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Abstract

The surface brightness profiles (SBPs) of star clusters hold invaluable information on the dynamical state of
clusters. The observed SBPs of star clusters, especially that of globular clusters, are in good agreement with the
SBPs expected for isothermal spheres containing stars of reduced kinetic energies. However, the SBPs of
configurations that satisfy these theoretical criteria cannot be uniquely expressed by analytical formulae, which had
hindered the analysis of dynamical state of observed clusters in external galaxies. To counter this shortcoming, it
has become a practice to use empirical fitting formulae that best represent the core and halo characteristics of
theoretical models. We here present a general purpose code, named NPROFIT, that allows fitting of the surface
brightness profiles of extragalactic star clusters to theoretical star clusters, defined by dynamical models of King
and Wilson. In addition, we also incorporated theoretical models that result in power-law surface brightness
profiles represented by Elson et al. The code returns the basic size parameters such as core radius, half-light radius
and tidal radius, as well as dynamically relevant parameters, such as the volume and surface density profiles,
velocity dispersion profile, total mass and the binding energy for a user-fixed mass-to-light ratio. The usefulness of
the code in the dynamical study of extragalactic clusters has been already illustrated in Cuevas-Otahola et al. The
code, which is python-based at the user end, but makes calls to advanced routines in Pyraf and Fortran, is now
available for public use. We provide example scripts and mock clusters in the installation package as guide to
users.

Unified Astronomy Thesaurus concepts: Astronomy software (1855); Star clusters (1567); Catalogs (205);
Astronomy data analysis (1858); Astronomy data modeling (1859)

1. Introduction

Structural parameters of star clusters serve as proxies to give
insights on their dynamical evolutionary state. These para-
meters, namely, core radius, half-mass and half-light radius,
tidal radius and concentration index, can be obtained by fitting
theoretical intensity profiles to the surface brightness profiles
(SBP) of clusters. For instance, the King (1962) is one of the
most widely used profiles to obtain the structural parameters of
old clusters, such as globular clusters (GCs). In the pioneering
work, King (1966) demonstrated that the observed form of the
profiles of GCs belong to the family of the surface mass density
profiles corresponding to self-gravitating isothermal spheres of
lower kinetic energies. Wilson (1975) proposed a dynamical
profile resembling the structure of a King (1966) profile, with a
larger halo, in order to fit the SBP of elliptical galaxies. Years
later, Elson et al. (1987) found that the SBPs of clusters in the
Large Magellanic Cloud (LMC) do not have a noticeable break

corresponding to tidal radius of King profiles. They found their
profiles are better fit by power-law functions rather than King
profiles. In these power-law profiles, the shapes of the extended
haloes are characterized by γ, with γ = 2 corresponding to the
profiles of infinite mass isothermal models. Profiles with γ > 2
are steeper and have finite masses.
Over the last two decades, the observed SBPs of extra-

galactic star clusters have been analyzed in several studies to
obtain structural parameters using theoretical profiles. The most
frequently used tools in these studies are ISHAPE (Larsen 1999)
and GALFIT (Peng et al. 2010), both of which are available for
public use. Both these tools fit two-dimensional empirical
profiles to the sky-subtracted observed 2D images of the
objects under study. Geometrical parameters such as position
angle and ellipticities are fitted as well. These codes are mainly
used to obtain the size parameters such as core radius, half-light
radius (Rh) and tidal radius for assumed shape of the profile.
This is the best one can hope to do in images where star clusters
are only marginally resolved and the background subtraction
errors do not permit an analysis of the shapes of profiles in their
external parts.
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One of the defining parameters of star clusters is their mass,
which is determined either using photometric techniques, or
using dynamical models. The photometric mass is routinely
determined using the observed luminosity along with a value
for the mass-to-light ratio appropriate to the population of stars
in the cluster. The mass-to-light ratio is calculated in population
synthesis models, and is a function of age and metallicity
(Bruzual & Charlot 2003). On the other hand, the dynamical
mass is based on the determination of motions of stars under
the influence of the collective force of all its stars, and is
defined as the Virial mass, hs=M R Gvir p

2
h , where σp is the

velocity dispersion projected along the line of sight, and η is the
Virial factor which depends on the shape of the profile (Gieles
et al. 2010). The photometric and dynamical masses do not
always agree for clusters for which both the measurements are
available (see e.g., McLaughlin et al. 2008; Gieles et al. 2010).
Almost a factor of 10 uncertainty in η is one of the sources of
the disagreements between the photometric and dynamical
masses. This uncertainty can be avoided by theoretically
calculating the radial profiles of dispersion velocities for the
model that fits the observed SBP. Such calculations can be
carried out for profiles that have an underlying physical model
as illustrated by Barmby et al. (2007) and McLaughlin et al.
(2008), who characterized the SBPs of globular clusters in M31
and NGC5128, respectively. The recent availability of high
resolution multi-object or integral field unit-fed spectrographs
on large telescopes (e.g., Gil de Paz et al. 2018) make it
possible the determination of σp of large samples of star
clusters in nearby galaxies, which calls for the recovery of the
σp corresponding to the best-fit models.

The Hubble Space Telescope (HST) images of nearby
galaxies (distance 5 Mpc) contain star clusters whose profiles
are good enough for a characterization of the shape of the outer
halo, using physical models. However, the absence of a
publicly available code is a handicap to analyze the profiles of
star clusters in these images. The purpose of the present work is
to develop a user-friendly code that can analyze the SBPs of
star clusters on the HST images to obtain simultaneously the
core and halo parameters, in addition to σp. In order to achieve
this, we follow the procedure outlined by Elson et al. (1987), as
well as the prescription to fit dynamical models (King and
Wilson) adopted by McLaughlin (2000), McLaughlin & van
der Marel (2005) and Sollima et al. (2015).

We here introduce NPROFIT (Profile Fitting tool of n-objects)1

for fitting dynamical models to 1D SBPs for a user-given list of
star clusters in a single image. The dynamical models considered
are King (King 1966), Wilson (Wilson 1975), and EFF (Elson
et al. 1987). For the former two models, SBPs are generated for
dynamically stable isothermal clusters of reduced kinetic energies,
whereas for the latter profile Jeans’ equation and the subsequent

Poisson’s equations are solved to obtain dynamical parameters
that are consistent with the observed SBPs. From the structural
parameters obtained by NPROFIT (scale radius rd for EFF or r0 for
King and Wilson, and shape parameters γ for EFF and W0 for
King and Wilson), our proposed tool computes dynamically
relevant parameters such as mass, surface and volume mass
densities, velocity dispersion and binding energy, as well as tidal
radius and core radius.
In Section 2, we describe the NPROFIT underlying algorithm,

starting with the program initialization, moving subsequently to
the background subtraction, SBP extraction, and subsequently
describing the fitted models and the corresponding parameters
derivation, following the χ2 minimization technique. In
Section 4 we introduce the simulation tool MKSAMPLE, and
use it to create a mock clusters sample to illustrate the operation
of NPROFIT. Finally, in Section 5 we show our conclusions and
the future directions for NPROFIT.

2. The Algorithm

NPROFIT stands for n-Profile Fitting Tool. This tool was
developed to extract and fit the observed SBPs of n objects in
an image. This task is carried out by following a series of steps
implemented in FORTRAN, PYTHON and PYRAF routines. In
this section, we describe the structure of our code.

