99	0.83	0.97
	-	0.8	0.92	0.95	
		0.2	0.93	0.48	
Q3	Bar sign	0.5	0.79	0.80	0.97
	-	0.8	0.58	0.92	
		0.2	0.98	0.54	
Q6	Merger signature	0.5	0.96	0.82	0.97
		0.8	0.90	0.97	

The OTELO Survey | OSIRIS Tunable Emission Line Object Survey

- GTC \rightarrow OSIRIS-TF \rightarrow OTELO
- Deepest emission line survey
 - Over 11,000 galaxies
 - Field of $7.5' \times 7.4'$
 - 2D-spectroscopy
 - * R ~ 700
 - * $\lambda_c = 9175\text{\AA}, \ \Delta\lambda = 210\text{\AA}.$
 - Ancillary data:
 - * Extended Groth Field
 - * CFHT-Legacy Survey
 - * GALEX...

Deep Neural Networks

- DNNs consist of a number of interconnected layers of neurons (processors) that perform calculations.
- Information is stored in the *weights* on the connections.

Descriptive statistics

Sérsic indices

$$I(R) = I_e \ e^{-b\left[\left(\frac{R}{R_e}\right)^{1/n} - 1\right]},$$

Gal. Type Sersic Index Sd

Figure 1: Histograms for lone galaxies in OTELO.

LT	1.11	1.93
ET	3.72	1.36

Proportion 0.10 ET

Training data:

Best color separation choice

g-i train OTELO ET LT Sum ET 57 19 76 LT 33 851 884 Sum 90 870 960 g-i classification: Error rate 0.0542 Accuracy 0.9458

Best ET/LT separation: g-i = 2.15

Figure 2: Lone ET & LT galaxies: Lognormal fit.

Strateva et al. 2001 u–r split for OTELO Galaxies

Figure 3: Strateva et al. 2001 plot.

u–J split for OTELO Galaxies

Figure 4: u-J plot.

g-i split for OTELO Galaxies

Figure 5: g-i plot.

Evaluate model for g-i test data

Confusion matrix (absolute): Actual Prediction ET LT Sum 13 9 22 ΕT LT 4 214 218 Sum 17 223 240 Confusion matrix (relative): Actual Prediction ET LT Sum ET 0.05 0.04 0.09 LT 0.02 0.89 0.91 Sum 0.07 0.93 1.00 Accuracy: 0.9458 (227/240) Error rate: 0.0542 (13/240) Error rate reduction (vs. base rate): 0.2353 (p-value = 0.1912)

Deep Neural Network:Galaxy Classification

Objectives of DNN classification

- Get as close as possible to OTELO classification
- Improve baselines classifications
 - Base rate classification 0.9292
 - Color g-i based classification 0.9458

Data set properties

Base Rate: 0.9292

- OTELO subset
 - Lone galaxies
 - Iso-area image ≥ 50
- Data variables
 - dmodelu, dmodelg, dmodeli, dmodeli, dmodelj, dmodelj, dmodelks, N_GALFIT_BAND_1, galclass
- Data sample size: 4241
 - Data training size: 2968
 - * Data validation size: 20% training
 - Data testing size: 1273

Redshifts of OTELO subset galaxies

Figure 6: DNN Sample

DNN architecture

Layer (type)	Output Shape	Param #
dense_1 (Dense)	(None, 32)	320
dense_2 (Dense)	(None, 32)	1056
dense_3 (Dense)	(None, 1)	33
Total params: 1,409 Trainable params: 1,409 Non-trainable params: 0		
Relu / Sigmoid activations		

- DNN compilation
 - Loss function: binary_crossentropyOptimizer: optimizer_rmsprop

 - Metrics: accuracy
- Fit
 - Epochs:150, Batch size: 128, Validation: 20% of training sample

Random sample from 11457 test galaxies

OTELO	DNN	Prob
1	1	0.986551
0	0	0.000000
0	0	0.000000
0	0	0.000000
0	0	0.000000
0	0	0.000000
1	1	0.902308
0	0	0.000000
0	0	0.000000
0	0	0.000000
0	0	0.000000
0	0	0.000000
0	0	0.000000
0	0	0.000000
0	0	0.000000
0	0	0.000000
0	0	0.000000
0	0	0.000000
0	0	0.000000
0	0	0.000000
0	0	0.000000
0	0	0.000000
0	0	0.000000

Figure 7: Accuracy & Loss

Figure 8: Validation Loss

0	0	0.000000
0	0	0.00000
1	1	0.997628
1	1	0.959253
1	1	0.995208
1	1	0.985048
0	0	0.00000
0	0	0.00000
0	0	0.00000
0	0	0.00000

21 Mismatches

OTELO DNN Prob

1	0	0.41	L0606
0	1	0.52	25443
1	0	0.30	9931
0	1	0.98	34879
0	1	0.62	24495
0	1	0.80)2046
1	0	0.27	72197
0	1	0.90	6919
1	0	0.35	55655
1	0	0.32	24490
0	1	0.99	92975
0	1	0.90)2258
0	1	0.99	90199
0	1	0.95	54445
0	1	0.83	34345
0	1	0.89	99426
0	1	0.59	96614
1	0	0.42	26365
1	0	0.42	22188
0	1	0.95	55578
0	1	0.99	98744
	OTELO	class	5
DNN	ET	LT	Sum
ΕT	346	14	360
LT	7	906	913
Sur	n 353	920	1273

Comparison with baselines

- Baselines classifications
 - Base rate classification 0.9292
 - Color g-i based classification 0.9458
 - DNN classification $\ldots \ldots \ldots \ldots \ldots 0.9835$

Similar to:

 Domínguez Sánchez H, Huertas-Company M, Bernardi M, Tuccillo D, Fischer JL. 2018. Improving galaxy morphologies for SDSS with Deep Learning. MNRAS 476: 3661-76

using a convolutional neural network on $\sim 670,000$ SDSS images.

The importance of including Sérsic index

Deep Neural Network: Photometric redshifts

Data set properties

- Galaxies with spectroscopic redshift: 370
- Data variables:
- idobj, dmodelu, dmodelg, dmodelr, dmodeli, dmodelz, dmodelj, dmodelh, dmodelks, ZSPEC
- Data trainging size: 259 (70%)
 - Data validation size: 20% training
- Data test size: 111(30%)

Redshifts of OTELO subset galaxies

Figure 9: DNN Sample

Figure 10: DNN vs Spectroscopic redshifts

DNN 0.15 111

Conclusions

- We are getting into the Petabyte Large Survey Epoch.
 - We need new analysis tools.
- DNNs offer simple and reliable classification / regression results.
 - Not only for images.
 - In oposite to parametric fitting techniques:
 - * DNNs *learn* from previous training samples.

Open question

• How do we can use DNNs for GTC — GTM synergy?