Morphology and ionization of He⁺ nebula in NGC1569 using MEGARA at the GTC

Divakara Mayya INAOE, Mexico ydm@inaoep.mx

+ MEGARA team

MEGARA-IFU detection of extended He II λ 4686 nebular emission in the central region of NGC 1569 and its ionization budget

Y. D. Mayya,¹* E. Carrasco,¹ V. M. A. Gómez-González,² J. Zaragoza-Cardiel[®],^{1,3} A. Gil de Paz[®],⁴ P. A. Ovando,¹ M. Sánchez-Cruces[®],⁵ L. Lomelí-Núñez[®],¹ L. Rodríguez-Merino,¹ D. Rosa-González^(a), ¹S. Silich, ¹G. Tenorio-Tagle, ¹G. Bruzual, ²S. Charlot, ⁶R. Terlevich, ^{1,7} E. Terlevich,¹ O. Vega,¹ J. Gallego,⁴ J. Iglesias-Páramo,^{8,9} A. Castillo-Morales,⁴ M. L. García-Vargas⁽⁰⁾,¹⁰ P. Gómez-Alvarez,¹⁰ S. Pascual⁴ and A. Pérez-Calpena¹⁰ ¹Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis Enrique Erro 1, Tonantzintla 72840, Puebla, Mexico ²Instituto de Radioastronomía y Astrofísica, UNAM Campus Morelia, Apartado Postal 3-72, 58090 Morelia, Michoacán, Mexico ³Consejo Nacional de Ciencia y Tecnología, Av. Insurgentes Sur 1582, 03940 Mexico City, Mexico ⁴Departamento de Física de la Tierra y Astrofísica, Instituto de Física de Partículas y del Cosmos (IPARCOS), Fac. CC. Físicas, Universidad Complutense de Madrid, Plaza de las Ciencias, 1, E-28040 Madrid, Spain ⁵Aix Marseille Université, CNRS, LAM, 13388 Marseille Cedex 13, France ⁶Institut d'Astrophysique de Paris, Sorbonne Université, CNRS, UMR7095, F-75014 Paris, France ⁷Institute of Astronomy, University of Cambridge, Cambridge CB3 0HA, UK ⁸Instituto de Astrofísica de Andalucía, IAA-CSIC, Glorieta de la Astronomía s/n, E-18008 Granada, Spain ⁹Estación Experimental de Zonas Áridas, CSIC, Carretera de Sacramento s/n, E-04120 Almería, Spain ¹⁰FRACTAL S.L.N.E., Calle Tulipán 2, portal 13, 1A, E-28231 Las Rozas de Madrid, Spain

Accepted 2020 July 30. Received 2020 July 24; in original form 2020 May 21

Mayya et al. (2020) MNRAS 498, 1496 (11 October issue)

Ionization of He⁺ by massive stars

E(He⁺) = 54.4 eV = 228 Å

Requires $T_{eff} > 60000 \text{ K}$

===> main-sequence stars cannot ionize He⁺ to He⁺⁺

But, Wolf Rayet stars are hot enough to ionize He⁺

WR Stars: M>25 M_{\odot} ; t=3-5 Myr

Ionization of He⁺ in star-forming regions

Available only during WR phase (3-5 Myr)

ydm@inaoep.mx

NGC1569-GTC/MEGARA

IRyA 17-09-2020

Resolucio

Ionization of He⁺ in star-forming regions

...and the metallicity dependence

Available only during WR phase (3-5 Myr) for Z>0.25 ===> Hell4686 line is not expected in metal-poor (Z<0.25) galaxies

Detection of Hell4686 in I Zw 18

I Zw 18: Z=1/32 Z⊙

L(He⁺) = 1.12x10³⁸ erg/s Q(He⁺) = 1.33x10⁵⁰ ph/s

Kehrig et al. 2015

9 WC stars present -1/50 of observed Q(HeII)

What is the source of ionization of the observed HeII4686 line in I Zw18?

The problem:

- I Zw 18 is not an exception!
- There is a trend of increasing HeII4686/H β with decreasing metallicity!!!

===> He⁺ ionization budget problem at low metallicities

• Other sources of Hell ionization: High mass X-ray binaries (HMXBs)?

Formation scenarios of WR stars and HMXBs

Formation of WR stars: effect of rotation and binary Leitherer et al. 2014 4686 Equivalent Width, solar 10 \sim 0.001**BPASS** models **Solar** 0.002EW(HeII4686) 0.003 Eldridge et al. 2017 0.004 0.006 0.008 EW(HeII4686) Å with 0.0100.014rotation 0.040Z<0.004 with 6.0 6.5 7.0 7.5 8.0 binaries log (Time [yr]) 4686 Equivalent Width, subsolar EW(HeI14686) Å COMPANY AND A STREET, **Sub-Solar** -2 8 log(Age) 7.0 log (Time [yr]) 6.0 6.5 7.5 8.0 Rotation prolong the duration of WR phase at $Z=Z_{\odot}$ Figure 24. Equivalent width of stellar He II 4686 from W-R stars predicted by the 1994, v00, and v40 tracks at solar (top) and subsolar (bottom) chemical