2.1. The Scope

NPROFIT is developed to obtain the structural parameters of
star clusters on the fits format science images of nearby
galaxies taken with the HST, such as those in the ACS Nearby
Galaxy Survey Treasury (ANGST, Dalcanton et al. 2009),
which has more than 60 galaxies at distances 4 Mpc. There
are two kinds of star clusters that can be easily detected on the
HST images of nearby galaxies—GCs and Super Star Clusters
(SSCs). These clusters typically have a half-light radius less
than 10 pc, which allows them to be distinguished from stars on
the HST images up to distances ∼5 Mpc. The cores of star
clusters are supported against the gravity by the pressure
exerted by the random motions of stars and hence are well
modeled as isothermal spheres of finite kinetic energies. We
hence structured our code to fit the observed SBPs with
theoretical profiles for families of stable clusters. Theoretical
profiles are defined in mass surface density, which is related to
the observed SBPs through the mass-to-light ratio, which is
assumed to be be 1 Me/Le and independent of radius in this
work. For theoretical clusters containing stars of equal mass
and without internal dust such as those defined by King (1966)
models, this is a good assumption. However, real clusters have
stars of a range of masses, with a tendency for the most massive
stars to sink to the center as the cluster dynamically evolves,
which produces a color gradient that is bluer toward the center
(see e.g., Djorgovski & Piotto 1993). Given that the bulk of the
mass of a cluster is in low-mass red stars for Kroupa (2001) and

1 nProFit is publicly available in the GitHub repository https://github.com/
umbramortem/nProFit.
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other initial mass functions, SBP in a red filter is expected to
trace the mass-density profile better than that in a blue filter.
Filters at longer wavelengths also are less affected by possible
presence of differential reddening due to patchy internal dust
(Cardelli et al. 1989). Among the commonly used HST/ACS
filters, F814W is the reddest filter, and hence we recommend
the use of F814W images for obtaining SBPs.

Morphological analysis of extragalactic star clusters suffers
from two problems: (1) background variation—star clusters are
often encountered in zones with varying background values
such as in the spiral arms of galaxies, which requires a
measurement of a local background value for each object, and
(2) object crowding—star clusters are hardly isolated. Both
these facts affect the surface brightness of the profile in its
external parts. We have built-in algorithms in the code to
address both these issues.

2.2. Initialization and Data Preparation

The analysis of SBPs of objects depends on a number of
data-dependent parameters. As a first step, the code reads an
input ASCII file containing specific analysis parameters. An
example of program input can be found in Appendix. One of
the parameters in the input file is the name of a list containing
coordinates of n objects. The code obtains 2D sub-images
centered on each object in the list. Each sub-image is obtained
by trimming the original image of user-defined sizes and
centered on the coordinates in the object list, either world
coordinates (WCS) or in pixels. These individual images
centered at each object coordinates allow us to study the objects
separately, since data sets are typically constituted by several
objects.

2.3. Background Estimation and Subtraction

Estimating and subtracting the background value accurately
is crucial in the determination of structural parameters. An
erroneous estimation of the background value may result in an
overestimation or underestimation of the derived structural
parameters. We implemented two techniques to estimate the
background values locally in each sub-image image, which are
explained below.

Statistical determination in the corners: This strategy is
based on the computation of median values in four corners of
each sub-image over box sizes of 10% the size of each sub-
image. The use of median, rather than the mean, ensures that
each estimated background value is not much affected by any
contaminating object in the corners. The availability of four
measurements allows us to check the uniformity of the
background. The minimum of the four median and root mean
square (rms) values are taken as the optimum background and
rms values for the object under analysis.

k × σ clipped images: This method uses the whole sub-
image to obtain an optimum background value for the object. A

background image is obtained by iteratively rejecting pixels
with values above and below k × σ around the median value in
user-defined small boxes. The median and rms values of this
background image are taken as the optimum background and
rms values for the object under analysis. The obtained values
are found to stabilise after ∼ten clipping iterations with k = 3
(i.e., the procedure is performed rejecting values above 3σ to
estimate the background value). For this method to obtain
reliable background value, the box size should be at least twice
the size of the analyzed object.
Both these methods ignore variations in the background

value over scales of the sub-image. In principle, gradient in the
background values over scales of the cluster size can be
obtained by including the background function while fitting the
1D SBPs (Mackey & Gilmore 2003). However, we found that
the background value determined by this method does not
easily converge to stable values, like the two methods
described above. We have used these two techniques to
analyze SSCs in M82, and obtained reliable SBPs and therefore
accurate structural parameters (Cuevas-Otahola et al. 2020,
2021). The obtained background level values are subtracted to
their corresponding 2-D individual images, resulting in back-
ground-subtracted sub-images.

2.4. Masking Contaminants

In some cases, the distance between objects are too small,
hindering an accurate profile extraction. Analysis of such clusters
requires setting specific constraints on the fitting procedure by
either masking the contaminants or setting smaller fitting radii.

NPROFIT uses the masking capability that the ellipse task
provides to obtain 1D SBPs of sources without contribution
from close contaminant sources. The mask input file is an
ASCII file containing the number of circular masks, along with
their spatial coordinates and radii in pixels.
We draw particular attention to cases where a contaminant

source is located in the corners of the figure, causing noticeable
variations in the background level. If a contaminant source fits
the latter scenario, it will be masked by NPROFIT prior the
background level estimation.

2.5. Surface Brightness Profile Extraction

Star clusters on the HST images are not resolved enough to
obtain SBPs using the star count method that is normally used to
analyze star clusters in the Milky Way and the LMC (Brandl et al.
1996; Mackey & Gilmore 2003). We used the ELLIPSE task in the
IRAF/STSDAS package (Jedrzejewski 1987), one of the most widely
used tools to extract the SBPs from 2D images, for analyzing
extragalactic star clusters. The ELLIPSE task obtains SBPs by
azimuthally averaging intensities in elliptical annular zones. The
task allows for variation of center, ellipticity (ò = 1− b/a, where a
and b are major and minor axes of the ellipse) and position angle
(PA) of the major axis of the successive ellipses. Linear increments
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in the semimajor axis of the successive ellipses were used to
calculate the intensity profiles. We defined concentric ellipses with
their centers fixed at the user-supplied object coordinates. The ò and
PA were also fixed either to the user-provided values or to their
asymptotic values. In the latter case, NPROFIT computes the
ellipticity value by running the ELLIPSE task without fixing the
ellipticity values in a first iteration, and obtains the SBPs in a
second run of ELLIPSE after fixing the values of ò and PA. In this
scenario, NPROFIT analyzes the radial profiles of ellipticities from
the first run, setting the ellipticity and PA values as the ones
corresponding to the radius at which the ellipticity values are nearly
constant. In the majority of the cases, the value where the ellipticity
stabilizes matches the radius containing half the total cumulative
flux, i.e., the effective radius. During the ellipticity estimation,
NPROFIT avoids the most inner radii that does not provide reliable
measurements. The ELLIPSE task obtains cumulative intensities in
addition to the SBPs for every fitted ellipse. The k − sigma clipped
rms fluctuations in the azimuthal intensities for each fitted ellipse
are taken as the error on the measured intensities. All masked pixels
are excluded from the analysis during the ellipse fitting.

2.5.1. Fitting Radius

Considering that in the majority of data sets, clusters and
extended objects in general are not isolated, it is necessary to
remove the contribution of contaminant sources (even after
masking them) in the fitting procedure. With this aim, we define
the fitting radius. For isolated clusters, the background-subtracted
SBPs are expected to monotonically decrease until the intensity
values reach one σbg, with σbg being the dispersion of the
measured background value intensity. We limit the fitting up to a
radius at which the SBP has a value of 3σbg. We refer to such a
radius as R3σ. For objects located in relatively crowded regions,
the SBPs show a bump instead of monotonically decreasing well
before the intensity reaches the 3σbg level. In such cases, we

define Rip, the inflection point such that at = =R 0d I

dRip
2

2 . In
Figure 1, we illustrate the fitting radius selection in the case of a
cluster with a contaminant source nearby as well as for an isolated
cluster. For each object under analysis, NPROFIT computes both
radii and sets as the fitting radius the minimum of R3σ and Rip.

2.6. Dynamical Model Fitting to Observed SBPs

The main goal of our code is fitting the observed SBPs of
star clusters to derive the basic structural parameters as well as
dynamically relevant parameters. The structural parameters are
obtained by fitting the observed SBPs with the theoretical SBPs
for self-gravitating static models supported by pressure exerted
by the stellar motions. We describe the theoretical SBPs
implemented in NPROFIT below.

