X-rays from the First Massive Black Holes: Current Status and Future Prospects

Brandt, Vignali, Schneider, Alexander, Anderson, Bassett, Bauer, Fan, Garmire, Gunn, Kaspi, Richards, Strauss

www.astro.psu.edu/users/niel/papers/highz-xray-detected.dat

Overall Importance of X-ray Studies at z > 4

Probe black hole region where accretion + black hole growth occurs. Are early black holes feeding + growing in same way as local ones? Number density vs. z – Disk instabilities? Trapping? – Tentative claims

Also probe larger scale environment via absorption

X-ray and Related Observations

Chandra 4–10 ks snapshots with HET support (> 50) Highest redshift (z > 4.8) SDSS, Opt. brightest PSS, RLQs, Exotic quasars

ROSAT, Chandra, XMM–Newton archival data

2 Ms Chandra Deep Field–North

Lower luminosity objects, avoid optical selection biases

Hobby–Eberly Telescope Support

Wavelength (Å)

HET spectra of bright, mostly unpublished, DPOSS quasars at z > 4.

Queue-scheduling makes the HET ideal for near-simultaneous observations.

Prevents SED confusion due to variability.

Vignali et al. (2003)

X-ray Spectroscopy at z > 4

Single–Object X–ray Spectra at High Redshift

X-ray Contribution to SED

Partial correlation analysis of ~150 SDSS+PSS RQQs spanning z = 0.16–6.28 indicates luminosity effect primary.

Vignali, Brandt, & Schneider (2003)

Blazars at the Highest Redshifts

Often X-ray bright enough for moderate-quality spectra. 5 published – 3 show evidence for likely X-ray absorption. Jets not accretion disk. Probably not majority population.

Time (days)

Ongoing Chandra Survey of z > 4 RLQs

Want to "bridge" the X-ray observation "gap" between z > 4 radio-quiet quasars (R < 10) and blazars (R > 1000).

Also want to increase the number of X-ray blazars at high z.

6 observations to date – all detections and often X–ray bright7 more observations accepted

Correlation studies to determine if z > 4 jets different (e.g., CMB) X-ray absorption studies with XMM–Newton

High–Redshift AGN in Deep X–ray Surveys

X-ray Constraints on Very High Redshift AGN

Chandra can detect moderate-lum. AGN to z ~ 10+

Constrain sky density exploiting Lyman break.

Alexander et al. (2001), Barger et al. (2003), Cristiani et al. (2003), Koekemoer et al. (2003)

No more than \sim 10 AGN at z > 6.5 per Chandra field.

Moderate–lum. AGN unlikely to have reionized Universe, in agreement with optical extrapolations.

First stars? Decaying particles?

Source statistics still poor. Need more solid angle with deep (~ 1/3 Ms) coverage to pin down XLF.

General Conclusions

Quasars at z ~ 4–6 and z ~ 0–2 have reasonably similar X–ray and broad–band spectra.

(After accounting for luminosity effects)

Small–scale X–ray emission regions of quasars insensitive to large–scale environmental differences from z ~ 0–6.

No hints for different accretion/growth mechanisms. (e.g., accretion–disk instabilities or radiation "trapping")

X-ray emission appears to be a universal property of quasars, even at $z \sim 4-6$.

Hopefully ultradeep X–ray surveys can push to z ~ 5–15+.

Future Prospects for "Snapshot" and Deep Surveys

Improve coverage at z > 5 10^{-13} EMSS ~ 100 at z > 5 expected from full SDSS s^{-1}) \sim 30 at z > 6 expected from full SDSS XMM Bright RIXOS . 0.5–2.0 keV flux (erg cm^{-2} 10^{-14} • XMM Medium **Minority populations** -15 ROSAT UDS No-line guasars, BALQs, RLQs ChaMP 1 yr. Ó • XMM Faint XMM LH **Better X-ray spectral constraints** 0⁻¹⁶ Chandra 100 ks XMM–Newton, Con–X, XEUS Chandra 2.0 Ms 10^{-17} High-redshift AGN XLF X-ray variability studies : S Verv first SMBH search -18 X-ray imaging 10 10^{5} 10^{4} Jets, clustered AGN in high-z LSS 0.01 0.1 1 10 100 1000

Chandra can go significantly deeper and wider with best positions for ~ 20 yr.

 Ω (degrees²)

Follow–up of very high–redshift AGN candidates in the near–infrared.

X-ray Detectability of Black Holes from the First Stars and Proto-Quasars

Sample rest-frame 8–30 keV emission at z ~ 15 where X-rays are expected from current data.

But need incredible sensitivity and angular resolution.

Generation–X can detect ~ 4000 solar mass black holes at z ~ 15 (in between first stars and first quasars).