• Binary stars prolong the duration of WR phase at Z < 0.004

composition.

ydm@inaoep.mx

NGC1569-GTC/MEGARA IRyA 17-09-2020

8

He++ nebula in nearby galaxies: morphology

N76 in the SMC

N79 in the LMC (WN2 star Br2)

ydm@inaoep.mx

He++ nebula in nearby galaxies: morphology

SNR-35 Table 9. HII regions with nebular He II emission in the Local Group. 715 . . SNR-55 Region $12 + \log(O/H)$ Ionizing source Spectral type Galaxy MW G2.4+1.4 WO₂ 8.45 WR102 LMC N44C 8.32 X-5? X-ray Neb? 8.36^a LMC N159 X-1 HMXB LMC N79 8.17-8.27 BAT99-2 WN2b(h) LMC N206 8.36 WN4:b+O8V BAT99-49 SMC N76 7.93 AB7 WN4+O6I(f) SMC NGC 249 8.11^a SMC-WR10 WN3ha IC1613 **S**3 7.70 WO3 8.39 WC4 M 33 BCLMP38b MC45 M 33 BCLMP90 8.50 no obvious hot star associated M 33 C001Ab no obvious hot star associated 8.61 BCLMP208f M 33 8.07 no obvious hot star associated M 33 BCLMP711a 8.28 no obvious hot star associated M 33 **MA** 1 8.00 MC8 WNE M 33 **HBW673** 8.66 no obvious hot star associated M 33 BCLMP651 8.12 no obvious hot star associated MA₁

For MA1, Hell4686 line strength agrees with ionization from its central star (WNE)
No obvious hot star associated with all HellI nebulae!!!

A case study: He++ nebula in NGC1569

SSCs A and E

F658N (R) = $H\alpha$

RGB HST image

F814W (G)

12+log(O/H) = 8.19 Kobulnicky & Skillman 1997 ===> Z ~ Zo/3 (~LMC)

Distance = 3.1 Mpc Grocholski et al. 2012

A 2.7 6.0 7.6 O+WR	< 5	Service.
B 3.2 6.7 14 RSG	~15	1997 A

Larsen et al. 2008, 2011 González-Delgado et al. 1997

- Is there a He⁺⁺ nebula around SSC-A?

There is no young cluster more massive than SSC-A in the MW or the Local group galaxies

<u>ydm@inaoep.mx</u>

A case study: He++ nebula in NGC1569

Specific goals of our study

- Is there a He⁺⁺ nebula around SSC-A?
- Is there a He⁺ ionization budget problem at the metallicity of NGC1569?

MEGARA at the 10.4-m GTC

http://www.gtc.iac.es/instruments/megara/megara.php

Installed at the GTC (La Palma) in August 2017 **MOS mode**

IFU mode PI: Armando Gil de Paz Large Compact Bundle 623 fibers (IFU) (56 sky fibers) 92 positions (MOS) 12.5" x 11.3" IFU MOS 3.5' 12.5 x 11.3 arcsec² Field of View 3.5 x 3.5 arcmin² Spaxel size 0.62 arcsec Sampling (1D FWHM) 3.6 pix

POLITÉCNIC/

LR VPHs

MR VPHs

HR VPHs

Optical components and cryostat fabricated at INAOE laboratories

INAOF has ~150 hrs of Guaranteed Time

 $R(\lambda/\Delta\lambda) - 5500$

 $\mathbf{R}(\lambda/\Delta\lambda)$ - 12 000

 $\mathbf{R}(\lambda/\Delta\lambda) \sim 20\ 000$

ydm@inaoep.mx

Resolution and spectral coverage

ydm@inaoep.mx

NGC1569-GTC/MEGARA IRyA

IRyA 17-09-2020

14

MEGARA/IFU observations of NGC1569

Observations

- IFU mode (567 object + 56 sky spectra)
- Exposure = 3 x 1200 sec
- Grating (VPH): LR-B (4330-5200 A)
- Seeing ~ 0.9"
- Dark and photometric sky conditions
- Date of observations: January 2019
- Gauranteed time observations

Data Reduction and analysis

- Primary Data Reduction using MEGARA pipeline
 ==>Wavelength and flux calibrated, sky-subtracted 2-D spectral image
- Data cube creation using python script (Javier Zaragoza)
- Data analysis and narrow-band image using IRAF-based scripts (Mayya)

MEGARA/IFU observations of NGC1569: image

ydm@inaoep.m

NGC1569-GTC/MEGARA

IRyA 17-09-2020

Coood M E G A R

MEGARA/IFU images at selected wavelengths

ydm@inaoep.mx

NGC1569-GTC/MEGARA

IRyA 17-09-2020

MEGARA/IFU sample spectra

How to distinguish WR stars from nebula?