3. Theoretical SBPs

The theoretical SBPs are related to the surface stellar density
distributions (SDPs), through the mass-to-light ratio of stars.
Clusters are self-gravitating and hence the SDPs determine the
potential of the cluster. SDPs are obtained based on self-consistent
potential-density pairs, given by phase-space distribution functions
f (x, v, t), depending on the positions and velocities of stars at a
given time (Binney & Tremaine 1987). Distribution functions (DF)

Figure 1. Illustration of the choice of the fitting radius. The plots show
isophotal intensity of two simulated clusters as a function of semimajor axes of
the ellipses that best fit the isophotes. The top and bottom panels show clusters
without and with a nearby contaminating source, respectively. The axis units
correspond to natural units for the processed HST/ACS images, which is in
electron/s for intensities and pixels of 0 05 for the semimajor axis (SMA).
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allows us to derive the cluster’s spatial density profile ν

( )òn = fd v, 13

and, the mean stellar velocity is defined by

( )òn
=v fv d v

1
, 2i i

3

νis directly related to the luminosity profile through the mass-
to-light ratio associated to the objects’ age (Bruzual &
Charlot 2003), and is constrained by the collisionless
Boltzmann equation

( )å å¶
¶

+
¶
¶

+
¶
¶

=
f

t
a

f

v
v

f

x
0, 3

i
i

i i
i

i

with xi, vi and ai, the positions, velocities and accelerations of
the stars. It can be noticed that the Boltzmann equation depends
on 7 variables, which hinders obtaining a direct solution of the
equation. In order to simplify the problem, the Jeans Equation
is used.

( ) ( )
n

n b f
+ = -

d v

dr

v

r

d

dr

1
2 , 4r r

2 2

with β the degree of anisotropy of the velocity distribution, vr
2

the radial velocity, f the cluster potential. For the sake of this
work, we assume isotropic velocity distributions, for which
β = 0, reducing the previous equation to two terms. The Jeans
equation is obtained by taking moments of the Boltzmann
Equation and integrating over all the velocities.

3.1. King Models

King models are based on a modified isothermal sphere. The
density of the dynamical King models is given by a distribution

function (King 1966). The King distribution is described as
follows

( ) ( ) ( )e e s e
e

µ - >f exp 1, 0,
0, 0,

, 50
2


⎧
⎨⎩

with ε the relative energy of the system (defined in terms of the
central gravitational potential and the total system energy as
ε = −E + f0, (or equivalently e = Y - v1

2
2) per unit mass, σo

the model-associated velocity dispersion described as follows

( )s
p r

º
G r4

9
, 60

2 0 0
2

with ρ0 the central density and r0 the scale factor, referred to as
the King Radius in the literature.
From the Poisson’s equation (Equation (7))

( )òf p r p = =G G fd v4 4 . 72 3

and Equation (5), setting = y
s

W 2 , the density function is
obtained, in terms of W, the dimensionless potential

( ) ( ) ( )r p= - +W e erf W W W
15

2

3

2
, 8W ⎛

⎝
⎞
⎠

with erf(x) the error function ( ) ò=
p

-erf x e dt
o

x t2 2
. W is

obtained by solving ∇2W = 4πGρ(W), with boundary conditions
W(0) = W0, with W0 the central potential, and W(rt) = 0, with rt
the tidal radius.
In Figure 2 (left panel), we show the density profiles for 4

King models, obtained from the previously described proce-
dure. We show concentrated (W0 = 2 and W0 = 6) as well as
more extended profiles (W0 = 10 and W0 = 15).

Figure 2. Normalized volume densities corresponding to King (left panel), Wilson (middle panel) and Moffat-EFF (right panel). The densities corresponding to
isothermal-based models (King and Wilson), were computed by NPROFIT.
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3.2. Wilson Models

Wilson models are based on isothermal sphere models as the
King models. These models were originally proposed by
Wilson (1975) to fit the observed surface brightness profiles of
elliptical galaxies, having larger haloes than the King models,
produced by an extra term in the energy distribution function.
The distribution function of these models is as follows

( )
( )

( )e
e s

e
s

e

e
µ

- - >
f

exp 1 , 0,

0, 0,
, 9

0
2

0
2



⎧
⎨
⎩

with ε the relative energy of the system, and σo the model-
associated velocity dispersion described in Equation (6).

The corresponding mass density function is obtained
proceeding analogously as in the King model, and follows

( ) ( ) ( )r
p

= - + +W e erf W
W W W

2
4

15

2

3
1 , 10W

2

⎜ ⎟⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

The theoretical surface brightness for King and Wilson
models can be found from the mass density function by means
of the following integral

( ) ( ) ( )
( )

( )òz z
r

=
S

=
-

I R
R r

r R
rdr

2
, 11

R

R

2 2

t

1
2

with ζ the mass-to-light ratio. For the sake of simplicity, we
assume ζ = 1 Me/Le throughout this work.

In Figure 2 (middle panel), we show the density profiles for
4 Wilson models, obtained from the previously described
procedure. We show concentrated (W0 = 2 andW0 = 6) as well
as more extended profiles (W0 = 10 and W0 = 15).

3.3. Moffat-EFF Empirical Profiles

In the pioneering work by Elson et al. (1987), King models
were used to fit the observed profiles of 10 intermediate-age
star clusters in the Large Magellanic Cloud, that have masses
and densities similar to that of old Globular Clusters (Portegies
Zwart et al. 2010). They found King models did not provide
good fits to the SBPs because these clusters displayed more
extended haloes instead of truncated outer parts. Elson et al.
(1987) proposed an empirical profile, based on Moffat
(Moffat 1969) profile (henceforth Moffat-EFF where EFF
stands for Elson, Freeman and Fall), given by

( ) ( ) ( )g
p

=
-

+
g-

I R
L

r

R

r

2

2
1 , 12tot

d
2

d

2 2

⎜ ⎟
⎡

⎣
⎢

⎛
⎝

⎞
⎠

⎤

⎦
⎥

with R the observed profile projected semimajor axis, rd the
characteristic radius or model scale radius, Ltot the total
luminosity, and γ the Moffat-EFF index, which provides
information on the shape of the halo.

Moffat-EFF profile does not have an implicit distribution
function. However, its 3D luminosity density profile can be

calculated using the expression

( ) ( )
( )

= +
g- +

j r j
r

r
1 , 130

2

d
2

1 2

⎜ ⎟
⎛
⎝

⎞
⎠

3.4. Volume Density and Dispersion Velocity Profiles for
Isothermal Spheres

The King and Wilson models compute the ρ(r) as a function
of a numerically defined potential W for isothermal spheres,
given by Equations (8) and (10), respectively. The ρ(r) and W
define the core radius, dynamical mass, surface and volume
mass densities, binding energy, bound mass and central
velocity dispersion, and hence the dynamically useful para-
meters corresponding to the best-fit model are known a priori.
In order to obtain ρ(W), it is necessary to solve the following

expression, obtained from the Laplacian operator in spherical
coordinates and in terms of the dimensionless potential W

( )f =
¶
¶

¶
¶r r

r
W

r

1
, 142 ⎛

⎝
⎞
⎠

and since W depends only on r, and following the prescription
by King (1966) the Poisson’s equation follows

( )r
r¢

+
¢ ¢

= -
d W

dr r

dW

dr

2
9 , 15

2

2
0

with ¢ =r r r0. With the aim of solving these differential
equations, we proceed to re-write the equation with W becoming
the independent variable, to be consistent with Equations (8) and
(10), following King (1966), Heggie & Aarseth (1992), Küpper
et al. (2011)

( )r
r

- + = -X
d X

dW

dX

dW

dX

dW

3

2

9

4
, 16

2

2

2

0

3
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

with = ¢X r 2. Following the dependence of ρ on W, the first
step is to use the 4th order Runge–Kutta method (Runge 1895;
Kutta 1901) to obtain W in terms of X and, thus ρ in terms of W
for each obtained value from each iteration, following

( ) ( )= + + + ++y y
h

k k k k
6

2 2 , 17n n1 1 2 3 4

where,

( )

( ) ( )

=

= + +

= + +

= + +

k f x y

k f x
h

y
k

k f x
h

y
k

k f x h y k

, ,

2
,

2
,

2
,

2
,

, . 18

n n

n n

n n

n n

1

2
1

3
2

4 3

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

Re-writing Equation (16) as

( )r
r

= +
d X

dW X

dX

dW

dX

dW

1

4
6 9 , 19

2

2

2

0

⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥
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and setting y = X, we have ¢ =y dX

dW
, and  =y d X

dW

2

2 . The latter
expression can be expressed by substituting Equation (19)

( )r
r

 = +y
X

dX

dW
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dW

1

4
6 9 . 20

2

0

⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
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Finally we proceed to apply Runge–Kutta two times to obtain
the values of W

( ) ( )= + + + ++W W
h

k k k k
6

2 2 , 21n n1 1 2 3 4

and

( ) ( )¢ = ¢ + ¢ + ¢ + ¢ + ¢+r r
h

k k k k
6

2 2 , 22n n1 1 2 3 4

with k1, k2, k3 and k4, and ¢k1 , ¢k2, ¢k3 and ¢k4 following
Equation (18), with = ¢f y and f = y″ respectively. From the
values of W, the mass volume density of King and Wilson models
are obtained following Equations (8) and (10), respectively.

For King and Wilson models, NPROFIT calculates the
corresponding profiles following the prescription in Binney &
Tremaine (1987) where

( ) ( ) ( )ò e= º
es

+v r
J

J
J f v dv, with . 23n

n2 2

0 0

2
2

2

resulting in the following equations for King and Wilson
profiles, respectively
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In Figure 3, we show the velocity dispersion profiles for
King and Wilson models withW0 = 7.1 and W0 = 5.7, with the
same tidal radius rt for illustration purposes.

3.5. Potential and Velocity Dispersion Profiles for
Moffat-EFF Models

On the other hand, some initially empirical models, such as
the Moffat-EFF model, can be physically motivated. For
instance, by means of Equation (12), the Moffat-EFF volume
density yields

( ) ( )
( )

r r= +
g- +

r
r

r
1 , 260

2

d
2

1 2

⎜ ⎟
⎛
⎝

⎞
⎠

where

(( ) )
( )

( )r
g z

p g
=

G +
G

I

r

1 2

2
, 270

0

d

with, I0 the central surface brightness in units of Le pc−2 and Γ

the usual gamma function. We bear in mind that in general,
mass profiles do not strictly follow light profiles over all radii
due to the effects of mass segregation (Shanahan &
Gieles 2015; Baumgardt 2017), resulting in mass functions
flatter than the luminosity functions. However, for the sake of
simplicity, we assume that mass profiles follow light profiles,
and convert from such quantities by means of the mass-to-light
ratios.
In Figure 2 (right panel), we show the density profiles for 4

Moffat-EFF models, obtained from the previously described
procedure. We show concentrated (γ = 4 and γ = 8) as well as
more extended profiles (γ = 2 and γ = 3).

NPROFIT also computes the theoretical velocity disper-
sion profile for Moffat-EFF model following the Equation
(16) in the prescription by Elson et al. (1987), under the
assumption of a spherical cluster under hydrostatic equili-
brium

( ) ( )
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g
= + -
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-

+
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r
G

r

r

r
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r
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r r
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1
1

28
d d d
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2
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⎞
⎠
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⎝

⎞
⎠

⎛
⎝

⎞
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Figure 3. Velocity dispersion profiles for King, Wilson and Moffat-EFF
models, with the same tidal radius rt, and volume density ρ = 104.2 Me/pc

3.
The King and Wilson profiles have W0 = 7.1 and W0 = 5.7, respectively, and
the corresponding γ index for the Moffat-EFF profile is 2.7.
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with
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( ) ( )( )ò=
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M x dx
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2 2x
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2
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⎞
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⎝
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⎠

and Ω and κ the circular and epicyclic frequencies of the galaxy
at the pericenter of the orbit of the cluster, and M(x) the mass
enclosed at radius x.

In Figure 3, we show the velocity dispersion profile for a
Moffat-EFF profile with γ = 2.7, compared with King and
Wilson profiles with the same rt.

The corresponding potential f for Moffat-EFF model is
computed by means of the Poisson Equation in spherical
coordinates resulting in the following equation

( ) ( )
( ) ( )

f p z m= + + G

g g- -

r G r
r

r

r

r
f r4 1 1d
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d
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with 2F1 the hypergeometric function and Γ the usual gamma
function.

3.6. Derived Parameters

We now use our results for best-fit models to extract the
most commonly used structural parameter, namely core radius
and half-light radius. The latter quantity depends on the
concentration parameter for the King and Wilson models, and
on the gamma for the Moffat-EFF profile. We also provide
three additional parameters namely projected central velocity
dispersion, total mass and binding energy of the clusters, for an
assumed mass-to-light ratio of 1.0

3.6.1. Concentration Index c

For King (1966) and Wilson (1975) models, the central
potential W0 is related to the concentration parameter

( )=c r rlog t 0 obtained by fitting empirical King (1962)
formula. In Figure 4, we show this relation, which is obtained
from the solutions of the models described in the previous
section.

3.6.2. Core Radius Rc

The scale size of the isothermal spheres (r0), and Moffat-EFF
profiles (rd) are related to the core radius Rc. This quantity is
computed recalling that Rc is the radius at which the luminosity
density reaches half its peak value.

For Moffat-EFF profiles, Rc is given in terms of the
characteristic radius or model scale radius (rd) as follows

( ) ( )= -gR r 2 1 . 31c d
2 1 2

The corresponding values for King and Wilson models are
obtained by NPROFIT by interpolating over the profile density
values. In the left-most panel of Figure 5, we show an auxiliar
dimensionless value used by NPROFIT to compute Rc for King and
Wilson models. For the sake of completeness, we show the same
dimensionless function in terms of γ for Moffat-EFF models.

3.6.3. Half-light Radius Rh

For a given core size of isothermal spheres, the half-mass–
radius is related to the concentration index. We show such a
relation in the second panel from left to right in Figure 5, with
Wilson models having larger values at the same Rh value due to
the more extended profiles of the Wilson models. McLaughlin
(2000) characterized such a relation by fitting a 9th order
polynomial for King models. We have also performed a
polynomial fitting, in this case with a 5th order polynomial, for
both King (Equation (32)) and Wilson (Equations (33) and
(34), for values below or equal and above c = 3.25,
respectively) models.

( )

= - +

- + -

R

r
c c c

c c

log 0.07105 0.7433 2.814

4.552 3.754 1.226, 32

h

0

5 4 3

2

⎜ ⎟
⎛
⎝

⎞
⎠

Figure 4. Relation between the concentration index c and the dimensionless
potential W0, computed by NPROFIT following the procedure described in
Section 3.4 for King and Wilson models.
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if c � 3.25
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otherwise
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On the other hand, for the Moffat-EFF profile, the Rh is
analytically related to the fitted structural parameters rd and γ.

( ) ( )( )= -g-R r 0.5 1 . 35h d
1 1 2 1 2

We show the dimensionless function Rh/r0 for illustration
purposes in the second panel from left to right in Figure 5,
along with the corresponding Rh/rd relatiion for Moffat-EFF
models, for the sake of completeness.

3.6.4. Central Velocity Dispersion σ0

NPROFIT computes de central velocity dispersion values
from the previously computed velocity profiles described in
Section 3.4 for King and Wilson models and 3.5 for Moffat-
EFF empirical profiles. The central velocity dispersion profile
projected into the plane of the sky σp,0 is computed for
isothermal models as well as for Moffat-EFF models following

( )
( )

( )òs =
-

¥
R

I R

jv rdr

r R

2
, 36p

R

r
2

2 2

with vr
2 the quadratic velocity dispersion profile computed in

Sections 3.4 and 3.5, and I(R) the SBP.