NGC1569-GTC/MEGARA

19

IRyA 17-09-2020

ydm@inaoep.mx

Tracers of He++ nebula and WR stars

Automatic identification of Hell4686 narrow and broad features

Multi-Gaussian Analysis of Hell 4686 feature in every fiber spectrum

WR (FWHM > 6 Å): 49 fibers

- 18 belong to SSC-A
- the rest are fibers with cross-talk with fibers of SSC-A or limiting fluxes
- Broad component corresponds to He+ ion (no NIII, CIII-CIV lines)
 ==> WNL type

Nebula (FWHM ~ 2 Å): 262 fibers

The fiber fluxes in each component are used to produce maps of WR positions and Hell nebula

Spatial location of broad Hell4686 line - WR candidates

<u>/dm(*a*)inaoep.mx</u>

Number of WR stars in each fiber

 $N_{WR} = L(HeII4686)/1.22x10^{36} erg/s$

N_{WR}(SSC-A)= 124+/- 11 (Av=2.3 mag i.e Av mean continuum) = 56 +/- 7 (Av = 1.6 mag i.e. the Galactic extinction) (Devost et al. 1997) = 186 +/- 13 (Av=2.65 mag i.e. Av mean nebular

The N_{WR} is in agreement with that reported by González-Delgado et al. 1997

ydm@inaoep.mx

Other candidate-WR stars in the FoV

SSC-B, cluster #28 candidate WRs from HST F469N-excess continuum sources (Buckalew et al. 2000)

- SSC-A is the only location of WR stars in our FoV
- We confirm the absence of WR stars in SSC-B

Spatial location of narrow Hell4686 line - He++ nebula

- He⁺⁺ nebula follows the H⁺ nebula in its morphology
- A crescent-shaped nebula of diameter of 150 pc off-centered from SSC-A
- No nebular emission within 40 pc of SSC-A ===> a WR bubble

H+, He++ nebulae and extinction map

ydm@inaoep.mx

NGC1569-GTC/MEGARA IRyA 17-09-2020

26

Observed vs SSP properties

$$\frac{Q(\mathrm{H}^0)}{\mathrm{photon s}^{-1}} = 2.10 \times 10^{48} \frac{L(\mathrm{H}\,\beta)}{10^{36}\,\mathrm{erg\,s}^{-1}},$$

Case B: Osterbrock & Ferland 2006

Global ionizing photon rate implied by the nebular emission in NGC1569

 $Q(H^0) = 1x10^{52}$ photon/s $Q(He^{++}) = 1x10^{50}$ photon/s I(HeII4686)/I(Hβ) = 0.02EW(Hβ) = 75 - 160 Å

Simple Stellar Population (SSP) models

SSP code ID	WR model + atmosphere			
(1)	(2)			
SB99/Padova SB99/Geneva PopStar/Padova BC03/Padova C&B/Padova BPASS/single BPASS/binary	Padova1994+CMFGEN Geneva1994+CMFGEN Padova1994+CMFGEN Padova1994+POWR Padova2015+POWR Cambridge+POWR Cambridge+POWR	Leitherer et al. 1999 Kroupa IMF: 0.15-100 M⊙ Leitherer et al. 1999 Mollá, García-Vargas, Bressan A. 2009 Bruzual & Charlot 2003 Charlot & Bruzual 2020 Eldridge et al. 2017 Eldridge et al. 2017		
Most recent models downloaded from the respective web-sites				

Observed vs SSP properties

SSP code ID	WR model + atmosphere	Comments
(1)	(2)	(9)
SB99/Padova	Padova1994+CMFGEN	Good fit
SB99/Geneva	Geneva1994+CMFGEN	$I(\text{He II})/I(\text{H}\beta)$ too low
PopStar/Padova	Padova1994+CMFGEN	Good fit
BC03/Padova	Padova1994+POWR	Good fit
C&B/Padova	Padova2015+POWR	Marginal fit
BPASS/single	Cambridge+POWR	$I(\text{He II})/I(\text{H}\beta)$ too low
BPASS/binary	Cambridge+POWR	$I(\text{He II})/I(\text{H}\beta)$ too low
SSC-A	Observed or inferred	$(5.5\pm0.5)\times10^5~M_\odot$

• SSPs involving Padova tracks reproduce the observed values at

age = 4.0+/-0.5 Myr mass = 5.5x10⁵ M⊙

- Other models underestimate the HeII4686 line strength
- The derived age and mass of SSC-A are in agreement with previous determinations (Larsen et al. 2008, 2011)

ydm@inaoep.mx

Hell4686/H_β ratio vs metallicity: the ionization budget problem

X-ray emission in NGC1569

Sánchez-Cruces et al. 2015

- Diffuse soft X-ray emission is weak in the He⁺⁺ nebula
- Hard X-ray point sources are too located far from He⁺⁺ nebula

Star cluster

X-ray binary

Chandra/ACIS image(0.2-10 keV band) in blue colour and white contours

<u>ydm@inaoep.mx</u>

- We used MEGARA/IFU at the GTC to map the He++ nebula and the WR stars in NGC1569
- We detect extended Hell4686 nebular emission from a crescent-shaped structure around SSC-A.
- We infer 124 WR stars of WNL type in SSC-A
- SSP models of age=4 Myr, mass 5.5x10⁵ M☉ reproduce all the observed values
- Thus, the Hell ionization in NGC1569 is by WR stars and there is no requirement for other ionizing sources

Thanks