3.6.5. Tidal Radius rt

From the computed velocity dispersion profiles corresp-
onding to Moffat-EFF models, we can compute the tidal radius,
by finding the radius r at which σp(r) = 0. On the other, hand,
we find such quantity for King and Wilson models, from the
concentration parameter and scale radius, following the
expression for the concentration index rt = 10c r0.

3.6.6. Total Mass Mtot

Another critical parameter these models provide is the total
mass. For Moffat-EFF models, NPROFIT derives the model
mass from the total luminosity Ltot, using Equation (12) and
assuming a mass-to-light ratio ζ. The mass corresponding to
King and Wilson models is computed from Equations (38) and
(40) in King (1966) instead, resulting in

( )òpz= ¢ ¢ ¢
¢

M j r j r dr4 37
r

tot 0 0
2

0

2
t

with ¢ =j j

j0
(expressed as a normalized quantity, as obtained in

the previous sections), ¢ =rt
r

r
t

0
and ¢ =r r

r0
. In the right-most

panel in Figure 5, we show auxiliar dimensionless function
used by NPROFIT to computeMtot for King and Wilson models,
along with Moffat-EFF profiles for completeness.

3.6.7. Binding Energy Eb

Following the prescription by McLaughlin (2000), we have
also implemented in NPROFIT the computation of the binding
energy, (Eb) using their Equation (1)

NPROFIT computes Eb for Moffat-EFF models, substituting
the potential described in Equation (30) along with the density

Figure 5. Normalised functions used to compute Rc (left-most panel), Rh (second panel from left to right), and auxiliar functions for I0/jor0 (third panel) and Mtot

(right-most panel). These functions are used by NPROFIT, to speed up calculations.
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ρ in Equation (26) into the following equation

( )ò prf= -E dr
1

2
4 38b

r

0

t

On the other hand, for King and Wilson models, NPROFIT
uses the dimensionless function in the right-most panel in
Figure 6 to compute the integral in the following equation

( ) ( )ò p r s= +E r
GM

r
W r dr

1

2
4 39b

r

t0

2
0
2t ⎡

⎣⎢
⎤
⎦⎥

3.6.8. Central Surface Magnitude μ0

The central surface brightness I0 in Le pc−2 is converted to
observational units (μF,0) using

( )m = + -M 21.57 2.5logI 40F,0 F, 0

with MF,e the absolute magnitude of the Sun in the filter F,
provided by the user (see Willmer 2018).

3.7. Library of Dynamical Models

For King and Wilson models, NPROFIT solves the
previously described set of differential equations with bound-
ary conditions forW0 ä [2,15] in steps of 0.1 in terms of r

r0
. The

latter results in a library constituted by files containing r

r0
, W, ρ,

and Σ. These libraries are the results of the most computer-
intensive module of NPROFIT. They are pre-evaluated to
speed up computation times and the corresponding results are
used to compute the previously described derived parameters.

NPROFIT uses this library for any new fit, unless the user
specifically asks to solve the equations.

3.8. Convolution with the Point-spread Function (PSF)

The theoretical profiles are convolved with the user-provided
PSF2 by NPROFIT using a FORTRAN routine. We recall that in
general, for finite data sets as the models we described, the
convolution operator is given by

( )( ) ( ) ( ) ( )å* = -
=-

g h m g n h m n , 41
n N

N

with g the signal and f the response function, which in our case
are the dynamical models and the PSF, respectively. Comput-
ing Equation (41) requires N2 operations to perform the
convolution. In order to reduce the number of operations,
NPROFIT uses the fast fourier transform (FFT), resulting in
N Nlog2 operations, reducing the number of operations in
65%. NPROFIT computes the FFT using the numerical recipes
routine CONVLV (Press et al. 1992). In general, the FFT splits
the convolution expression in terms of odd and even indices in
the sum. Hence, FFT routines require the input sampled in

Figure 6. Auxiliar function to compute the integral in Equation (39) for the
binding energy. Figure 7. Convolution scheme performed by NPROFIT. The model is wrapped

around and the PSF is mirrored and zero-padding is performed to meet the
required size criterion for the FFT. The plotted example corresponds to
27 = 128 pixels.

2 PSF for the HST images can be obtained using the Tinytim tool (see
https://www.stsci.edu/hst/instrumentation/focus-and-pointing/focus/tiny-
tim-hst-psf-modeling). Alternatively, it can be defined for each frame using the
tasks for that purpose in DAOPHOT package or Sextractor command PSFex. In
the present work, we assumed a Gaussian profile of FWHM = 2.1 pixels,
which represents well the point sources on the HST/ACS images.
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number of points being a power of 2. It is also required for the
CONVLV routine, that the PSF or response function is wrapped
around and filled with zeros to obtain a vector with a length of
N-1 (odd size). N is the size of the vector containing the
dynamical model, which is a power of two. The model needs to
be mirrored and wrapped around. In Figure 7, we illustrate the
convolution procedure along with the required zero-padding
and wrapping.

3.9. Selection of the Best-fit Model

From the previously determined fitting radius, NPROFIT
proceeds to compute which model provides the most accurate
and reliable representation of the observed SBPs. To this aim,
we use the non-parametric statistical test χ2 (Bevington et al.
1993). The χ2 test determines the goodness of a fit to data,
suitable for observed data with Gaussian errors, which by

virtue of the central limit theorem (Mood et al. 1974) are good
approximations of Poisson distributions. Poisson statistics are
crucial in the determination of the data noise, having different
variances, requiring to use a χ2 test weighted by errors (Wall &
Jenkins 2003)

( ˜ ) ( )åc
s

=
-

=

I I
, 42

i

N

i

2

1

pts
obs model

2

2
i i

with Npts the number of points, the azimuthally averaged
profile intensities Iobsi, σi the corresponding errors computed
during the isophotal fitting, and Ĩmodeli the PSF-convolved
model intensities at i, varying from 1 to Npts. NPROFIT
performs the χ2 minimization technique to find the best-fit
model in the parameter space for each one of the available
theoretical models in NPROFIT. In order to determine which of
these models represents most accurately the observed data, we

Figure 8. Top panel: Synthetic clusters (105 green circles) superposed on a real HST image, which corresponds to the F555W image. Bottom panels: zoom in of five
clusters of the mock sample, in images of 101 ×101 pixels, centered in clusters S24, S43, S49, S93 and S94 (from left to right, respectively). We show in the images
bars indicating 1 kpc and 10 pixels, in the top and bottom panels, respectively. Throughout this work we use an image scale of 0.88 pc pixel−1, which corresponds to
the physical size of the HST/ACS pixels at the distance of M82 (3.63 Mpc).
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implemented the prescription by McLaughlin & van der Marel
(2005) to compare the obtained best-fit models

( )c
c c

c c
D =

-

+
, 432 alt

2
ref
2

alt
2

ref
2

where cref
2 and calt

2 are the cmin
2 values of the reference model

and the model to be compared, respectively.
This procedure allows to determine in which cases two

models are equally good |Δχ2| � 0.2 or whether the alternative
model provides a better fit than the reference model.

3.10. Determination of Errors

NPROFIT computes the errors on the obtained parameters by
considering 1σ significance regions. Considering that each fit
depends basically on three free parameters, the intervals for a
1σ level of confidence are defined by means of the following
equation (Wall & Jenkins 2003)

( )c c= + 3.50, 442
min
2

with cmin
2 the χ2 value of the best fit model, and χ2 the value

corresponding to the rest of the models. These intervals are
computed for Moffat-EFF, King and Wilson models, sepa-
rately. The errors on the derived parameters described in
Section 3.6 are computed by NPROFIT by propagating the
errors on the basic parameters for each models, namely, rd and
γ for Moffat-EFF models and r0 and W0 for King and Wilson
models.

4. Code Illustration with Simulated Clusters

In Cuevas-Otahola et al. (2020, 2021), we have applied the
techniques described in this algorithm, and compared our
results with those obtained using the publicly available tools
GALFIT and ISHAPE. Our results for the sample of super star
clusters in M82 were in agreement with the results obtained by
GALFIT for Moffat-EFF models. More specifically in Cuevas-
Otahola et al. (2021), we computed the derived parameters of
the sample for Moffat-EFF models. In order to illustrate these
techniques for King and Wilson models as well, we simulated a
sample of 105 clusters following King, Wilson and, for the
sake of completeness, we also simulated clusters following
Moffat-EFF model profiles. With the aim of testing the code in
a realistic scenario, considering that typically, star clusters are
embedded in crowded regions, we used an archive image as the
background of our mock clusters. We used an image in F555W
filter extracted from the HST Legacy Survey, provided by the
Hubble Heritage Team, of the prototype starburst galaxy M82,
which is a complex study case, due to its high crowding, high
inclination angle and background gradient. In Figure 8, we
show a simulated image containing 105 clusters along with the
zoom on sub-images around 5 of the clusters in the mock
sample (the background of the mock sample has considerable
gradient). The mock sample is based on the parameters set in
Table 1, simulated several times for different central surface
brightness.

4.1. Sample Simulation

We have designed and implemented the subroutine MKSAM-

PLE to generate a mock sample, from user given coordinates
and model type.
Mock sample of clusters can be generated using our module

MKSAMPLE from user given coordinates and model type.
MKSAMPLE generates 2D images following the projected
profiles of the available models. The synthetic profiles data
are stored in a 2D matrix, which is generated following a
similar procedure as that in the IRAF task MKOBJECTS. We
draw particular attention to the geometrical features of the
models. As in the case of MKOBJECTS, we consider the profiles
of models with spherical symmetry. However, to reproduce the
axysymmetry of some observed objects, we introduce an
artificial ellipticity in the x, y model coordinates as follows

( ) ( )
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p p
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Table 1
Set of Initial Parameters used to Build the Mock Data with Moffat-EFF (M),

King (K), and Wilson (W)

γ (M) rd (M) W0 (K) r0 (K) W0 (W) r0 (W)
(pix) (pix) (pix)

(1) (2) (3) (4) (5) (6)

2.5 0.5 8 0.5 8.4 0.5
2.7 2.7 8.2 0.9 8 0.9
3.1 3.1 7.8 1.1 7.4 1.1
3.1 3.5 6.4 1.9 6.2 1.9
3.3 3.7 4.6 3.1 4.6 3.1
3.5 4.3 3.8 4.7 5.2 4.9
4.1 5.1 3.8 4.9 7.2 5.1

Note. Description of the columns: (1)Moffat-EFF shape parameter, (2)Moffat-
EFF characteristic radius, (3) and (5), King and Wilson central dimensionless
potential, (4) and (6), King Radius for King and Wilson models, respectively.
Each pair of parameters was simulated for five different values of central

surface brightness (
-

mag arcsec
2
): 18.5, 17.0, 16.3, 15.3, and 14. The varying

galaxy background reaches values from 22.2 to 18.6
-

mag arcsec
2
, with a

median value of 21
-

mag arcsec
2
, resulting in a heterogeneous sample with

differences between the central surface brightness and the background value

Δμ from 2 to 7.5
-

mag arcsec
2
, with a median value of 4.7

-
mag arcsec

2
.
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where

( )
= + -
= + -

x x x
y y y

1
1 45

t i c

t j c

with PA and AR (AR = b/a, with a and b, the semimajor and
semiminor axis, respectively), the position angle and axis ratio,
respectively. xi and yj are the (i,j) coordinates in the x and y
direction of the image, and xc, and yc the centers of each object.
We draw attention to the mock elliptic clusters, whose
parameters are well recovered using spherical models, since
as we have shown in Appendix A in Cuevas-Otahola et al.
(2020), for the most elongated cluster in M82, M82-F, the
ellipticity does not considerably affects the integrated profile
obtained from the isophotal fitting.

Each profile is simulated as follows

( ) ( ) ( )= +Ssim i, j mod r, par1, par2 bg 460mod

with = +r x ymod
2

mod
2 , mod the selected model (Moffat-EFF,

Wilson or King) S0mod the central surface brightness used for the
simulation, par1, par2, the model parameters (rd and γ for
Moffat-EFF models, and r0 and W0 for King and Wilson
models), bg is the simulated background value for each
coordinate. For the sake of testing NPROFIT in a realistic
background scenario, we used a real archive image of a galaxy
instead of the usual background image drawn from a Gaussian

distribution with mean and sigma values provided by the user.
We used an image from the HST Legacy Survey made publicly
available by the Hubble Heritage Team (Mutchler et al. 2007)
corresponding to the prototype starburst galaxy M82, located at
a distance of 3.63 Mpc (Freedman et al. 1994). Such a galaxy
represents an interest study case, ideal to determine the extents
of the code, considering that it has a strong background
gradient, a large number of clusters along its disk and nucleus
(around 600) (Mayya et al. 2008) and a high inclination degree
77◦ (Mayya et al. 2005). In addition to the realistic background
conditions, the mock sample spans a wide range of central
surface brightness values (spanning around 4.5 mag arcsec−2,
from 18.5 mag arcsec−2 to 14 mag arcsec−2, in 5 bins), initially
set to test the accuracy of the code and its dependence on the
surface brightness profiles of the clusters.
In Figure 8, we show the mock sample constituted by 105

clusters with the M82 galaxy image in the F555W as the
background image. We assumed a mass-to-light ratio of 1
(resembling that of a population of 2.2 Gyr in the F555W filter)
and a zero-point magnitude of 25.779 mag. The initial
structural parameters, were simulated, considering realistic
values (following the values reported in Cuevas-Otahola et al.
(2020, 2021)), resembling clusters in M82. To that aim, we
performed our simulations, chosing the set of initial conditions
in Figure 9, for Moffat-EFF, King, and Wilson models, with

Figure 9. Initial conditions of the mock simulation, along with the values obtained by nProFit, with the corresponding 1σ confidence intervals for Moffat-EFF (left-
most panels), King (middle panels), Wilson (right-most panels) models for faint (top panels) and bright (bottom panels) clusters.
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central surface brightness values between 14 mag arcsec−2 and
18.5 mag arcsec−2, and with background values between 18.6
mag arcsec−2 and 22.2 mag arcsec−2. We performed the fits
using nProFit, and find that, the obtained parameters, are well
within the 1σ confidence intervals centered at the initial values,
in the majority of cases, showing fitted values closer to the
initial values for brighter clusters. Our mock sample is

constituted by these 21 combinations of structural parameters
(7 per each model, summarized in Table 1), along, with the 5
bins in surface brightness, resulting in a mock sample of 105
clusters, with each combination of structural parameters (γ and
rd for Moffat-EFF, and W0 and r0 for King and Wilson
models), simulated for each one of the initial central surface
brightness profiles. The mock sample clusters positions were

Figure 11. Dynamical models (Moffat-EFF, King and Wilson) fitting performed by NPROFIT to the surface brightness profile of a cluster in the mock sample
generated with mksample (top panel). Fitting residuals (bottom panel). The fitting radius is shown with the vertical dashed line, the observed SBP with the empty dots
and the fitted models with solid lines.

Figure 10. Azimuthally averaged surface brightness profiles computed by NPROFIT through the ellipse IRAF task for the objects S93 and S28, in the left and right
panels, respectively.
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drawn from a uniform distribution limited by the galaxy
geometry.

4.2. Structural Parameters of the Mock Sample

We run the NPROFIT code over our synthetic data, and
obtained in the first place the sub-images centered in each object.
Background subtracted images are subsequently obtained.

In Figure 10 we show examples of SBPs on our simulated
image for two clusters. The intensities are given in units of raw
counts per second (cps) on the background subtracted images.
These are converted to mag arcsec−2 units using the zero-point
and image scale given by the user. The profile semimajor axis
is given in units of pixels, which are converted to parsecs, using
the image scale given by the user, to match the theoretical
models units for fitting purposes.

In Figure 11, we show an example of an extracted surface
brightness profile along with the corresponding best-fit model.
The corresponding residuals are also shown. The fitted
structural parameters along with derived ones following the
procedure described throughout this paper are summarized in
Table 2. In order to compare in a more homogeneous way the
results obtained by NPROFIT, we computed one of the most
relevant quantities, the half-light radius (Rh), and compared it
with their initial values. In order to ensure that the obtained
results are reliable, regarding the fitted model, we determined,
the best fitting model in each case, following Equation (43), as
we show in Figure 12. In panel (a), we show the comparison
between the reference models and Moffat-EFF, and observe the
overall trend of clusters initially modeled with Moffat-EFF not
being well fitted in general by King and Wilson models. In
panel (b), we show the comparison for clusters initially
modeled with King models, resulting in good fits for Wilson
fits, and poor fits for Moffat-EFF models. Finally, in panel (c),
we show the comparison for clusters initially modeled with
Wilson models, resulting in a similar behavior to that in the
middle panel. Hence, from Figure 12, we conclude that clusters
simulated with Moffat-EFF models are well fitted by Moffat-
EFF models, whereas clusters simulated with King and Wilson
models are well-fitted either by King or Wilson models. We
computed the Rh values, from the fitted r0 and W0, for clusters
best fitted either by King or Wilson models, and from rd and γ

for those best represented by Moffat-EFF models, following
the prescription in Section 3.6.3. We fit the three models to all
the mock sample data, regardless of the models they were
drawn from.

In order to test the accuracy of NPROFIT, in Figure 13 (a), we
show the difference between the initial Rh values and the values
obtained by NPROFIT, weighted by the initial Rh values, and
compared with them, as a function of the difference between
the central surface brightness and the measured background
value (Δμ). As expected, we observe a better recovery for

Figure 12. Δχ2 values to determine the best fitting model, setting as a model
for comparison Moffat-EFF (a), King (b) and Wilson (c) vs. percentage error
for Rh fits performed by NPROFIT, for the clusters initially fitted with the
models shown in the figure legend. The green horizontal gaps represent a
difference of 20%, between the compared models, where the compared fits
provide equally good results.
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Table 2
Set of Initial and Fitted Parameters Obtained by nProFit for the Mock Sample

ID IM OM Δμ r0,i r0,f γ, W0 γ, W0 (f) Rh,i Rh,f Rc log M rlog 0 rt σ0 logEb

-
mag

arcsec 2 (pc) (pc) (pc) (pc) (pc) (Me) ( )M

pc3


(pc) (km/s) (ergs)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)

S5 M M 3.5 ± 0.39 3.3 3.1-
+

0.32
0.37 3.3 3.0-

+
0.29
0.31 4.5 4.8-

+
0.65
0.75 2.1-

+
0.10
0.13 5.5-

+
0.08
0.07 3.0-

+
0.09
0.10 11.4-

+
0.43
0.48 3.1-

+
0.66
0.69 46.0-

+
0.61
0.68

S7 M M 4.7 ± 0.38 4.5 4.3-
+

0.39
0.45 4.1 3.7-

+
0.35
0.41 4.3 4.3-

+
0.81
0.94 2.6-

+
0.10
0.11 5.6-

+
0.02
0.03 3.0-

+
0.08
0.09 5.4-

+
0.52
0.61 3.6-

+
0.72
0.78 43.5-

+
0.74
0.86

S11 M M 5.5 ± 0.23 3.1 3.1-
+

0.20
0.22 3.1 3.0-

+
0.16
0.13 4.9 4.9-

+
0.41
0.43 2.1-

+
0.07
0.10 6.0-

+
0.03
0.01 3.5-

+
0.06
0.06 21.8-

+
0.26
0.26 5.3-

+
0.51
0.51 46.6-

+
0.36
0.36

S18 M M 6.5 ± 0.16 3.1 3.2-
+

0.16
0.18 3.1 3.0-

+
0.13
0.08 4.9 4.8-

+
0.32
0.33 2.1-

+
0.06
0.10 6.3-

+
0.02
0.04 3.8-

+
0.04
0.05 31.5-

+
0.21
0.20 7.6-

+
0.45
0.44 47.0-

+
0.29
0.28

S31 M M 7.3 ± 0.10 2.7 2.8-
+

0.06
0.06 3.1 3.0-

+
0.05
0.04 4.3 4.3-

+
0.12
0.12 1.9-

+
0.02
0.03 6.6-

+
0.00
0.01 4.3-

+
0.02
0.02 18.6-

+
0.08
0.07 11.6-

+
0.28
0.27 47.7-

+
0.11
0.10

S39 K K 3.5 ± 0.67 1.7 1.9-
+

3.05
2.75 6.4 6.2-

+
0.79
1.71 3.6 3.2-

+
4.80
0.94 2.9-

+
0.70
1.38 5.9-

+
0.11
0.45 2.7-

+
0.17
0.40 38.5-

+
2.24
2.55 2.0-

+
0.22
0.27 46.7-

+
0.06
0.08

S49 K K 2.5 ± 0.37 4.3 4.0-
+

1.05
1.05 3.8 5.3-

+
0.72
0.98 4.5 5.1-

+
1.96
0.33 2.9-

+
0.62
0.81 6.0-

+
0.40
0.49 2.9-

+
0.30
0.43 49.2-

+
0.74
0.80 5.3-

+
0.05
0.06 46.7-

+
0.13
0.13

S55 K K 5.3 ± 0.26 4.1 5.0-
+

0.36
0.70 3.8 3.4-

+
0.81
0.38 4.3 4.3-

+
0.86
0.27 2.7-

+
0.63
0.42 6.5-

+
0.45
0.53 3.1-

+
0.44
0.05 26.7-

+
0.30
0.34 7.7-

+
0.04
0.02 49.1-

+
0.01
0.01

S58 K K 6.1 ± 0.22 0.8 0.8-
+

0.51
0.59 8.2 8.4-

+
0.11
0.14 5.2 5.3-

+
2.45
0.14 3.0-

+
0.09
0.11 7.7-

+
0.00
0.03 4.0-

+
0.01
0.01 67.2-

+
0.46
0.55 3.9-

+
0.03
0.04 49.4-

+
0.01
0.01

S70 K K 6.8 ± 0.15 4.3 4.7-
+

0.35
0.29 3.8 3.8-

+
0.37
0.44 4.5 4.4-

+
0.52
0.29 2.7-

+
0.32
0.36 6.9-

+
0.27
0.25 3.6-

+
0.16
0.21 29.4-

+
0.22
0.21 13.2-

+
0.02
0.02 49.8-

+
0.01
0.01

S76 W W 3.8 ± 0.63 4.3 4.7-
+

0.59
2.01 5.2 5.4-

+
1.72
0.57 3.5 3.5-

+
0.36
0.36 2.8-

+
1.29
0.65 5.4-

+
0.69
1.02 2.4-

+
1.03
0.10 165.6-

+
0.83
1.72 3.2-

+
0.09
0.09 45.1-

+
0.11
0.33

S82 W W 2.5 ± 0.39 2.7 2.9-
+

1.45
1.45 4.6 5.0-

+
0.78
1.12 2.1 2.0-

+
0.26
0.28 2.8-

+
0.76
1.00 6.0-

+
0.21
0.39 3.0-

+
0.21
0.34 73.6-

+
1.22
1.34 4.1-

+
0.08
0.10 46.9-

+
0.05
0.04

S88 W W 5.6 ± 0.28 1.7 1.8-
+

0.96
0.54 6.2 6.1-

+
0.22
0.41 1.7 1.5-

+
0.48
0.47 2.9-

+
0.24
0.34 6.7-

+
0.03
0.11 3.5-

+
0.04
0.09 117.9-

+
1.18
0.82 4.6-

+
0.04
0.05 47.6-

+
0.03
0.02

S102 W W 6.4 ± 0.16 1.7 1.8-
+

0.39
0.44 6.2 6.1-

+
0.20
0.19 1.7 1.6-

+
0.28
0.21 2.9-

+
0.18
0.17 7.1-

+
0.02
0.06 3.9-

+
0.04
0.04 124.6-

+
0.54
0.59 7.7-

+
0.03
0.02 48.5-

+
0.01
0.01

S103 W W 6.9 ± 0.16 2.7 2.9-
+

0.40
0.42 4.6 4.7-

+
0.27
0.28 2.1 2.0-

+
3.08
3.63 2.7-

+
0.25
0.26 6.7-

+
0.06
0.10 3.8-

+
0.08
0.08 64.5-

+
0.33
0.35 9.6-

+
0.02
0.02 48.6-

+
0.01
0.01

Note. Description of the columns: (1) Simulated cluster ID. (2) Input model. (3) Output model. (4) Difference between central surface brightness and local background value. (5) and (6) Initial and fitted
scale radius rd for Moffat-EFF models and r0 for King and Wilson models. (7) and (8) Initial and fitted shape parameters γ for Moffat-EFF models and W0 for King and Wilson models. (9) and (10)
Initial and fitted half-light radii. (11) Core radius. (12) Logarithm of total profile mass. (13) Logarithm of central volume mass density. (14) Tidal radius. (15) Central velocity dispersion. (16) Logarithm
of the binding energy.
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larger Δμ values, even for small clusters, with larger errors,
considering that the latter ones, have sizes close to the limit
image resolution.

For the sake of this analysis, we removed extremely faint
clusters in very crowded areas, resulting in fitting radius values
shorter than 8 pixels, resulting in a sub-sample of 74 clusters.
On average, we notice that the recovered values for clusters
with Δμ < 5 mag arcsec−2 are within 20% of the initial values,

whereas, for clusters with Δμ > 5 mag arcsec−2, the recovered
values are within 10% of the initial values.
In order to validate our results and compare them with the

corresponding ones obtained by other publicly available tools,
we carried out the structural parameters fitting using GALFIT

(Peng et al. 2010) and ISHAPE (Larsen 1999). In Figure 13 (b),
we compare the results obtained by GALFIT (version 3.0.5),
with the initial simulated values. We obtained converging fits

Figure 13. Percentage error for Rh fits performed by NPROFIT (a), GALFIT (b), ISHAPE (c), and from an empirical estimate (d) vs. the initial half-light radius, with the
point sizes coded as a function of the difference between central surface brigthness and local background values for each cluster. The dotted horizontal line represents
errors equal to zero.
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for 55 clusters, which are on average among the brightest ones.
We notice that GALFIT provides fits comparable to NPROFIT in
all size ranges. On the other hand, in Figure 13 (c), we compare
the results obtained by ISHAPE, with the initial simulated
values. For clusters with large contrast (Δμ � 5 mag arcsec−2),
ISHAPE provides equally good results for 70% of the clusters.
However, the Rh values values obtained by ISHAPE have larger
dispersion and errors for Δμ < 5 mag arcsec−2. Cuevas-
Otahola et al. (2020) had demonstrated that the core radii for
real M82 clusters are well reproduced by ISHAPE. Hence, the
large error on Rh is most likely due to poor recovery of halo
parameters in ISHAPE for clusters located in high background
regions.

We have also empirically found the Rh values by integrating
the observed surface brightness profiles of each cluster (and
corrected them by the PSF radius) and we compare them
against the initial Rh values in Figure 13 (d). The recovery is
especially poor for Rh < 4 pc, with the recovered values
systematically larger.

5. Conclusions

In this work, we present the numerical code NPROFIT,
devoted to obtain the best-fit structural parameters of star
clusters in the HST images of nearby (distance < 5 Mpc)
galaxies. The code is PYTHON-based at the user end, but uses
modules of PYRAF and FORTRAN. NPROFIT extracts sub-
images centered in each analyzed object coordinates. Subse-
quently, a local background estimation is carried out by
NPROFIT determining the median values in the corners or by
scanning the whole images and estimating the background
value by a σ-clipping procedure. The estimated value is
subsequently subtracted from the extracted SBPs by NPROFIT
from isophotal fittings. PSF-convolved Moffat-EFF, King and
Wilson models are then fitted to background subtracted
azymuthally averaged surface brightness profiles. NPROFIT
uses a χ2-minimization technique to fit the models. As a result,
the tool provides the set of basic structural parameters, scale
parameters (rd for Moffat-EFF and r0 for King and Wilson
models) and shape parameters (γ for Moffat-EFF and W0 for
King and Wilson models). Since nProFit fits dynamical

models, it offers a valuable opportunity to derive physically
relevant parameters. Among these parameters are central
volume and luminosity densities (ρ0 and j0), total masses and
luminosities (M and L), central velocity dispersions (σ0), core
radius (Rc), half-light radius (Rh), tidal radius (Rt) and binding
energy (Eb).
We have tested NPROFIT on simulated clusters superposed

on real HST images. For the simulated clusters, the surface
brightness difference between the cluster maximum and the
local background varies between 3 and 8 mag arcsec−2. We
demonstrate that the input values are recovered within the 1σ
errors for majority of the simulated clusters for all the three
theoretical models we have explored. The Rh values are
recovered within 10 % for clusters with Δμ > 5 mag arcsec−2

and 20 % for clusters withΔμ < 5 mag arcsec−2. The accuracy
of our recovery is comparable to that of GALFIT, whereas it is
clearly better than that with ISHAPE, especially for clusters
Δμ < 5 mag arcsec−2. We illustrate that NPROFIT is a tool
suitable to fit the structural parameters in samples with
considerable crowding, such as the M82 disk, providing
reliable values for clusters for which a neighboring cluster
does not contribute significantly within a distance of 8 HST/
ACS pixels.
As a final note, we clarify that in this work, we considered

that mass profiles follow light profiles over all clusters’ radii.
This is a simplification, since, mass segregation influences the
mass density profiles of clusters, as well as their central
velocity dispersions, causing the mass profiles to depart from
the corresponding light profiles. For this reason, we will
include mass segregation prescriptions in the upcoming version
of NPROFIT.

BCO thanks CONACyT for the support that enabled her to
carry out the work presented here. We also thank CONACyT
for the research grants CB-A1-S-25070 (YDM), CB-2014-
240426 (IP), and CB-A1-S-22784 (DRG), that allowed the
acquisition of a cluster that was used for computations in this
work. BCO wants to thank the anonymous reviewer for the
comments that allowed us to improve this work significantly.
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Appendix
NPROFIT Input

We show an example of NPROFIT input. NPROFIT is a modular stand-alone code, fully adjustable to the
user’s needs. For further details on the routines see the README file.

filters.dat #Filters information file
1 #Fitting box size option (1 same

for all objects, 2 table with
box size for each object)

100 #Box size (if the previous
option is 1), Fitting box
sizes information file (if the
previous option is 2)

list_x0_y0.dat #Objects coordinates
1 #Coordinate system (1 Image

(pixel), 2 WCS)
no #Cut images into images cen-

tered in each object
no #Substract sky
no #Measure sky
2 #Sky measurement option (1 for

instat, 2 for median method,
see README for details)

yes #Provide measurements of the
sky in a file

no #Use pixel mask of
contaminants?

mask_file.dat #Pixel mask file (ASCII file)
yes #Use given ellipticity and P.A.

for isophotal fitting (sup-
plied by the user)

no #Calculate P.A., ellipticity
for isophotal fitting

no #Calculate isophotal fitting
no #Restrict ellipticity
0.3 #Ellipticity restriction value

(if previous option
is ‘‘yes’’)

no #Convolve model with the PSF
1 #PSF options (1 user given, 2

Gaussian, etc.)
2 #Dynamical models fitting

options (1 prepare data for
fitting, 2 data already pre-
pared for fitting)

yes #Fit Moffat-EFF profile
yes #Fit King Dynamical profile
yes #Fit Wilson profile
nprofit_librarypath #Absolute nProFit library path
3 #Fitting procedure options (1

automatically fit, 2 prepare a
script to fit later the models,
3 fits already performed)

yes #Plot surface brightness pro-
files and dynamical models
fitting

ds9_path #DS9 path (if the previous
option is yes)

yes #Compute derived parameters
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